76 research outputs found

    Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation

    Get PDF
    For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents

    ERBB and P‐glycoprotein inhibitors break resistance in relapsed neuroblastoma models through P‐glycoprotein

    Get PDF
    Chemotherapy resistance is a persistent clinical problem in relapsed high-risk neuroblastomas. We tested a panel of 15 drugs for sensitization of neuroblastoma cells to the conventional chemotherapeutic vincristine, identifying tariquidar, an inhibitor of the transmembrane pump P-glycoprotein (P-gp/ABCB1), and the ERBB family inhibitor afatinib as the top resistance breakers. Both compounds were efficient in sensitizing neuroblastoma cells to vincristine in trypan blue exclusion assays and in inducing apoptotic cell death. The evaluation of ERBB signaling revealed no functional inhibition, i.e., dephosphorylation of the downstream pathways upon afatinib treatment but direct off-target interference with P-gp function. Depletion of ABCB1, but not ERRB4, sensitized cells to vincristine treatment. P-gp inhibition substantially broke vincristine resistance in vitro and in vivo (zebrafish embryo xenograft). The analysis of gene expression datasets of more than 50 different neuroblastoma cell lines (primary and relapsed) and more than 160 neuroblastoma patient samples from the pediatric precision medicine platform INFORM (Individualized Therapy For Relapsed Malignancies in Childhood) confirmed a pivotal role of P-gp specifically in neuroblastoma resistance at relapse, while the ERBB family appears to play a minor part

    Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance

    Get PDF
    Current preclinical models in tumor biology are limited in their ability to recapitulate relevant (patho-) physiological processes, including autophagy. Three-dimensional (3D) growth cultures have frequently been proposed to overcome the lack of correlation between two-dimensional (2D) monolayer cell cultures and human tumors in preclinical drug testing. Besides 3D growth, it is also advantageous to simulate shear stress, compound flux and removal of metabolites, e.g., via bioreactor systems, through which culture medium is constantly pumped at a flow rate reflecting physiological conditions. Here we show that both static 3D growth and 3D growth within a bioreactor system modulate key hallmarks of cancer cells, including proliferation and cell death as well as macroautophagy, a recycling pathway often activated by highly proliferative tumors to cope with metabolic stress. The autophagyrelated gene expression profiles of 2D-grown cells are substantially different from those of 3D-grown cells and tumor tissue. Autophagy-controlling transcription factors, such as TFEB and FOXO3, are upregulated in tumors, and 3D-grown cells have increased expression compared with cells grown in 2D conditions. Three-dimensional cultures depleted of the autophagy mediators BECN1, ATG5 or ATG7 or the transcription factor FOXO3, are more sensitive to cytotoxic treatment. Accordingly, combining cytotoxic treatment with compounds affecting late autophagic flux, such as chloroquine, renders the 3D-grown cells more susceptible to therapy. Altogether, 3D cultures are a valuable tool to study drug response of tumor cells, as these models more closely mimic tumor (patho-)physiology, including the upregulation of tumor relevant pathways, such as autophagy

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Get PDF
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75–78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs

    Drug sensitivity profiling of 3D tumor tissue cultures in the pediatric precision oncology program INFORM

    Get PDF
    The international precision oncology program INFORM enrolls relapsed/refractory pediatric cancer patients for comprehensive molecular analysis. We report a two-year pilot study implementing ex vivo drug sensitivity profiling (DSP) using a library of 75-78 clinically relevant drugs. We included 132 viable tumor samples from 35 pediatric oncology centers in seven countries. DSP was conducted on multicellular fresh tumor tissue spheroid cultures in 384-well plates with an overall mean processing time of three weeks. In 89 cases (67%), sufficient viable tissue was received; 69 (78%) passed internal quality controls. The DSP results matched the identified molecular targets, including BRAF, ALK, MET, and TP53 status. Drug vulnerabilities were identified in 80% of cases lacking actionable (very) high-evidence molecular events, adding value to the molecular data. Striking parallels between clinical courses and the DSP results were observed in selected patients. Overall, DSP in clinical real-time is feasible in international multicenter precision oncology programs.Peer reviewe

    Estimating Ixodes ricinus densities on the landscape scale

    Get PDF
    Background: The study describes the estimation of the spatial distribution of questing nymphal tick densities by investigating Ixodes ricinus in Southwest Germany as an example. The production of high-resolution maps of quest-ing tick densities is an important key to quantify the risk of tick-borne diseases. Previous I. ricinus maps were based on quantitative as well as semi-quantitative categorisations of the tick density observed at study sites with differ-ent vegetation types or indices, all compiled on local scales. Here, a quantitative approach on the landscape scale is introduced. Methods: During 2 years, 2013 and 2014, host-seeking ticks were collected each month at 25 sampling sites by flag-ging an area of 100 square meters. All tick stages were identified to species level to select nymphal ticks of I. ricinus, which were used to develop and calibrate Poisson regression models. The environmental variables height above sea level, temperature, relative humidity, saturation deficit and land cover classification were used as explanatory variables. Results: The number of flagged nymphal tick densities range from zero (mountain site) to more than 1,000 nymphs/100 m2. Calibrating the Poisson regression models with these nymphal densities results in an explained variance of 72 % and a prediction error of 110 nymphs/100 m2 in 2013. Generally, nymphal densities (maximum 37
    corecore