34 research outputs found

    The Relationship between Phytoplankton Distribution and Water Column Characteristics in North West European Shelf Sea Waters

    Get PDF
    Phytoplankton underpin the marine food web in shelf seas, with some species having properties that are harmful to human health and coastal aquaculture. Pressures such as climate change and anthropogenic nutrient input are hypothesized to influence phytoplankton community composition and distribution. Yet the primary environmental drivers in shelf seas are poorly understood. To begin to address this in North Western European waters, the phytoplankton community composition was assessed in light of measured physical and chemical drivers during the “Ellett Line” cruise of autumn 2001 across the Scottish Continental shelf and into adjacent open Atlantic waters. Spatial variability existed in both phytoplankton and environmental conditions, with clear differences not only between on and off shelf stations but also between different on shelf locations. Temperature/salinity plots demonstrated different water masses existed in the region. In turn, principal component analysis (PCA), of the measured environmental conditions (temperature, salinity, water density and inorganic nutrient concentrations) clearly discriminated between shelf and oceanic stations on the basis of DIN∶DSi ratio that was correlated with both salinity and temperature. Discrimination between shelf stations was also related to this ratio, but also the concentration of DIN and DSi. The phytoplankton community was diatom dominated, with multidimensional scaling (MDS) demonstrating spatial variability in its composition. Redundancy analysis (RDA) was used to investigate the link between environment and the phytoplankton community. This demonstrated a significant relationship between community composition and water mass as indexed by salinity (whole community), and both salinity and DIN∶DSi (diatoms alone). Diatoms of the Pseudo-nitzschia seriata group occurred at densities potentially harmful to shellfish aquaculture, with the potential for toxicity being elevated by the likelihood of DSi limitation of growth at most stations and depths

    Diversity, ecology and domoic acid production of Pseudo-nitzschia spp. in Scottish waters

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Depth profiles and contour plots of nutrients at stations M and F.

    No full text
    <p>Depth profiles of: (a) dissolved inorganic phosphate (DIN), (b) silicate (DSi) and (c) nitrate (DIN) concentrations in ”M within the top 250 m at stations M and F. Contour plots of (d) dissolved inorganic phosphate, (e) dissolved inorganic silicate, (f) dissolved inorganic nitrate, for shelf stations 1G to 10G.</p

    PCA eigenvalues.

    No full text
    <p>Eigenvalues of the environmental variables: coefficients in the linear combinations of variables making up principal components of PCA.</p

    Temperature, salinity and density depth profiles and contour plots.

    No full text
    <p>Depth profiles of: (a) Temperature, (b) salinity and (c) density profiles within the top 250 m of at Open Atlantic stations M and F. Contour plots of (d) water temperature [°C], (e) salinity and (f) density, for shelf stations 1G to 10G.</p

    MDS ordinations of environmental variables.

    No full text
    <p>MDS ordination of stations along the Ellett Line transect, sampled during D257. Samples above 100 m depth were included, data were fourth root transformed. (a) all stations, (b) expanded view of stations 1G, 2G, 4G, 6G, 7G, 10G.</p
    corecore