32 research outputs found

    Irreversible inhibitors and activity-based probes as research tools in chemical glycobiology

    Get PDF
    In this review, we will discuss the enzymes that are involved in the synthesis and degradation of glycoconjugates and we will give an overview of the inhibitors and activity-based probes (ABPs) that have been used to study these. Following discussion of some general aspects of the biosynthesis and degradation of N-linked glycoproteins, attention is focused on the enzymes that hydrolyze the protein–carbohydrate linkage, peptide N-glycanase and glycosylasparaginase and their mechanism. We then focus on the biosynthesis of O-linked glycoproteins and glycolipids and in particular on the enzymes that hydrolyze the interglycosidic linkages in these, the glycosidases. Some important mechanism-based glycosidase inhibitors that form a covalent bond with the targeted enzyme(s), their corresponding ABPs and their application to study this class of enzymes are highlighted. Finally, alternative pathways for degradation of glycoconjugates and an ABP-based strategy to study these will be discussed

    Gcase and limp2 abnormalities in the liver of niemann pick type c mice

    Get PDF
    Funding Information: This work was supported by the NWO-Building Blocks of Life: GlcCer grant to J.M.F.G.A: BBOL-2007247202. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.The lysosomal storage disease Niemann–Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sph-ingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysoso-mal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1−/− mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1−/− liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Im-munohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1−/− liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1−/− liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1−/− hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes.publishersversionpublishe

    1,6-Cyclophellitol Cyclosulfates : A New Class of Irreversible Glycosidase Inhibitor

    Get PDF
    The essential biological roles played by glycosidases, coupled to the diverse therapeutic benefits of pharmacologically targeting these enzymes, provide considerable motivation for the development of new inhibitor classes. Cyclophellitol epoxides and aziridines are recently established covalent glycosidase inactivators. Inspired by the application of cyclic sulfates as electrophilic equivalents of epoxides in organic synthesis, we sought to test whether cyclophellitol cyclosulfates would similarly act as irreversible glycosidase inhibitors. Here we present the synthesis, conformational analysis, and application of novel 1,6-cyclophellitol cyclosulfates. We show that 1,6-epi-cyclophellitol cyclosulfate (α-cyclosulfate) is a rapidly reacting α-glucosidase inhibitor whose 4C1 chair conformation matches that adopted by α-glucosidase Michaelis complexes. The 1,6-cyclophellitol cyclosulfate (β-cyclosulfate) reacts more slowly, likely reflecting its conformational restrictions. Selective glycosidase inhibitors are invaluable as mechanistic probes and therapeutic agents, and we propose cyclophellitol cyclosulfates as a valuable new class of carbohydrate mimetics for application in these directions

    1,6-Cyclophellitol Cyclosulfates : A New Class of Irreversible Glycosidase Inhibitor

    Get PDF
    The essential biological roles played by glycosidases, coupled to the diverse therapeutic benefits of pharmacologically targeting these enzymes, provide considerable motivation for the development of new inhibitor classes. Cyclophellitol epoxides and aziridines are recently established covalent glycosidase inactivators. Inspired by the application of cyclic sulfates as electrophilic equivalents of epoxides in organic synthesis, we sought to test whether cyclophellitol cyclosulfates would similarly act as irreversible glycosidase inhibitors. Here we present the synthesis, conformational analysis, and application of novel 1,6-cyclophellitol cyclosulfates. We show that 1,6-epi-cyclophellitol cyclosulfate (α-cyclosulfate) is a rapidly reacting α-glucosidase inhibitor whose 4C1 chair conformation matches that adopted by α-glucosidase Michaelis complexes. The 1,6-cyclophellitol cyclosulfate (β-cyclosulfate) reacts more slowly, likely reflecting its conformational restrictions. Selective glycosidase inhibitors are invaluable as mechanistic probes and therapeutic agents, and we propose cyclophellitol cyclosulfates as a valuable new class of carbohydrate mimetics for application in these directions

    Activity-based probes for functional interrogation of retaining β-glucuronidases

    Get PDF
    Humans express at least two distinct β-glucuronidase enzymes that are involved in disease: exo-acting β-glucuronidase (GUSB), whose deficiency gives rise to mucopolysaccharidosis type VII, and endo-acting heparanase (HPSE), whose overexpression is implicated in inflammation and cancers. The medical importance of these enzymes necessitates reliable methods to assay their activities in tissues. Herein, we present a set of β-glucuronidase-specific activity-based probes (ABPs) that allow rapid and quantitative visualization of GUSB and HPSE in biological samples, providing a powerful tool for dissecting their activities in normal and disease states. Unexpectedly, we find that the supposedly inactive HPSE proenzyme proHPSE is also labeled by our ABPs, leading to surprising insights regarding structural relationships between proHPSE, mature HPSE, and their bacterial homologs. Our results demonstrate the application of β-glucuronidase ABPs in tracking pathologically relevant enzymes and provide a case study of how ABP-driven approaches can lead to discovery of unanticipated structural and biochemical functionality

    Treatment of Fabry Disease: Outcome of a Comparative Trial with Agalsidase Alfa or Beta at a Dose of 0.2 mg/kg

    Get PDF
    Two different enzyme preparations, agalsidase alfa (Replagal(TM), Shire) and beta (Fabrazyme(TM), Genzyme), are registered for treatment of Fabry disease. We compared the efficacy of and tolerability towards the two agalsidase preparations administered at identical protein dose in a randomized controlled open label trial.Thirty-four Fabry disease patients were treated with either agalsidase alfa or agalsidase beta at equal dose of 0.2 mg/kg biweekly. Primary endpoint was reduction in left ventricular mass after 12 and 24 months of treatment. Other endpoints included occurrence of treatment failure (defined as progression of cardiac, renal or cerebral disease), glomerular filtration rate, pain, anti-agalsidase antibodies, and globotriaosylceramide levels in plasma and urine. After 12 and 24 months of treatment no reduction in left ventricular mass was seen, which was not different between the two treatment groups. Also, no differences in glomerular filtration rate, pain and decline in globotriaosylceramide levels were found. Antibodies developed only in males (4/8 in the agalsidase alfa group and 6/8 in the agalsidase beta group). Treatment failure within 24 months of therapy was seen in 8/34 patients: 6 male patients (3 in each treatment group) and 2 female patients (both agalsidase alfa). The occurrence of treatment failures did not differ between the two treatment groups; chi(2) = 0.38 p = 0.54.Our study revealed no difference in reduction of left ventricular mass or other disease parameters after 12 and 24 months of treatment with either agalsidase alfa or beta at a dose of 0.2 mg/kg biweekly. Treatment failure occurred frequently in both groups and seems related to age and severe pre-treatment disease.International Standard Randomized Clinical Trial ISRCTN45178534 [http://www.controlled-trials.com/ISRCTN45178534]

    Glucocerebrosidase: Functions in and Beyond the Lysosome

    No full text
    Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme

    Structure of Human Chitotriosidase. Implications for Specific Inhibitor Design and Function of Mammalian Chitinase-like Lectins

    Get PDF
    Chitin hydrolases have been identified in a variety of organisms ranging from bacteria to eukaryotes. They have been proposed to be possible targets for the design of novel chemotherapeutics against human pathogens such as fungi and protozoan parasites as mammals were not thought to possess chitin-processing enzymes. Recently, a human chitotriosidase was described as a marker for Gaucher disease with plasma levels of the enzyme elevated up to 2 orders of magnitude. The chitotriosidase was shown to be active against colloidal chitin and is inhibited by the family 18 chitinase inhibitor allosamidin. Here, the crystal structure of the human chitotriosidase and complexes with a chitooligosaccharide and allosamidin are described. The structures reveal an elongated active site cleft, compatible with the binding of long chitin polymers, and explain the inactivation of the enzyme through an inherited genetic deficiency. Comparison with YM1 and HCgp-39 shows how the chitinase has evolved into these mammalian lectins by the mutation of key residues in the active site, tuning the substrate binding specificity. The soaking experiments with allosamidin and chitooligosaccharides give insight into ligand binding properties and allow the evaluation of differential binding and design of species-selective chitinase inhibitors.

    Correction of pathology in mice displaying Gaucher disease type 1 by a clinically-applicable lentiviral vector

    Get PDF
    This study evaluates a clinically applicable lentiviral vector for treatment of Gaucher disease type 1. Hematopoietic stem cells transduced with the vector and transplanted into a mouse model successfully halted or reversed pathology. These data were used as proof-of-concept for regulatory filing enabling the commencement of an international phase 1/2 clinical trial
    corecore