16 research outputs found

    Historical trophic ecology of some divergent shark and skate species in the Dutch coastal North Sea zone

    Get PDF
    Over the last century the fish community of the Dutch coastal North Sea zone has lost most its shark and skate species. Whether their disappearance has changed the trophic structure of these shallow waters has not been properly investigated. In this study historical dietary data of sharks and skates, being in the past (near)-residents, juvenile marine migrants and marine seasonal visitors of the Dutch coastal North Sea zone were analyzed for the period 1946–1954. Near-resident and juvenile marine migrant species were demersal while all marine seasonal visitors species were pelagic. Based on stomach content composition, the trophic position of four of the various shark and skate species could be reconstructed. The (near)-resident species, the lesser spotted dogfish, the marine juvenile migrant, the starry smooth hound, and the benthopelagic marine seasonal visitor, the thornback ray, had a benthic/demersal diet (polychaetes, molluscs and crustaceans), while the pelagic marine seasonal visitor, the tope shark, fed dominantly on cephalopods and fishes. Diet overlap occurred for fish (tope shark and lesser spotted dogfish), for hermit crabs (lesser spotted dogfish and starry smooth hound) and for shrimps (thornback ray and starry smooth hound). Trophic position ranged from 3.2 for thornback ray preying exclusively on crustaceans to 4.6 for the tope shark consuming higher trophic prey (crustaceans and fish). The analysis indicates that most of the shark and skate species were generalist predators. The calculated trophic positions of shark and skate species indicate that those species were not necessarily at the top of the marine ecosystem food web, but they might have been the top predators of their particular ecological assemblage.</p

    Variability in transport of fish eggs and larvae. IV. Interannual variability in larval stage duration of immigrating plaice in the Dutch Wadden Sea

    Get PDF
    Larval immigration of plaice Pleuronectes platessa L. into the western Wadden Sea in spring was followed biweekly from 1993 to 2002. For each year (1993 excluded), 150 settling individuals were selected and used for reconstruction of larval stage duration based on otolith daily ring counts. In addition, prevailing water temperature conditions during drift as revealed from NOAA satellite images were determined. Mean larval stage duration varied between about 40 and 60 d, without any clear significant pattern between or within years. Year-class strength of plaice in the western Wadden Sea was not related to mean larval stage duration. Mean larval stage duration did not show a clear pattern during the period of immigration, nor with reconstructed temperature conditions. The observed decrease of larval stage duration with temperature in the field was lower than that observed under laboratory conditions, suggesting food limitation with increasing temperature during drift. The fact that both within-year and for all years combined the number of immigrating larvae was inversely related to temperature conditions during drift suggested that year-class strength could be affected by temperature-mediated predation, but simultaneously occurring food limitation at high temperatures cannot be excluded

    Quantifying Tidal Movements of the Shore Crab Carcinus maenas on to Complex Epibenthic Bivalve Habitats

    Get PDF
    Many subtidal predators undertake regular tidal migrations into intertidal areas in order to access abundant prey. One of the most productive habitats in soft bottom intertidal systems is formed by beds of epibenthic bivalves such as blue mussels (Mytilus edulis) and Pacific oysters (Crassostrea gigas). In the Dutch Wadden Sea, these bivalves might face substantial predation pressure by the shore crab (Carcinus maenas), which increased considerably in numbers during the last 20 years. However, the quantification of this species on bivalve beds is challenging, since most methods common for quantifying animal abundance in marine habitats cannot be used. This study investigated the potential of two methods to quantify the abundance of C. maenas on 14 epibenthic bivalve beds across the Dutch Wadden Sea. The use of the number of crabs migrating from subtidal towards intertidal areas as a proxy of abundance on bivalve beds yielded unreliable results. In contrast, crabs caught with traps on the beds were correlated with the abundance assessed on the surrounding bare flats by beam trawl and therefore provided usable results. The estimates, however, were only reliable for crabs exceeding 35 mm in carapace width (CW). The application of these estimates indicated that crab abundances on bivalve beds were influenced by the biogenic structure. Beds dominated by oysters attracted many large crabs (> 50-mm CW), whereas abundances of medium-sized crabs (35–50-mm CW) showed no relationship to the oyster occurrence. The combination of traps and trawls is capable of quantifying crab abundance on bivalve beds, which offers the possibility to study biotic processes such as predator-prey interactions in these complex structures in more detail

    Long-term patterns in fish phenology in the western Dutch Wadden Sea in relation to climate change

    No full text
    Long-term patterns in fish phenology in the western Dutch Wadden Sea were studied using a 53 year (1960–2013) high resolution time series of daily kom-fyke catches in spring and autumn. Trends in first appearance, last occurrence and peak abundance were analysed for the most common species in relation to mode of life (pelagic, demersal, benthopelagic) and biogeographic guild (northern or southern distribution). Climate change in the western Wadden Sea involved an increase in water temperature from 1980 onwards. The main pattern in first day of occurrence, peak occurrence and last day of occurrence was similar: a positive trend over time and a correlation with spring and summer water temperature. This is counterintuitive; with increasing temperature, an advanced immigration of fish species would be expected. An explanation might be that water temperatures have increased offshore as well and hence fish remain longer there, delaying their immigration to the Wadden Sea. The main trend towards later date of peak occurrence and last day of occurrence was in line with our expectations: a forward shift in immigration into the Wadden Sea implies also that peak abundance is delayed. As a consequence of the increased water temperature, autumn water temperature remains favourable longer than before. For most of the species present, the Wadden Sea is not near the edge of their distributional range. The most striking phenological shifts occurred in those individual species for which the Wadden Sea is near the southern or northern edge of their distribution

    No evidence for reduced growth in resident fish species in the era of de-eutrophication in a coastal area in NW Europe

    No full text
    Coastal areas in north-western Europe have been influenced by elevated nutrient levels starting in the 1960s. Due to efficient measures, both nitrate and phosphate levels decreased since the mid-1980s. The co-occurring declines in nutrient loadings and fish productivity are often presumed to be causally linked. We investigated whether four resident fish species (twaite shad, bull-rout, thick-lipped grey mullet and eelpout), that spend the majority of their life in the vicinity of the coast, differed in growth between the historic eutrophication period compared to the recent lower nutrient-level period. Based on Von Bertalanffy growth models of length at age, and the analysis of annual otolith increments, we investigated the difference in sex-specific growth patterns and related these to temperature, eutrophication level (Chlorophyll a), growth window and fish density. In all four species, annual otolith growth rates during the early life stages differed between the two periods, mostly resulting in larger lengths at age in the recent period. All species showed significant correlations between increment size and temperature, explaining the observed period differences. The lack of an effect of total fish biomass provided no evidence for density dependent growth. A correlation with chlorophyll was found in bull-rout, but the relationship was negative, thus not supporting the idea of growth enhanced by high nutrient levels. In conclusion, we found no evidence for reduced growth related to de-eutrophication. Our results indicate that temperature rise due to climate change had a greater impact on growth than reduced food availability due to de-eutrophication. We discuss potential consequences of growth changes for length-based indicators used in management.</p

    NIOZ fyke programme Stuifdijk

    No full text
    The Royal NIOZ collects data on the Wadden Sea fish community using traditional fixed gear at a specific location (Lat 52.997N, Long 4.775E) since 1960. The fixed gear is known as a 'kom-fyke' and is a passive fish trap consisting of a 200-m net running from the beach towards deeper waters (the stretched mesh size is 20 mm). This net guides migrating fish towards 2 chambers / traps and into a fyke where they can be collected. The catch is collected each day in spring (late March to early July) and in fall (late August to early November) and netting is removed in the summer (due to algae) and winter (due to storms). This data summarises the catch information as seasonal catch per unit effort (total numbers of fish caught per season, divided by the total number of fishing days in the season), for each year 1980-2019. Seasons are spring and fall, as defined above
    corecore