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Abstra ct

Some diatoms of the genus Pseudo-nitzschia produce the toxin domoic acid (DA). 

Accumulation of DA in shellfish has led to harvesting closures in western Scottish 

waters since 1999. This thesis investigated the diversity, ecology and distribution of 

toxic and non-toxic Pseudo-nitzschia species in western Scottish waters and 

physiological aspects of growth and toxin production dynamics of P. seriata. The 

temporal and spatial distribution of phytoplankton was analysed in two separate field 

studies. 1) Temporal changes were followed by sampling a site in coastal Scottish 

waters weekly to fortnightly over a period of three years. 2) The spatial distribution of 

the phytoplankton community was investigated by sampling a transect across-the 

shelf. Within both studies, physical, biological and chemical parameters were 

measured and correlated to temporal and spatial distribution patterns in the 

phytoplankton community, indicating seasonality, and differences in the distribution 

of toxic and non-toxic Pseudo-nitzschia species between coastal and offshore waters. 

From those samplings 59 clonal cultures of Pseudo-nitzschia, comprising 7 species (2 

of them toxic), were established. Strains were identified via classic morphological and 

genetic techniques. Phylogenetic relationships were established between Scottish 

Pseudo-nitzschia strains. P. seriata was identified for the first time in Scottish waters 

as a DA producer. Laboratory experiments with cultured strains showed a) enhanced 

toxin production by P. seriata under silicate (Si) and phosphate (?) limitation, with 

higher DA production under Si than under P limitation b) similar cell yields of P. 

seriata, when grown in nitrate or ammonia based media c) a preference for spring 

light conditions (short day length) in a non-toxic P. delicatissima strain and summer 

light conditions (long day length) for a toxic P. seriata strain, expressed by enhanced 

biomass yield under the respective light condition. It was also shown that the presence 

of bacteria enhanced the growth of single P. seriata cells.
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Chapter 1

1 Chapterl: General introduction

1 .1  Phvtoplankton

Marine phytoplankton are drifting, photosynthetic, microscopic, commonly single-celled 

algae that thrive in the photic zones of the oceans. Cell sizes of phytoplankton are found 

in a range of 2 pm to 2 mm, with most of the cells reaching 10-50 pm (cf. Homer 2002). 

It is conservatively estimated that there are about 500 genera and 4000 species of 

phytoplankton (Soumia et al. 1991). Some of the main classes in phytoplankton are the 

Bacillariophyceae (diatoms), Dinophyceae (dinoflagellates), Raphidophyceae 

(raphidophytes), Prymnesiophyceae (prymnesiophytes, haptophytes) Dictyochophyceae 

(silicoflagellates) and Cyanophyceae (cyanobacteria). As the primary producers of the 

marine food web they are the basis of all animal production in the sea. They play an 

essential role in the global biogeochemical cycle by producing about a quarter of the 

world's oxygen, by their utilisation of carbon in photosynthesis and their production of 

volatile compounds (e.g. dimethyl sulfide) (cf. Homer 2002).

Light and inorganic nutrients are required for phytoplankton growth. Diatoms for 

example, build their cell walls from dissolved silicon (DSi) taking it up in the form of 

orthosilicic acid or "silicate" (Si). The total concentration of silicate present in a water 

mass may determine the upper limit of the size of a diatom bloom (Paasche 1973), 

although nitrogen (N) limitation is also possible. The yield of non-diatom phytoplankton 

depends more on the concentrations of N and phosphoms (P). Furthermore, decreasing 

Si:N or Si:P ratios could increase the remaining of N and P to non-diatom- phytoplankton 

(e.g. flagellates) and could favour a higher biomass of these organisms (Sommer 1994). 

Increasing nutrients can lead to increased biomass and eutrophication (e.g. Parsons et al. 

1984). Hence changes in nutrient concentration may influence both species abundance 

and species succession.

Marine phytoplankton are a primary food source for filter-feeding bivalve shellfish as well 

as larvae of commercially important crustaceans, hence proliferation of planktonic algae 

is, in most cases, beneficial for the aquaculture. However, when forming a harmful algal
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bloom (HAB), toxic and non-toxic microalgae may then have a negative effect on the 

environment, economy and human health (Daranas et al. 2001).

1.2  Harmful algal blooms

Visible blooms of microalgae and their consequences have long been recognised and 

feared by humans, even receiving mention in the bible as for example the first plague 

visited on Pharaoh before the exodus of the Israelites from Egypt, ca. 1290 BC (cited by 

Morris 1999):

"...and all the water that was in the Nile was turned to blood. And the fish in the Nile 

died; and the Nile became foul, so that the Egyptians could not drink water from the Nile; 

and there was blood throughout all of the land of Egypt! "(Exodus 7:20-21).

This is probably the first record of a red tide or form of HAB. While this event might 

have led to fish kills in the fresh water river Nile, there is another indication in the new 

testament of the bible of an event leading to mortality of animals in the sea (Revelation 16: 

3): ".. .the second angel poured out his bowl on the sea and it turned into blood, like that 

of a corpse, and every living creature that was in the sea died."

The term "harmful algal bloom" is used to describe the often visible blooms of algae that 

can kill fish, make shellfish poisonous and cause numerous other effects on wildlife, 

humans and economy (Hoagland et al. 2002). If toxins produced by harmful algae are 

potent enough or accumulate over time in the food web, small numbers of organisms, that 

may not be concentrated enough to discolour the water, may be sufficient to cause 

ecosystem damage (Smayda 1997). Recently, observations of HABs in aquatic systems 

have increased on a global scale (e.g. Anderson 1989; Smayda 1990; Hallegraeff 1993; 

Anderson et al. 2002) affecting species interactions, aquatic animal health and population 

growth, ecology, human health, ecosystem integrity and major industries and economies 

(see Landsberg 2002 for review). The global expansion of HABs has been linked to 

eutrophication as a result of nutrient overloading from sewage, atmospheric deposition, 

groundwater flow, as well as agricultural and aquaculture runoff and discharge (Anderson 

et al. 2002).

HABs can be caused by a variety of cyanobacteria and microalgae, most of which are 

planktonic. However, the term of HAB can also include blooms of macroalgae (Hoagland

2
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et al. 2002). HABs can cause mortality or physiological impairment of other organisms 

by two general mechanisms: 1. non-chemical and 2. chemical attributable to physical- 

chemical reactions, phycotoxins or other metabolites (Smayda 1997). Non-chemical 

mechanisms can be implemented through starvation, mechanical irritation, physical 

impairment (extra-cellular polymer excretions that lead to a viscosity or gelatinous 

barrier), or ambush feeding. Chemical effects can be caused through anoxia, NH^ toxicity 

(e.g. blooms of the dinoflagellate Noctiluca) or, as in shellfish poisoning events, 

phycotoxins (Smayda 1997). Mortality through phycotoxins can occur through direct 

ingestion of the toxic species, upon exposure to secreted toxins, or from transfer by 

vectors through the food chain (Smayda 1997). In marine systems, about 90 species of 

microalgae are, to date, known to be harmful by producing phycotoxins, of which 70% 

are dinoflagellates, 13% diatoms, 9% haptophytes and 8% raphidophytes (IOC taxonomic 

reference list 2002).

1.3  Shellfish poisoning

Probably since the beginning of civilisation, the consumption of shellfish has been known 

to have sometimes resulted in sickness or even death in humans. Recognition of the 

existence of shellfish toxicity then resulted in new folklore and religious customs which 

preached abstinence from shellfish consumption at particular times of the year (Wright 

1995). Today it is known that HABs associated with phycotoxins causing shellfish 

poisoning are mainly caused by dinoflagellates (so far 62 species are stated as harmful, 

IOC 2002). Five types of shellfish poisoning are known to occur world-wide due to 

HABs: paralytic, diarrhetic, neurotoxic, azaspiracid and amnesic shellfish poisoning 

(PSP, DSP, NSP, AZP and ASP respectively). PSP, DSP NSP and AZP are caused by 

dinoflagellates belonging to the genera Alexandrium (PSP), Gymnodinium (PSP) Karenia 

(NSP), Pyrodinium (PSP), Dinophysis and Prorocentrum (DSP) and the species 

Peridinium crassipes (AZP) (e.g. Hallegraeff 2003; James et al. 2003).

Amnesic shellfish poisoning is caused by diatoms of the genus Pseudo-nitzschia 

Peragallo. Some diatom species of this genus are able to produce domoic acid (DA), a 

potent neurotoxin (Bates 2000).

3
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1 .4  Domoic acid producing Pseudo-nitzschia  spp

The genus Pseudo-nitzschia Peragallo comprises about 30 species (including species 

variants), of which today at least ten are confirmed to produce DA in the field or culture 

(Bates 2000): P. australis Frenguelli, P. calliantha Lundholm, Moestrup et Hasle sp. nov. 

(Lundholm et al. 2003), P. delicatissima (Cleve) Heiden, P. fraudulenta (Cleve) Hasle, 

P. multiseries (Hasle) Hasle, P. multistriata (Takano) Takano, either P. 

pseudodelicatissima (Hasle) Hasle emend. Lundholm, Hasle et Moestrup or P. cuspidata 

(Hasle) Hasle emend. Lundholm, Moestrup et Hasle, P. pungens (Grunow ex Cleve) 

Hasle, P. seriata (Cleve) H. Peragallo, and P. turgidula (Hustedt) Hasle. Strains of the 

same species can vary in their toxin production (Villac et al. 1993a, b; Villareal et al. 

1994; Rhodes et al. 1998; Smith et al. 2001). Within species some strains do not seem to 

produce DA, while others do (e.g. Lundholm et al. 1994; Bates et al. 1989 in P. seriata, 

Villac et al. 1993a in P. australis; Villareal et al. 1994 in P. multiseries; Rhodes et al. 

2000 in P. multistriata; Rhodes et al. 1996, Trainer et al. 1998a in P. pungens; Rhodes et 

al. 1998 in P. fraudulenta).

1.4.1 Distribution of some of the main Pseudo-nitzschia species

The distribution of the main toxic and non-toxic Pseudo-nitzschia species was reviewed 

by Hasle (2002) (see Figures 1.1 and 1.2). Most of the Pseudo-nitzschia species seem to 

be cosmopolitan, apart from P. seriata (northern hemisphere) and P. turgidula (mainly 

southern hemisphere, but with some reports from the northern hemisphere). The 

distribution of individual and potential toxic species is discussed in detail below.
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1.4.1.1 P. australis Frenguelli

P. australis was initially thought to be restricted to the southern hemisphere (e.g. in Hasle 

1965 as Nitzschia pseudoseriata), but it seems also to be abundant in the Atlantic from 

western Scottish waters (Campbell et al. 2001; Gallacher et al. 2001; the present work) to 

Argentinean waters (Ferrario et al. 1999), with reports from Irish waters (Cusack et al. 

2000), north-west Spain (Miguez et al. 1996; Fraga et al. 1998), Portuguese coastal 

waters (Moita & Villarinho 1999) and the west coast of South Africa (Hasle 1972). In the 

Pacific, P. australis is known to occur along the west coasts of the North and South 

American continents, including the Gulf of Alaska (Hasle 2002), western Washington 

(Homer & Postel 1993) and Oregon waters (Fryxell et al. 1997), the Californian (e.g. 

Buck et al. 1992; Vülac et al. 1993a, b; Scholin et al. 2000), Mexican (Hemândez- 

Becerril 1998), Pemvian (Hasle 1965) and Chilean (Rivera 1985) coasts. It has also been 

found in Australian (Lapworth et al. 2001) and New Zealand waters (Hasle 1965; Hasle 

1972; Rhodes et al. 1998).

1.4.1.2 P. calliantha Lundholm. Moestmp et Hasle

P. calliantha was recently erected as a new species (Lundholm et al. 2003). It had 

previously been recorded as toxic P. pseudodelicatissima in the Bay of Fundy, Canada 

(Martin et al. 1990, 1993) and in Danish waters (Lundholm et al. 1997; Skov et al. 

1997). Some P. pseudodelicatissima reports were re-investigated from the literature and 

by direct observation, and subsequently delineated as P. calliantha (Lundholm et al. 

2003). The type material of P. calliantha Lundholm, Moestmp et Hasle sp. nov. was 

collected in Danish waters (Lundholm et al. 2003), but the species appears to be 

cosmopolitan, as it has also been found in the Skagerrak, the TrondheimsQord (Norway), 

some Scottish locations such as the Orkney Island (the present work) and west Loch 

Tarbert. Other European waters where P. calliantha is found are the Baltic Sea (Hasle dL 

al. 1996), Spanish waters, the Black and Adriatic Seas (Lundholm et al. 2003). 

Furthermore it is known from Canadian waters (Martin et al. 1990), the Gulf of Mexico,
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off Bermuda, along the Chilean coast, and in Vietnamese waters and near Sydney, 

Australia (Lundholm et al. 2003).

1.4.1.3 P. delicatissima (Clevel Heiden

P. delicatissima has been observed in the Atlantic from 80°N, near Svalbard (Quillfeldt 

von 1996), to Brazil at ca. 32°S (Villac & Tennebaum 2001), including Norwegian 

coastal waters (Hasle 1965, Hasle et al. 1996), Danish (Skov et al. 1999), Scottish 

(Gallacher et al. 2001; personal observations) and Irish waters (Cusack et al. 2000). It is 

known from the Skagerrak (Hasle et al. 1996), north-western Spanish (Fraga et al. 1998) 

and Portuguese waters (Moita and Vilarinho 1999), the Gulf of Naples (Samo & 

Dahlman 2000), off north-west Africa (Hasle 1965), along the Atlantic Moroccan coast 

(Akallal et al. 2002), and the west coast of Greenland (Quillfeldt von 1996). It has been 

observed in the Gulf of St. Lawrence, Canada (Couture et al. 2001), the Bay of Fundy, 

Canada (Kaczmarska et al. 2004), the Gulf stream (Kaczmarska et al. 1986) and the Gulf 

of Mexico (Parsons et al. 1999). In the Pacific it is distributed from Monterey Bay, 

California (Villac et al. 1993a) to Chilean waters (Rivera 1985) and has been found in 

Australian (Lapworth et al. 2001) and New Zealand waters (Rhodes et al. 1998).

1.4.1.4 P. fraudulenta (Clevel Hasle

P. fraudulenta usually appears to be nontoxic, apart from one strain from New Zealand in 

which low amounts of DA were detected by immunoassays (Rhodes et al. 1998). Its 

distribution ranges from the Norwegian coast (Hasle et al. 1996) to Argentinean waters 

(Lange 1985). It has been found in the Norwegian Sea and the Denmark Strait (Hasle 

1965), Islandic and Norwegian waters, the Skagerrak (Hasle et al. 1996), Danish 

(Lundholm et al. 1994), Scottish (Gallacher et al. 2001; personal observations) and Irish 

waters (Cusack et al. 2000). Furthermore, it was found in the North Sea, the English 

Channel (Hasle 2002), along the northern Spanish (Miguez et al. 1996) and Portuguese 

(Moita & Vilarinho 1999) coasts, in the Mediterranean Sea (Hasle 1972), around the 

Azores (Cleve 1902), in Atlantic Moroccan waters (Akallal et al. 2002) and the west

8
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coasts of north and south Africa (Hasle 1965). From the eastern coast of the North 

America it is known from the Bay of Fundy, Canada (Kaczmarska et al. 2004), Rhode 

Island, USA (Hargraves et al. 1993), Maryland, USA (Hasle 1965), and North Carolina, 

USA (Hustedt 1955). From the southern American coast it has been reported from Brazil 

(Odebrecht 2001). In the Pacific P. fraudulenta was found along the west coast of the 

north and south American continents, from the Washington coast (Hasle 1972) to Chile 

(Rivera 1985), including Oregon and Californian waters (Villac et al. 1993a) and the 

Pacific coast of Mexico (Hemandez-Becerril 1998). There are reports from Japanese 

(referenced in Hasle 2002), Australian (Hallegraeff 1994) and New Zealand (Hasle 1965; 

Rhodes 1998) waters.

1.4.1.5 P. multiseries (Haslel Hasle

Similar to P. fraudulenta, P. multiseries has been observed in the Atlantic from 

Norwegian waters (Hasle 2002) to Argentina (Ferrario et al. 1999). It has been reported 

from Danish waters (Skov et al. 1999), the Skagerrak, Baltic and North Sea, the English 

Chaimel (Hasle et al. 1996), western Scottish (Gallacher et al. 2001) and Irish waters 

(Hasle et al. 1996). Further observations were made along the North coast of Africa 

(Skov et al. 1999) and in Moroccan waters (Akallal et al. 2002). In the western Atlantic, 

P. multiseries has been found in the Gulf of St. Lawrence, Canada (Bates et al. 1989) the 

Bay of Fundy, Canada (Kaczmarska et al. 2004), along the coasts of Rhode Island 

(Hargraves et al. 1993) and Maryland (Hasle 1965). It is known from the Gulf of Mexico 

(Fryxell et al. 1990), the Uruguayan coasts (Hasle 1965) and southern Brazil (Odebrecht 

et al. 2001). In the Pacific it has been found from the west coast of the Bering Sea 

(Orlova et al. 2000) to New Zealand (Rhodes 1998), including the coasts of British 

Columbia (Forbes & Denman 1991), Washington (Homer & Postel 1993), California 

(Villac et al. 1993a, b), Kamchatka (Orlova et al. 2000), the Sea of Japan (Orlova et al. 

2000), Korean coastal waters (Fryxell et al. 1990), Japanese (referenced in Hasle 2002), 

and Hong Kong waters. Observations of P. multiseries were made in Chinese waters 

(Dickman & Glenwright 1997), as well as along the eastem Australian coast (Lapworth et 

al. 2001).
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1.4.1.6 P. multistricaaCÏ2k2cno^T2k2ŒiO

P. multistriata has so far only been observed in the Gulf of Naples (Mediterranean Sea) 

(Orsini et al. 2002), along the Moroccan Atlantic coast (Akallal et al. 2002) and in the 

Pacific from Japanese (referenced in Hasle 2002) to New Zealand (Rhodes et al. 2000) 

waters including the Chinese Sea, parts of the Thailand coast and Australian waters 

(Hasle 2002).

1.4.1.7 P. pseudodelicatissima (Haslel Hasle. P. cuspidata fHaslel Hasle emend. 

Lundholm. Moestmp et Hasle

P. pseudodelicatissima has recently been re-examined (= P. pseudodelicatissima (Hasle) 

Hasle emend. Lundholm, Hasle et Moestmp) by Lundholm et al. (2003). The original 

type form of P. pseudodelicatissima (then called Nitzschia delicatula Hasle) was known 

from scattered localities in the North Atlantic (17° to 67°N), Canadian and Chilean waters 

(Hasle 1965). Further records of those strains identified as P. pseudodelicatissima, but 

that might have been other species of the P. pseudodelicatissima/ P. cuspidata complex 

(e.g. P. cuspidata, P. calliantha or P. caciantha; Lundholm at al. 2003) are referenced in 

Hasle (2002). Species representing the re-examined P. pseudodelicatissima were found in 

the Denmark Strait, near Iceland, the Portuguese coast and off Napoli (Italy) (Lundholm 

et al. 2003).

P. cuspidata, which previously might have been mistaken for P. pseudodelicatissima, has 

been observed near the Canary Islands, south of Portugal, off the coast of North Afiica, 

in Hong Kong, Sydney and the Gulf of Mexico (Lundholm et al. 2003). Either P. 

cuspidata or the re-examined P. pseudodelicatissima has produced domoic acid in a study 

by Pan et al. (2001), but the identity of the culture was not clear.

1.4.1.8 P. pungens fGmnow ex Clevel Hasle

P. pungens has been found in the Atlantic from the Norwegian TrondheimsQord (Hasle et 

al. 1996) to Argentinean waters (Ferrario et al. 1999). Records include Danish 

(Lundholm et al. 1994) waters, the Skagerrak (Hasle et al. 1996), western Scottish
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waters (Gallacher et al. 2001; personal observations) and the Irish, the North and Baltic 

Seas. It has been found in the English Channel, north-west Spain and Portuguese coastal 

waters, the Mediterranean (Hasle 1972, 1995; Moita & Vilarinho 1999), Atlantic 

Moroccan waters (Akallal et al. 2002) and along the west coast of Africa (Hasle 1965). 

Records for Canadian waters include the Hudson Strait (Hasle 1972) the Bay of Fundy, 

Canada (Kaczmarska et al. 2004) and the Gulf of St. Lawrence (Bérard-Therriault et al.

1999). In the northern United States waters it was found along the coasts of Rhode Island 

and Maryland (Hasle 1972). It has been observed in the Gulf stream (Kaczmarska et al. 

1986), Gulf of Mexico (Hasle 1972, Fryxell et al. 1990), the Caribbean Sea (Hasle 2002) 

and along the coast of Brazil (Odebrecht et al. 2001; Villac & Tennebaum 2001). In the 

Pacific records of P. pungens include waters from the Bering Sea (Orlova et al. 2000) to 

Chile (Rivera 1985), with finds in British Columbia (Forbes & Denman 1991), 

Washington (Hasle 1972; Homer & Postel 1993; Villac et al. 1993a; Stehr et al. 2002), 

Oregon (Fryxell et al. 1997) and Californian waters (Villac et al. 1993a; Lange et al. 

1994). Further observations were made along the Pacific coast of Mexico (Hemandez- 

Becerril 1998), the Gulf of Panama (Hasle 1965), off Ecuador (Hasle 2002), Pern and 

Chile (Hasle 1965; Rivera 1985), off Kamchatka (Orlova et al. 2000), the Sea of Japan 

(Orlova et al. 1998), Korean (Fryxell et al. 1990; Cho et al. 2001) and Chinese coastal 

waters, the Chinese Sea (in Hasle 2002) and Hong Kong (Dickman & Glenwright 1997). 

P. pungens was also found along the African and Indian coasts of the Indian Ocean 

(Hasle 1972), the Gulf of Thailand (Hasle 1965) and Indonesian waters (Sidabutar et al.

2000). It is known to occur in Australian waters (Hallegraeff 1994), as well as waters 

around New Zealand (Rhodes et al. 1998). Only P. pungens from New Zealand produced 

low amounts of DA in culture so far, DA toxicity has not been observed in P. pungens 

from other waters (Rhodes et al. 1996).

1.4.1.9 P. fClevel H. Peragallo

Pseudo-nitzschia seriata, including the subspecies f. seriata and f. obtusa, has so far only 

been reported from the northem hemisphere, from the northem Atlantic (north of 

Svalbard) (Quillfeldt von 1996) to the Grand Banks south of Newfoundland (Hasle

11



Chapter 1

1972), including the Barents Sea, west and north of Svalbard (Quillfeldt von 1996), 

Norwegian coastal waters (Hasle et al. 1996), Islandic waters (Hasle 2002), the 

Norwegian Sea (Hasle 1965), Danish (Lundholm et al. 1994), Scottish (Gallacher et al. 

2001; personal observations) and Irish (Cusack et al. 2000) waters. It has been observed 

in the North and Baltic Seas (Hasle 1972), the English Channel, and the west coast of 

Greenland. It was found in the Canadian Arctic (Quillfeldt von 1996), Hudson Strait 

(Hasle 1965), the Gulf of St. Lawrence (Couture et al. 2001), and the western Atlantic 

including parts of the east coast of the USA (Hasle 2002). Some scarce records from the 

northem Pacific (Hasle 2002) do exist for P. seriata f. obtusa, but not for P. seriata f . 

seriata. However, P. seriata f. obtusa is been found at most locations where P. seriata f . 

seriata is observed (Hasle 2002).

1.4.1. lOP. subpacifica (Haslel Hasle

P. subpacifica is not regarded as a toxin producing species, but as it was observed within 

this study (as P. cf. subpacifica) in North Atlantic waters, some of its previous sparse 

records are stated. It was first described as Nitzschia subpacifica by Hasle (Hasle 1965), 

found in the Chesapeake Bay (USA), north-west Africa, the Gulf of Panama and near 

Portugal in the North Atlantic. It has been observed in the Bay of Fundy, eastem Canada 

(Kaczmarska et al. 2004). Its presence in the north-westem Atlantic might be due to 

transport by the Atlantic Current (Hasle 1965), which is likely to explain its presence at 

57°30'N 12°15'W (station F, RV Discovery cmise 257, chapters 2 and 3). In the Pacific, 

P. subpacifica was identified from Chilean waters between 18°20'S and 43°S (Rivera 

1985). P. subpacifica has a very similar morphology to P. heimii, although it is smaller 

but slightly wider (Hasle et al. 1996), it is regarded as a warm water species (Skov et al. 

1999).

1.4.1.H P. turmdula IHustedtl Hasle

For P. turgidula some questionable reports exist for the northem hemisphere in the 

Barents Sea, north-east and west of Greenland (Quillfeldt von 1996), off Shetland (Hasle
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1965) and in Scottish waters (Gallacher et al. 2001). It has been reported from the 

southern Atlantic (Hasle 2002) and is found in Australian (Hallegraeff 1994) and New 

Zealand waters (Rhodes 1998). One New Zealand strain has tested positive for DA 

production (Rhodes et al. 1996).

1.5  Domoic acid

Domoic acid (DA), the toxin that is produced by Pseudo-nitzschia, is a naturally 

occurring, water-soluble, neuroexcitatory amino acid that mimics the excitatory 

neurotransmiter L-glutamic acid (Fig. 1.3).

CO2 H

CQ2 H N' CO2 H
H

Fig. 1.3 Structure of the domoic acid molecule.

It strongly binds to glutamate receptors in the brain where it causes nerve cells to transmit 

impulses continuously until the cells die (cf. Homer & Postel 1993). It was identified as 

the toxin responsible for the first recorded outbreak of ASP in Prince Edwards Island 

(PEI), Canada in 1987 (Wright et al. 1989), where over 100 people became ill and 3 died 

after the consumption of DA contaminated blue mussels (Mytilus edulis) (Fritz et al. 

1992). The irreversible binding of DA to glutamate receptor sites, causes destmctive 

neuronal depolarisation (Debonnell et al. 1998) with the effect of permanent short-term 

memory loss in mammals (Perl et al. 1990; Todd 1993). In humans, symptoms of DA 

intoxication can occur within 30 min to 24 h after consumption of contaminated shellfish. 

The symptoms may include vomiting, diarrhoea, abdominal cramps and headache in mild 

cases, while in severe cases excessive bronchial secretions, difficulty in breathing, loss of 

equilibrium, permanent short-term memory loss, coma or death may occur; the memory 

loss is irreversible, an antidote to DA is not known (cf. Homer & Postel 1993). The name 

"amnesic" shellfish poisoning was given because patients with memory loss remember
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things that happened before they became ill, but not what happened afterwards (Homer & 

Postel 1993).

Before the ASP event in 1987, the first reported sources of domoic acid were macro-algae 

of the family Rhodomelaceae: Alsidium coraUinum C. Agardh (Impellizzeri et al. 1975), 

Chondria annota Okamura (Takemoto & Daigo 1958) and C. hcdleyana Montagne 

(Laycock et al. 1989; Wright et al. 1989). The former two species occur in warmer waters 

(Japan and the Mediterranean), the latter in Canada (Todd 1990). The name domoic acid 

was given from the Japanese word 'domoi' for seaweed. DA was also known as a folk 

medicine in Japan to treat intestinal pinworm infestations in very small doses (Altwein et 

al. 1995). The only other diatoms that are, to date, known to produce domoic acid are 

Amphora coffeaeformis (Agardh) Kuetzing (Maranda et al. 1990) and the recently 

described Nitzschia navis-varingia (Lundholm & Moestmp 2000), which was isolated 

from a shrimp pond in Vietnam and produced DA in culture (Kotaki et al. 2000).

DA is formed by the condensation of an activated citric acid cycle derivative (probably 

glutamate arising from an alpha-ketoglutarate in the Krebs cycle) with geranyl (probably 

as geranyl pyrophosphate, which is originally from acetyl-CoA) (Douglas et al. 1992). 

For the biosynthesis of DA from those two precursors present in algal cells, one or two 

enzymes might be required (Plumley 1997) plus substantial quantities of ATP and 

NADPH (Douglas et al. 1992). Douglas et al. (1992) had suggested a direct coupling of 

proline and DA metabolism. Following that hypothesis Smith et al. (2001) tested the 

association between DA metabolism with proline metabolism in Pseudo-nitzschia species 

by measuring free amino acids in 5 species and 20 strains of Pseudo-nitzschia. They 

found that proline was lower in cells accumulating high levels DA. This led to the 

conclusion that proline may function as an upstream precursor for DA. From the amino 

acid profile in Pseudo-nitzschia species Smith et al. (2001) additionally found an 

accumulation of taurine pools (ca. 50% of total free amino acids) in DA producing 

Pseudo-nitzschia species. Taurine is a non-protein amino acid and was not detected in 

other phytoplankton, hence Smith et al. (2001) suggested it may provide a biomarker for 

potentially toxic bloom events.
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1.5.1 Stability of Domoic acid

DA is assumed to be relatively stable under dark and cold conditions. When kept in the 

dark at -12°C, it was reported to be stable in acetonitrile/water (1:9, v/v) (Ravn 1995). 

Bates et al. (2004) kept DA stock solutions in distilled water for up to 2 years in darkness 

in a refrigerator (3-4°C) without its degradation. However, when exposed to light, DA 

was observed to degrade. DA in culture filtrate from a mid-exponential P. multiseries 

culture, kept under axenic conditions in flasks under continuous light at ~ 100 pE • m'  ̂ • 

s'̂  and ca. 20°C, showed a 68% decline from its initial mean DA concentration after 12 

days. Flasks that additionally contained bacteria and were kept in the light, showed a 40% 

decline, while flasks containing DA kept in darkness displayed only a 17% decline. This 

indicated that the bacteria present in that study were not directly influencing the 

elimination of DA, whereas light did. From their results Bates et al. (2004) suggest that 

the DA concentration in experimental cultures, that were exposed to similar light and 

temperature conditions, (e.g. Bates et al. 1991) may have been underestimated. They also 

emphasise that the potential for DA photodegradation in the sea has to be considered. 

Investigating biodégradation processes and disposal of DA, Stewart et al. (1998) isolated 

bacteria from blue mussels {Mytilus edulis) and soft-shell clams {Mya arenarid). When 

supplied with low concentrations of growth factors, the bacteria exhibited growth and 

biodégradation of DA. Molluscs that are known to retain DA for lengthy periods (as e.g. 

Placopecten magellanicus and Modiolus modiolus) only occasionally yielded bacteria with 

this capability. Stewart et al. (1998) suggested that autochthonous bacteria maybe be 

significant factors in the elimination of DA, however, further studies would be required to 

confirm their findings.

All DA production experiments in this thesis (see chapter 4) were conducted with xenic 

cultures (bacteria present). For those experiments the identity of bacteria was not 

determined and it is not certain if bacteria altered the DA concentration in the samples. 

However, to minimise any potential effects of bacteria or light on the DA samples, 

samples were immediately frozen and kept in the dark prior to analysis to avoid 

biodégradation of DA.
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1.5.2 Domoic acid and the food chain

DA may enter the food chain from diatoms via filter feeders such as molluscan shellfish 

(e.g. Addison & Stewart 1989; Nijjar et al. 1991; Novaczek et al. 1992; Wohlgeschaffen 

et al. 1992; Drum et al. 1993; Homer et al. 1993; Langlois et al. 1993; Mackenzie et al. 

1993; Jones et al. 1995; Douglas et al. 1997; Stewart et al. 1998; Vale & Sampayo 2001; 

Blanco et al. 2002a, b). In scallops {Pecten maximus) DA mainly accumulates in the 

digestive gland, mantle tissue and gills, but also in gonad and adductor tissue (Campbell 

et al. 2001; Hess et al. 2001; Blanco et al. 2002a, b). Apart from shellfish, some 

cmstaceans such as copepods (e.g. Acartia tonsa, Temora longicomis and Pseudocalams 

acuspes) (Turner & Tester 1997; Lincoln et al. 2001), krill (Bargu et al. 2002, 2003) the 

sand crab (Emerita analogd) (Ferdin et al. 2002; Powell et al. 2002) or Dungeness crab 

{Cancer magister) (Lund et al. 1997) may function as vectors for DA. Also finfish e.g. 

juvenile sardines {Sardina pilchardus) (Vale & Sampayo 2001), sanddabs {Citharichthys 

spp.) (Lefebvre et al. 2002), northem anchovy {Engraulis mordax) (McGinness et al. 

1995; Lefebvre et al. 2001) and mackerel {Scomber japonicus) (Sierra-Beltran et al. 1997) 

accumulate the toxin. The vectors may transfer DA within the food chain to sea birds such 

as brown pelicans {Pelecanus occidentalis) (Work et al. 1993a, b; Sierra-Beltran et al.

1997) and Brandt’s cormorants {Phalacrorax penicillatus) (Work et al. 1993a) or to 

marine mammals, such as the California sea lion {Zalophus califomianus) (Lefebvre et al. 

1999; Scholin et al. 2000), and the blue whale {Balaenoptera musculus) (Lefebvre et al.

2002), which as a consequence of ingesting the toxin may beach and in most cases die.

1.5.3 The role of domoic acid

HAB toxins are considered as secondary metabolites, compounds that do not fulfil a role

in intermediary metabolism (Plumley 1997). From the microbiological view, secondary

metabolites are compounds produced when normal, balanced growth ceases. The

synthesis of a given secondary metabolite is often restricted to a specific phylogenetic

group or even a single species (for references see Plumley 1997). The role of those

substances may be intrinsic, e.g. to protect the organism from UV light or to store

intracellular nutrients, or extrinsic, e.g. to be toxic to predators, to be an allelopathic
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substance, to promote symbiontic relationships, or as a siderophore to scavenge metals 

(Plumley 1997). However, the precise evolutionary pressure driving the synthesis of each 

HAB toxin remains enigmatic, toxins of different species are chemically distinct, and 

hence the evolutionary pressure of each toxin might be species-specific (Plumley 1997). 

The physiological role of domoic acid in algal metabolism remains obscure (Maldonado d; 

al. 2002). Toxigenic Pseudo-nitzschia species have been found to produce greater 

amounts of DA when, triggered by for example silicate limitation, cell division slows 

down or ceases (Bates et al. 1998). It is hypothesised that DA may simply serve as a way 

of eliminating excess photosynthetic energy when cells are no longer able to grow 

optimally (see Mos 2001). The relationship between environmental conditions and DA 

production by Pseudo-nitzschia spp. is still unclear (Buck et al. 1992; Garrison et al. 

1992; Lange et al. 1994). Rue & Bmland (2001) suggest that the tricarboxylate amino 

acid structure of DA resembles that of known iron-complexing agents, such as mugineic 

acid, a phytosiderophore, produced by terrestrial plants. This similarity in chemical 

structure of DA to other phytosiderophores suggests a role of DA as a trace metal 

chelator. Rue & Bmland (2001) revealed that DA can strongly bind iron and copper. They 

concluded that Pseudo-nitzschia spp. may produce the toxin to selectively bind trace 

metals in order to either increase the availability of an essential micro-nutrient (e.g. iron), 

or to decrease the availability of a potential toxic trace metal (e.g. copper). Rue & Bmland 

(2001) suggested that DA released to the water column during Pseudo-nitzschia blooms 

could potentially alter the chemical spéciation of iron and copper in seawater, in other 

words its role would be the acquisition or detoxification of trace metals in seawater. In 

another study the relationship between trace metal availability and DA production of two 

toxigenic Pseudo-nitzschia species was examined (Maldonado et al. 2002). They 

observed the production and active release of DA by the cells in response to stress caused 

by Fe-deficiency or Cu-toxic conditions, suggesting that DA functions as an organic 

metal-complexing ligand that is released by the toxigenic algae under metal stress.

Smith et al. (2001) suggest that taurine and DA may fulfil the homeostatic role of proline. 

Proline, which is essential in protein biosynthesis, is often assigned to have an
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osmoregulatory role. As an upstream precursor for DA, it is negatively associated with 

DA.

1.5.4 Domoic acid detection methods

After the first reported ASP outbreak in Canada in 1987 (see section 1.6, Bates et al. 

1989; Perl et al. 1990; Todd 1993) chemical analysis soon revealed that toxicity of the 

mussels was not due to one of the then known shellfish toxins or anthropogenic 

xenobiotics. Extracts of contaminated mussels were injected intraperitoneally into mice 

that then showed reproducible symptoms as scratching and eventual death (Wright et al. 

1989). Within five days Wright et al. (1989) identified DA as the responsible toxin, 

separating it with techniques including high-performance liquid chromatography (HPLC), 

high-voltage paper electrophoresis and ion-exchange chromatography, and characterising 

it by spectroscopic techniques, including ultraviolet, infrared, mass spectrometry and 

nuclear magnetic resonance.

Due to the risk of ASP, many countries with shellfish fisheries monitor their seafood 

products for shellfish toxins. The current safe limit for DA in shellfish of 20 pg • g'̂  

shellfish tissue is below the detection limit (> 50 pg • g' )̂ of the mouse bioassay and 

therefore does not make this detection method feasible (Wright 1995). Improved 

technologies and animal ethics have now led to replacement of the mouse bioassays. This 

method has already been banned from some countries, including Germany, with bans 

soon following in other European Union member states.

Methods that are today commonly applied to test shellfish and phytoplankton extracts can 

be classified into chromatographic analysis, immunological analysis, receptor binding 

assays, capillary electrophoresis, cytotoxicity/cell culture assays and algal monitoring 

(Garthwaite 2000).

1.5.4.1 Chromatographic analvsis

As mentioned in section 1.5.4, HPLC with ultraviolet (UV) diode array detection (DAD) 

was the first method used to study the 1987 ASP outbreak in Canada. After extracting the 

homogenised shellfish tissue in distilled water, the extract was purified by solid phase
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extraction (SPE). Reversed-phase HPLC coupled with DAD was then applied to 

determine the DA concentration in the mussel extract. The detection limit of DA in the 

extract solution depends on the sensitivity of the UV detector and in this case was about 

10-80 ng • mL'\ However, the detection limit of DA in the shellfish tissue depends on the 

extraction and cleanup methods and for this method was about Ipg DA • g'̂  shellfish 

(Quilliam et al. 1989).

To lower the detection limit a derivatization method was developed and liquid 

chromatography (LC) with fluorescence detection was applied (Pocklington et al. 1990). 

As DA lacks chromatophores a derivatization of DA is required to detect it with 

fluorescence (Garthwaite 2000). HPLC of the fiuorenylmethoxycarbonyl (FMOC) 

derivative is a highly sensitive method to measure trace levels of DA in plankton cultures, 

plankton net tows and seawater itself, with a detection limit of 15 pg DA • mL'  ̂ seawater 

(described by Pocklington et al. 1990). Early use of this method verified that P. 

multiseries (then called Nitzschia pungens f. multiseries) produced domoic acid and was 

the causative organism of the 1987 ASP event in Canada (Bates et al. 1989). However, 

this method only detects DA in seawater and phytoplankton samples or cultures, not in 

seafood tissue. Analysis of shellfish tissue in some cases interferes with analysis reagents 

which can lead to chromatographic misinterpretations, hence for shellfish tissue the 

FMOC derivatization cannot be applied. An extraction method involving 50% aqueous 

methanol and a cleanup based on strong-anion exchange (SAX) was developed and 

applied to seafood tissue prior to DA determination by LC with UV DAD. The method 

was successfully applied for DA determination in mussels, razor clams, crabs and 

anchovies, reaching a detection limit between 20-30 ng • g'̂  (Quilliam et al. 1995).

More recently HPLC of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate 

derivative has been used with fluorescence detection to measure DA in P. multiseries 

cultures, a detection limit of 1 pg DA • mL'  ̂culture was achieved (Sun & Wong 1999). 

Another derivatization method which is applicable for DA from shellfish tissue and 

phytoplankton samples was developed using 4-fluoro-7-nitro-2,1,3-benzoxadiazole 

(NBD-F), with a detection limit < Ing DA • mL'  ̂(James et al. 2000).
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Liquid chromatography coupled with mass spectrometry (LC/MS) has been developed for 

DA determination in seafood samples. Furey et al. (2001) used electrospray ionisation to 

perform multiple tandem MS experiments and achieved DA detection limits with LC-MS 

between 0.02 and 0.008 pg DA • mL^ seafood extract.

1.5.4.2 Immunoassavs

Antibodies can be used to detect domoic acid, for example by applying an enzyme linked 

immunosorbent assay (ELISA). The antibodies recognise specific toxic structures and 

bind to them. Toxin levels more than 500 times below the maximum permitted DA 

concentration in shellfish can be detected (Garthwaite 2000). Antibodies for DA 

developed by Garthwaite et al. (1998) have been successfully used in a highly specific 

ELISA to classify Pseudo-nitzschia species as toxic in New Zealand waters (Rhodes et al.

1998).

The MIST Alert™ for ASP is another rapid commercial antibody-based test (Jellett Biotek 

Limited, Dartmouth, Canada). It was first developed for PSP toxins (Jellett et al. 2002). 

It is reportedly easy to use and can be quickly applied on shellfish extracts by the shellfish 

farmer to test phytoplankton and shellfish extract samples. Tests have demonstrated its 

reliability and reproducibility in toxin detection, successfully identi^ing DA in samples 

containing the regulatory limit for ASP of 20 pg • g'̂  shellfish flesh (Mackintosh & Smith 

2002).

1.5.4.3 Capillary electrophoresis and electrochromatography

Possible alternatives to HPLC for analysis of DA are capillary electrophoresis (CE) and 

capillary electrochromatography (CEC) (Pifieiro et al. 1999; Bartle et al. 2001). In CE and 

CEC the sample is driven through the column by applying an electric field, rather than by 

applied pressure as in HPLC. Based on the different mobilities of polar substances (such 

as DA) in an electric field, depending on their molecule size and charge, those substances 

are separated with CE or CEC and then analysed by photodiode array detection. Both
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techniques have been recently developed and applied for DA and other shellfish toxin 

detection (Martins et al. 2002; Gago-Martmez et al. 2003).

1 .6  Chronology of ASP events/ mass occurrences of Pseudo-nitzschia 

spp»

For an overview of reported ASP events and occurrences of toxic Pseudo-nitzschia 

species see Table 1.1.

The first observed ASP event occurred during November /December 1987 in the bays of 

PEI, Canada. Deaths, illness and short time memory loss occurred in people after the 

consumption of blue mussels {Mytilus edulis) (Bates et al. 1989). The outbreak resulted 

in at least three human deaths and 107 cases of gastrointestinal illness and ASP (Perl et al. 

1990; Teitelbaum et al. 1990; Todd 1993). The edible mussel tissue contained up to 900 

pg DA • g'̂  wet weight (Addison & Stewart 1989), which represented an extremely high 

dose of toxin for the consumers. This event also led to the identification of the neurotoxin 

DA as a harmful algal toxin (Wright et al. 1989). The diatom Pseudo-nitzschia multiseries 

(Hasle), then called Nitzschia pungens Grunow f. multiseries (Hasle 1995), was 

identified as the causative domoic acid producer, that had contaminated the blue mussels 

(SubbaRao et al. 1988b; Bates et al. 1989). The Health and Welfare Ministry of Canada 

established a regulatory guideline of 20 pg DA • g'̂  shellfish tissue for human 

consumption from estimates during the event of amounts ingested by patients (in Villac et 

al. 1993a). The detailed chronology of this first ASP event is described by Addison & 

Stewart (1989). Subsequently there were blooms of P. multiseries at PEI in the following 

three years, but because of an intensive monitoring programme, human intoxication was 

prevented (Smith et al. 1990a, b; Villac et al. 1993a).
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From August to October 1988, DA amounts greater than the acceptable level were 

detected in blue mussels {Mytilus edulis) and soft-shell clams {Mya arenarid) in the south

western Bay of Fundy, New Brunswick, Canada, resulting in the closure of shellfish 

harvesting areas (Martin et al. 1990; Martin et al. 1993). The causative organism was then 

identified as Nitzschia pseudodelicatissima, which is today known as P. 

pseudodelicatissima. Following morphological investigations on the P. 

pseudodelicatissima/cuspidata complex in a recent study Lundholm et al. (2003) found 

that their P. pseudodelicatissima strain was identified as the new species P. calliantha.

The first reported ASP event in the USA led to seabird deaths and seafood quarantines 

and was associated with P. australis. It occurred along the Californian coast in Monterey 

Bay, in September 1991 (Buck et al. 1992; Work et al. 1993b). More than a hundred 

brown pelicans {Pelecanus occidentalis) and Brand's cormorants {Phalacrorax 

penicillatus) died from DA intoxication after feeding on DA contaminated northem 

anchovies {Engraulis mordax) (Fritz et al. 1992). It was an unusual event because this 

time the vector was not shellfish but finfish (Work et al. 1993a). P. australis was found in 

the anchovies' stomach contents and was suspected to be the cause of the DA 

intoxication, as it dominated the phytoplankton community in Monterey Bay at that time. 

Using laboratory isolates, P. australis was confirmed to be the DA-producing organism 

responsible (Garrison et al. 1992).

In October 1991 DA levels up to 154 pg • g'̂  wet weight were found in razor clams 

{Siliqua patula) along the Pacific coast of Washington, USA (Drum et al. 1993; Wekell et 

al. 2002), while P. multiseries and P. australis were abundant. As a consequence the 

recreational and commercial harvest of the clams had to be closed until May 1992. 

However during that autumn 21 people showed gastrointestinal symptoms after the 

consumption of razor clams, more then half of them also had neurological symptoms, but 

no deaths were reported (Homer & Postel 1993). At the same time Dungeness crabs 

{Cancer magister) from coastal water of Washington, Oregon and California were also 

found to be DA contaminated and the commercial fishery was closed for several weeks 

(Homer & Postel 1993). It was suggested, that the ASP event in California in September 

1991 and the DA contamination of razor clams and Dungeness crabs in Washington might
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have been part of a widespread bloom of P. australis, starting in California that could 

have been carried to Washington by the currents (Homer et al. 1997).

In the following summer (1992) trace amounts of DA were detected in blue mussels 

{Mytilus edulis) and oysters {Crassostrea gigas) in northem Puget Sound, Washington, 

USA (Homer & Postel 1993). Along the coasts of California, Oregon and Washington 

from 1991-1993, DA was measured in doses above the regulatory limit in seafood 

including anchovies, razor clams, crabs and spiny lobsters. Of all tested species 

anchovies were found to be the most highly contaminated (Altwein et al. 1995). It was 

estimated that the HAB event was mainly affecting the razor clam recreational fishery and 

tourism. In Oregon and Washington it brought a loss for the economy of about $700 

thousand in 1991 and $7 million in 1992 (Hoagland et al. 2002).

After a persistent six week bloom of P. pungens, P. multiseries and P. australis in Hood 

Canal, westem Washington, USA in autumn 1994, -  14 g DA • g'̂  were measured in the 

phytoplankton and ~ 10 pg DA • g'̂  wet weight in mussels. This was the first time since 

1991, when the monitoring began, that relatively high DA levels were found in mussels 

and in inland waters of westem Washington (Homer et al. 1997).

The first evidence of DA in phytoplankton outside North America was found in 

European, Danish waters. Cultures of P. seriata that were isolated from the Baltic Sea in 

January 1993, produced DA. However an ASP event did not occur (Lundholm et al. 

1994).

The first European strain of P. multiseries was isolated from the Dutch Wadden Sea 

between November 1993 and July 1994. Although the P. multiseries culture produced 

DA under laboratory conditions, no ASP event occurred (Vrieling et al. 1996).

Following a P. australis bloom in Galicia, north-west Spain (Miguez et al. 1996) in 

September 1994, DA was first detected in mussels {Mytilus galloprovincialis) in 

European waters. The DA content of the mussels was below the legal limits for DA 

concentration in shellfish. However it was the first record of P. australis and DA in 

European waters and the north-east Atlantic, although the capability of the European P. 

to produce DA was then not proven. Shortly after the bloom (October 1994) P.
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australis and some other species were successfully cultured from Galician waters and DA 

production confirmed (Fraga et al. 1998),

In New Zealand, DA was first detected in Northland in 1993, in scallops {Pecten 

novaezealandiae) that had ingested P. australis (Rhodes et al. 1998). A year later, the 

maximum DA contamination in Northland was recorded in scallop digestive glands (600 

pg • g^), coinciding with the presence of P. australis in seawater samples (Rhodes et al. 

1996). Between 1993 and 1997, scallop harvesting sites had to be closed every early 

austral summer (November-December) in Northland, with P. australis suspected to be the 

causative organism. In December 1994, a Greenshell mussel {Pema canaliculus) 

harvesting site was closed for two weeks in Marlborough Sound, New Zealand, due to 

elevated DA levels in the mussels, this was linked to P. pungens. A  single site was closed 

in October 1995, due to 22 pg • g'̂  in Greenshell mussels (Te Araroa Beach, New 

Zealand). However, no ASP events or more shellfisheries closures have occurred until 

1998 in this location (Rhodes et al. 1998).

About 150 brown pelicans {Pelecanus occidentalis) were killed by domoic acid 

intoxication at the tip of the Baja California peninsula (Pacific coast of Mexico) in late 

December 1995 to January 1996. The seabirds had been feeding on mackerel {Scomber 

japonicus) that was contaminated by a domoic acid producing Pseudo-nitzschia sp. 

(Sierra-Beltran et al. 1997). A year later, during January-February 1997, 766 common 

loons {Gavia immer) and 182 sea mammals (4 different species) were found dead in the 

Gulf of California. P. australis frustules were found in stomachs of common dolphin 

{Delphinus capensis) and in sardines {Sardinops sagax) that had been ingested by some of 

the dolphins. The presence of DA in mammal tissues was confirmed and P. australis was 

thought to be the causative organism. This was the first report of P. australis in the Gulf 

of California, Mexico (Sierra-Beltran et al. 1998).

In May and June 1998 the first ASP event that killed marine mammals in the USA was 

documented in sea lions {Zalophus califomianus) along the central Californian coast 

(Monterey Bay, USA). Over 400 sea lions died after ingesting anchovies {Engraulis 

mordax) that had been feeding on a P. australis bloom, which reached levels up to 7-32 

pg DA • cell*' (in one sample even 75 pg DA • cell' )̂. During the bloom in May about 1.3
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X 10® cells • of P. australis were counted in water samples. The water was enriched 

with silicate from terrestrial freshwater runoff, that might have enhanced the yield of the 

bloom (Lefebvre et al. 1999; Scholin et al. 2000).

Following the DA poisoning of the sea lions in summer 1998 at Monterey Bay, 

California, record levels of DA were found in razor clams (Siliqua patula) along the 

Washington coast, USA, in October 1998. The toxin was this time not associated with P. 

australis, but with a bloom identified as P. pseudodelicatissima which then occurred at an 

abundance of 1.0-1.5 x 10® cells • L^ (Adams et al. 2000).

In October 1998, DA contamination was reported from Asian waters, in southern Korea 

(e.g. Chinhae Bay). DA concentrations just below the international acceptance level of 20 

pg • g'̂  were detected in shellfish and associated with P. multiseries. P. multiseries is not 

the only occurring Pseudo-nitzschia species in Korean waters, but is regarded to be the 

most likely DA producer (Cho et al. 2002). P. multiseries had previously been found in 

Japanese waters (e.g. Ofimato Bay), but only in small numbers and no ASP or ASP-like 

poisoning had been reported from that area (Kotaki et al. 1999).

Again in Europe, this time along the French Atlantic coasts, DA was detected in shellfish 

in 1998. The potential DA producers P. pseudodelicatissima and P. multiseries were 

identified by SEM from water samples. Only P. multiseries was cultured and positively 

tested for DA (Amzil et al. 2001).

In Scottish waters P. australis was suspected to be the source of the DA contamination of 

king scallops (Pecten maximus) in 1999 and 2000 (Gallacher et al. 2001), which resulted 

in the, to date, largest area of fisheries closures due to a harmful algal bloom (Campbell & 

Kelly 2001). At times of shellfish closures P. australis and other Pseudo-nitzschia species 

were abundant (Gallacher et al. 2001). Two P. australis cultures were established in 

August 1999 and it was shown that they were capable of producing DA (Campbell et al.

2001). At the same time, in 1999, DA amounts above the regulatory limit of 20 pg • g'̂  

wet weight were also found in king scallops in Ireland (McMahon & Silke 2000), 

coinciding with findings of P. australis in the phytoplankton community (Cusack et al.

2002).
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In Portuguese shellfish the presence of DA is a recurrent event and affects the shellfish 

resources several times a year, mainly in spring and autumn (Vale & Sampayo 2001). In 

early March 2000 a maximal DA concentration of 90 pg • g'̂  was detected in a mussel 

sample, but DA contamination in shellfish has been observed from 1995. Apart from blue 

mussels (Mytilus edulis) other shellfish that are known to regularly become contaminated 

with DA in Portuguese waters are common cockle (Cerastoderma edule), peppery furrow 

shell (Scrobicularia plana), carpet shell (Venerupis pullastra), oyster (Ostrea edulis), razor 

clam (Ensis spp.) and clam (Ruditapes decussata). However toxic diatom blooms at the 

Portuguese coast seem to be a recurrent phenomenon of relatively short duration, ASP 

symptoms in humans have not yet been reported, but might pass unnoticed in the wildlife 

(Vale & Sampayo 2001).

Between 1998 and 2000, at the same time as the shellfish closures in north-westem 

Europe, P. seriata was suspected to be the cause of DA contamination in eastem Canadian 

waters. Since 1997 the presence of DA in molluscs in the Gulf of St. Lawrence, PEI, 

Canada, had been monitored by the Canadian Food Inspection Agency. They found 

substantial amounts of DA in scallops and shellfish-fisheries had to be closed between 

1988 and 2000. The DA contamination of the molluscs coincided with P. seriata blooms. 

One P. seriata strain was successfully cultured and tested positive for DA production 

(Couture et al. 2001).

In the past few years frequent spring blooms of P. australis have lead to reoccurring 

domoic acid contamination of wildlife in California, USA. In 2002 alone, 685 sea lions 

were killed by domoic acid in Santa Barbara and Ventura county, with another 518 

stranded. Concurrently approximately 75 dolphins died with 23 showing domoic acid 

poisoning symptoms (Gollan 2003, Schultz 2003). Between April and June 2003, 104 

sea lions died and 177 had fallen ill, 43 dolphins died and five had stranded along the 

Californian coast, due to a domoic acid outbreak (Gollan 2003). P. australis was again 

thought to be the causative organism with DA accumulating in sardines and anchovies that 

fed on the algae (Thomas-Anderson 2003).
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These events show that ASP is a serious thread for wildlife and humans and strongly 

impacts the shellfish harvesting industry. There might be further implications on tourism 

(e.g. beached sea lions and pelicans might keep tourists away). Of all Pseudo-nitzschia 

species only P. multiseries, P. australis, P. seriata (P. seriata group) and P. calliantha 

have been confirmed as causes of ASP events or shellfish closures. Reports of DA 

contamination due to P. pungens and P. pseudodelicatissima should be re confirmed by 

cultivation and DA testing of the species.

1.7  Identification

1.7.1 Diatoms

Diatoms (division Chromophyta, class Bacillariophyceae) include two orders, the 

Biddulphiales, or Centrales and the Bacillariales (= Pennales) (cf. Hasle & Syvertsen

1996). The division into those two orders is based on their symmetry. While centric 

diatoms have radial symmetry with surface patterns arranged in relation to a central point, 

pennate diatoms have longitudinal symmetry with surface patterns arranged in relation to a 

line (e.g. Fig. 1 in Homer 2002). The genus Pseudo-nitzschia Peragallo belongs to the 

order Pennales. There are about 1400-1800 diatom species within the marine 

phytoplankton, 850-1000 of them are centric, about 500-800 pennate (Soumia et al. 

1991). They occur in all oceans (in the plankton, benthos, sediments, sea ice) and are the 

most abundant organisms in the phytoplankton community in terms of biomass and 

species. From their pigments (chlorophyll a, c2, sometimes cl or c3, beta-carotene, 

fucoxanthin, diatoxanthin, diadinoxanthin) the cells may appear yellow, yellowish green, 

golden brown or dark brown. Diatoms range from 5 to 200 pm; some cells may reach up 

to 4 mm in length. One of their main characteristic is the siliceous cell wall, which 

consists of two halves, the slightly smaller hypotheca and the larger epitheca. The 

hypotheca fits into the epitheca, like the two halves of a petri-dish (see Fig. 1.4A). Both 

halves are marginally connected by girdle bands. Diatoms occur in various shapes, which 

vary between species. Additionally many cells have processes, spines, ridges and
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elevations, which together with the highly variable pore patterns of the cell wall (Fig. 

1.4B) are used to delineate genera and species.

A) section through valve B) TEM view of acid cleaned epitheca: 

f
valve

Cl on

Fig. 1.4 Schematic representation of identification features for Pseudo-nitzschia cells. A) 
Section through valve shows epitheca and hypotheca; e= epitheca; g = girdle, with girdle 
bands; h = hypotheca; r = raphe. B) TEM view of the valve of P. fraudulenta with fine 
structural features used for species identification; ci = central interspace; cn = central 
nodulus; f = fibula; i = interstria; p = poroid; rs = raphe slit; s = stria.

Cells are solitary or form colonies. Colonies are formed when cells stay linked after cell 

division (e.g. Fig. 1.5). The shape of colonies also varies between genera and species 

and can be used as an additional feature for identification. Diatom reproduction is 

primarily asexual by cell division, which happens through the formation of new siliceous 

components inside the parental cell. Each daughter cell receives one half of the parent cell 

theca, which becomes the new epitheca, and forms a hypotheca. Through this process the 

diatom cell becomes increasingly smaller, for the genus Pseudo-nitzschia, in general, the 

length is reduced while the width stays about the same. The average cell size of a diatom
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population decreases to about one third of their maximum size, before it has to be restored 

through sexual reproduction (cf. Homer 2002).

A) Girdle view:

over
B) Valve view:

extent of one cell

10|jm

Fig. 1.5. Chain of Pseudo-nitzschia cells in girdle (A) and valve (B) view; c = 
chloroplast.

1.7.2 P seudo-nitzschia

Diatoms that now belong to the genus Pseudo-nitzschia were formerly within the genus 

Nitzschia Hassall 1854. After recognising that diatoms like Nitzschia seriata, N. 

fraudulenta and N. sicula had more sharply pointed tips that overlapped to form a chain, 

the genus Pseudo-Nitzschia was erected by H. Peragallo (Peragallo & Peragallo 1900). 

However, because of the partly reduced raphe and a partially retained motility, Hustedt 

reduced the genus to a section of the genus Nitzschia in 1958. After the ASP event in 

PEI, Canada, in 1987, attention was drawn back to the genus following the discovery that 

Nitzschia pungens f. multiseries was the source of DA (Bates et al. 1989). Hasle (1994) 

recognised Pseudo-nitzschia as different from the genus Nitzschia. The re-erection was 

based on morphological characters and the fact that Pseudo-nitzschia species are marine 

and planktonic (the genus Nitzschia comprises both planktonic and benthic species).

1.7.2.1 Morphological characteristics

With light microscopy (LM), some primary morphological characters of Pseudo-nitzschia 

spp. can be observed. Usually Pseudo-nitzschia spp. cells are arranged in "stepped 

colonies" (Fig. 1.5). A chain of Pseudo-nitzschia cells can move, while single cells 

within the colony cannot (as they can in Bacillaria Gmelin which is of the same family).
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Valves of Pseudo-nitzschia cells are shallow, flattened or smoothly curved, not 

undulated. The extremely eccentric raphe, is not elevated above the level of the valve as in 

Nitzschia. For species delineation in Pseudo-nitzschia, the valve outlines from both valve 

and girdle view (Fig. 1.5) must be described. This may be achieved with a hght 

microscope and requires measurement of width, length and the overlap of cells. Width 

information divides Pseudo-nitzschia species into the Pseudo-nitzschia seriata group 

{Nitzschia seriata complex), containing species with fmstule widths > 3 pm in valve 

view, and the Pseudo-nitzschia delicatissima group {Nitzschia delicatissima complex), 

including species with valve widths < 3 pm (Hasle 1965; Hasle & Syvertsen 1996). 

Producing permanent slides (e.g. with Naphrax, N. Lundholm, personal communication) 

after removing the organic material of the fmstules can allow further identification with 

the LM. For example one may distinguish between P. australis and P. fraudulenta, as 

with LM, cleaned P. fraudulenta valves often show the central interspace (Fig. 1.4B), 

while P. australis lacks a central interspace. In some cleaned samples one may distinguish 

P. multiseries from P. pungens, because, in correctly prepared samples, the poroids (Fig. 

1.4B) can be seen in P. pungens valves under 1000 x LM magnification, but not in P. 

multiseries (N. Lundholm, personal communication). P. seriata and P. australis are 

indistinguishable by LM, as they have a very similar shape and symmetry, and both lack a 

central interspace. Using electron microscopy (EM), it is possible to identify Pseudo- 

nitzschia cells to species level. Removal of organic material (see chapter 3), is also a 

requirement for any fine structure study of the flrustules with electron microscopy. While 

EM is more expensive and takes more preparatory effort than LM, it is much more reliable 

than LM identification, and considered necessary for critical species identification (Skov 

et al. 1999). Transmission electron microscopy (TEM) is generally more useful than 

scanning electron microscopy (SEM). For SEM the cells need to be coated (with gold- 

palladium) resulting in an image that represents the surface of that coat. With TEM, the 

electron beam passes through the pores and openings in the fmstule resulting in an image 

that reveals many of the fine stmctural features more clearly. For example the stmcture of 

the poroid hymen and the band stria require a resolution that cannot be achieved using
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SEM (Lundholm et al. 2003). Tables 3.3 and 3.4 (chapter 3, section 3.3.2) show species 

specific measurements of fine structural features that are used for species delineation. 

Morphological features (Fig. 1.4B) that can only be seen with EM, and that are necessary 

for identification to species level, are:

• The central interspace. This feature can sometimes be recognised in the LM, but not as 

clearly as in EM, it is present in some species, but absent in others.

• The rows of poroids per stria.

• The number of poroids in 1 pm

• The number of fibulae and interstriae in 10 pm.

• The shape of the valve ends and additionally the structure of the poroid hymen and the 

cingular bands (poroids and stria) can also be studied for species delineation.

The identification of Pseudo-nitzschia and other microalgae using LM and EM is time- 

consuming, requires substantial expertise, and is still often difficult and ambiguous when 

the cells have to be discriminated to species level (e.g. Miller & Scholin 1996). Hence 

other methods of species identification, for example the use of genetic methods are 

becoming more common.

1.7.2.2 Genetic Characters

For genetic identification and phylogenetic studies on Pseudo-nitzschia spp., genes or 

partial genes from the nuclear rDNA (ribosomal RNA genes) have been used (Fig. 1.6). 

The rDNA operon is typically present in a high copy number (e.g. Baldwin et al. 1995) in 

the eukaryotic genome, and this is also the case for Pseudo-nitzschia (Cangelosi et al.

1997). The high copy number promotes detection, amplification, cloning and sequencing 

of the rDNA. The rDNA also undergoes rapid concerted evolution, that promotes 

uniformity among repeat-units (Baldwin 1995). The rDNA operon consists of the small 

subunit (SSU, 18S) gene, the internal transcribed spacer (ITS) gene and the large subunit 

(LSU, 28S) gene. The ITS region is bisected into ITSl and ITS2 by the 5.8S gene, a 

highly conserved region (Palumbi 1996). While the SSU and LSU are moderately
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variable between species, the non-coding ITSl and ITS2 genes exhibit more genetic 

variation. Just before the SSU, at the 5' end of the rDNA operon lies the external 

transcribed spacer (ETS) (Fig. 1.6).

ETS SSU(18S) ITS1 » 1TS2 LSU (288)^ yi-.r i ------- ,------------  c : /
• !*- sequenced in this study —{ •

NTS

1kb 2kb 3kb 4W) 5kb 6kb

I j= coding region

Fig. 1.6 The nuclear rDNA operon (modified after Gerbi 1985). ETS = external 
transcribed spacer; ITS = internal transcribed spacer; kb = kilo base; LSU = large subunit; 
NTS = non-transcribed spacer; SSU = small subunit.

Douglas et al. (1994) sequenced SSU rRNA genes from P. pungens, P. multiseries and 

P. australis and other marine diatoms. Differences in the nucleotide sequences between P. 

pungens and P. multiseries permitted them to design PCR (polymerase chain reaction) 

primers that allowed discrimination between the two species, that were, at that time, seen 

as two subspecies of P. pungens (f. pungens and f. multiseries). They inferred from the 

differences between SSU rDNA sequences, that P. pungens f. pungens and P. pungens 

f. multiseries were separate species. In phylogenetic analyses Pseudo-nitzschia was 

clearly distinguished from the other marine diatoms (Douglas et al. 1994). This was 

supported by morphological data as well.

Scholin et al. (1994) based a phylogenetic analysis on partial LSU sequences to 

discriminate between the toxic and non-toxic Pseudo-nitzschia species P. australis, P. 

delicatissima, P. americana, P. pungens f. pungens (= P. pungens) and P. pungens f. 

multiseries (= P. multiseries).

Partial LSU sequences were again used to relate the, then newly described, species 

Pseudo-nitzschia galaxiae (Lundholm & Moestrup 2002), P. brasiliana and P. linea as 

well as the Pseudo-nitzschia americana complex (Lundholm et al. 2002b) and in another 

study P. multistriata (Orsini et al. 2002) to other Pseudo-nitzschia species.

Also based on partial LSU rDNA sequences, a phylogeny of the family Bacillariaceae 

(including the genera Bacillaria, Cylindrotheca, Fragilariopsis, Neodenticula and Pseudo- 

nitzschia) with emphasis on Pseudo-nitzschia was inferred (Lundholm et al. 2002a).

33



Chapter 1

With LSU rDNA sequences Stehr et al. (2002) revealed the similarity of some Pseudo- 

nitzschia species (P. multiseries, P. pungens, P. australis and P. heimii) from 

Washington waters to species from Californian waters, while others, P. delicatissima and 

P. pseudodelicatissima were distinct. However, when that distinction was made the P. 

pseudodelicatissima complex had not been resolved (later resolved by Lundholm et al.

2003) and in hindsight they may have been different species.

Manhart et al. (1995) used the SSU, ITSl and parts of the 5.8S to confirm the 

morphological distinction between P. multiseries (Hasle) Hasle and P. pungens (Grunow 

ex Cleve) Hasle. Cangelosi et al. (1997) aligned ITS2 and ETSl sequences of P. 

multiseries, P. pungens and P. australis to find genetic differences between those species. 

They suggested the use of the ITS region as targets for molecular probe identification of 

Pseudo-nitzschia species.

As yet, Lundholm et al. (2003) are the only authors to have used the ITS region in 

Pseudo-nitzschia to establish a phylogeny that includes 16 of the main Pseudo-nitzschia 

species. With ITS sequences and phylogenetic analysis they resolved the position of the 

P. delicatissima complex within the genus Pseudo-nitzschia.

While previous studies used either the SSU, ITS or LSU, a useful approach for species- 

level comparison and phylogenetic analysis would be the combination of genes. This 

approach was taken in the present study (chapter 3), combining ITS, 5.8S and LSU 

sequences.

1.7.2.3 Immunological and Biochemical Characters

Based on rDNA sequences, molecular probes have been developed to distinguish between 

Pseudo-nitzschia species from culture and field samples. Whole cell hybridisation allows 

in situ identification and enumeration of microorganisms such as Pseudo-nitzschia (for 

review see Amann et al. 1995). With this technique rRNA in the cell is specifically 

detected within morphologically intact cells by rRNA-targeted fluorescently labelled 

oligonucleotide probes. To speed up and ease identification of Pseudo-nitzschia species 

from cultures, whole-cell {in situ) hybridisation with species-specific LSU rRNA-targeted 

oligonucleotide probes was used to successfully distinguish between P. australis, P.
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pungens, P. multiseries, P. fraudulenta, P. heimii, P. delicatissima, P. 

pseudodelicatissima and P. americana (Miller & Scholin 1996). This technique was also 

used to enumerate cultured and wild Pseudo-nitzschia cells (Miller & Scholin 1998). 

Intact cells that retain the probes are visualised using epifluorescence microscopy.

In contrast to whole cell (in situ) hybridisation, sandwich hybridisation requires the 

homogenisation of living cells to liberate their cell contents (referenced in Scholin et al. 

1996). Both techniques were applied by targeting oligonucleotides probes towards the 

same key LSU rRNA sequences to discriminate P. australis from cultures (Scholin et al. 

1996, 1997) and natural populations (Scholin et al. 1997) from its closely related 

congeners. Scholin et al. (1997) suggest that sandwich hybridisation potentially offers the 

most rapid and simple means to identify P. australis in its natural environment when 

screening large numbers of environmental samples. It also offers a faster mode of sample 

processing than whole-cell (in situ) hybridisation because of its high amenability to 

automation (Scholin et al. 1999). Depending on the probes used and species studied, 

cross-reactions can occur (e.g. Miller & Scholin 1998; Parsons et al. 1999), which result 

in one probe labelling more than one species. The detection of Pseudo-nitzschia. in field 

samples with LSU rRNA targeted oligonucleotide probes has been widely applied in field 

studies from different locations, (e.g. Rhodes et ah 1998; Trainer et al. 1998b; Bates et 

al. 1999; Parsons et al. 1999; Scholin et al. 1999; Cho et al. 2001, 2002).

Some other methods that have been used to identify Pseudo-nitzschia species are 

immunochemical techniques such as immunofluorescence (Bates et al. 1993a), electro- 

immunoblotting (Ross & Bates 1996) and lectin binding assays (e.g. Rhodes 1998; Fraga 

et al. 1998; Cho et al. 2001, 2002). In immunochemical techniques cells are first 

incubated in a primary antiserum and then with a fluorescently tagged secondary 

antiserum directed against the primary antibody (referenced in Bates et al. 1993), in this 

case Pseudo-nitzschia cells. The target cells can then be visualised by 

immunofluorescence. Both immunochemical methods have been applied to discriminate 

between P. pungens and P. multiseries.

Lectins are proteins or glucoproteins of non-immune origin, each different lectin binds to 

a specific sugar or group of sugars. The different species-specific binding patterns of
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fluorescent-conjugated lectins (FTIC-conjugated lectins) to sugars on algal surfaces can 

be used to differentiate between microalgae species (see Aguilera & Gonzalez-Gil 2001). 

FTIC-conjugated lectins have been applied to Pseudo-nitzschia species in Spain (Fraga et 

al. 1998), New Zealand (Rhodes 1998) and Korea (Cho et al. 2001, 2002). Results 

showed that the application of fluorescently labelled lectins facilitates the identification and 

quantitative estimation of several Pseudo-nitzschia species in the field and therefore 

provides a promising tool for monitoring programmes.

Scottish Pseudo-nitzschia populations are composed of mixed species (chapter 2 and 

chapter 3), hence techniques as described above would be useful in distinguishing 

between the species, identifying potentially harmful blooms.

1.8  Toxin production of Pseudo-nitzschia species in culture

1.8.1 Growth cycle and DA production

Previous studies investigated the growth dynamics and DA production of a few Pseudo- 

nitzschia species in regard to factors such as light, temperature and inorganic nutrient 

concentration. Those studies investigated the toxin production dynamics with the aim to 

predict and potentially mitigate ASP events. Pseudo-nitzschia cultures first had to be 

established from field samples and maintained under laboratory conditions. Hence, so far 

only a few Pseudo-nitzschia species have been studied under a few conditions. Those 

species include P. multiseries, P. australis, P. cf. pseudodelicatissima and P. seriata.

Most studies of DA production have focused on P. multiseries, as it was the first Pseudo- 

nitzschia species shown to produce DA, and was isolated into culture soon after the ASP 

event in Canada 1987. It has been shown to produce DA in batch cultures only in the late 

exponential and stationary phases of the cell growth cycle, when ceU division either 

declines or ceases (e.g. Bates et al. 1998; Pan et al. 1998). DA production and the growth 

rate appear to be inversely correlated (Pan et al. 1996a); when cell division terminates in 

stationary phase DA production is greatly enhanced (Pan et al. 1996b). It is believed that
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this is attributable to stress such as phosphate or silicate limitation (Pan et al. 1998 and 

references therein).

Toxin production by P. australis has been tested in two studies. In the first, two strains 

from the California coast were thought to produce DA in mid-exponential phase (Garrison 

et al. 1992). However, due to a high inoculum, it could not be ruled out that high 

numbers of late stationary phase cells, could have led to carry over of DA to the 

experiment. The second study of one Irish Sea isolate of P. australis showed a similar 

pattern of toxin production to P. multiseries when grown in batch culture under very low 

light conditions (12 pmol photons • m'  ̂ • s' )̂; no DA was detected until late stationary 

phase (Cusack et al. 2002). In contrast, when the same isolate was grown at a higher 

irradiance (115 pmol photons • m'  ̂• s' )̂, DA production began in late exponential phase. 

In a study on P. cf. pseudodelicatissima (Pan et al. 2001), which can be identified as 

either P. pseudodelicatissima or P. cuspidata (Lundholm et al. 2003), cellular levels and 

net production of DA were highest in the early exponential phase, while population 

growth rate was high and cell concentration was low. This pattern of DA production 

differed from that of other Pseudo-nitzschia species.

Toxin production of P. seriata is even less well understood. In the only study with P. 

seriata where toxin was tested (Lundholm et al. 1994), traces of DA were observed 

during the exponential growth phase and highest amounts of DA in the whole culture 

(cells + medium) in late stationary phase. Toxin production appeared to be temperature 

dependent with higher amounts of DA produced at 4°C than at 15°C.

1.8.2 Influence of nutrients on DA production

Although nutrient limitation would have occurred in the above studies, the limiting 

nutrient was not defined. All studies specifically investigating the effects of limitation by a 

particular nutrient have been carried out on P. multiseries, mainly in batch culture.
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1.8.2.1 Nitrogen

DA is an amino acid and therefore requires nitrogen (N) as one of its key elements for 

synthesis. However, as N contributes only 4.5% of the molecular weight of DA, the 

purpose of DA production by the cell is unlikely to be the storage of N (Bates et al. 

1991). Bates et al. (1991) demonstrated the N-requirement for DA production in an 

experiment with a xenic batch culture of P, multiseries. At the onset of stationary phase, 

the culture started producing DA. Cellular DA levels remained relatively constant due to 

concurrent release of DA into the medium. Later during stationary phase, when N was 

absent, DA production ceased, but resumed when N was added back to the medium. The 

authors concluded that DA production requires cessation of cell division and the 

availability of nitrogen.

Certain ammonium concentrations (220-440 pM) may enhance DA production. When P. 

multiseries cultures were exposed to equivalently high ammonium and nitrate 

concentrations the cellular DA production was enhanced by two- to fourfold. The 

increased DA production at these ammonium concentrations can be interpreted as either a 

physiological stress imposed on diatom growth due to ammonium toxicity or the use of a 

more energetically favourable form of nitrogen for the synthesis of primary amino acids 

and DA (Pan et al. 1998). However, such high ammonium concentration are unlikely to 

occur in nature.

1.8.2.2 Silicate and Phosphate

In contrast to nitrogen, silicate (Si) and phosphate (P) limitation are thought to result in 

toxin production in stationary phase. This is shown in experiments with P. multiseries 

(Bates 1998 and references therein; Bates et al. 1991; Pan et al. 1996a, b, c). This will be 

discussed in detail in sections 4.1.2 and 4.4.1 (chapter 4, experiment A)

1.8.3 Temperature and DA production

When growing P. multiseries in batch cultures at temperatures ranging from 5°C to 25°C, 

Lewis et al. (1993) observed higher cell concentrations at lower temperatures, but also a
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lower division rate and DA production rate with lower temperature. High temperature 

conditions such as 25°C might have imposed physiological stress on the cells that 

enhanced DA production. Low temperatures, may also have implemented a form of 

physiological stress, but not in the way that it would have increased the rate of DA 

production.

Interestingly, temperature seemed to affect the morphology of the fmstules (Lewis et al. 

1993). At 15°C and below, P. multiseries cells showed 3-4 poroids per stria as common 

for the species, but at 25°C only 2-3 poroids per stria were formed. Lundholm et al. 

(1997) observed a similar reduction in rows of poroids from four to two (or sometimes 

three) in P. seriata growing at 15°C instead of 4°C. These observation are important, as 

taxonomy and species identification is often based specifically on these fine-stmcture 

morphological features (see section 1.7.2.1).

P. multiseries was shown to continue growth and domoic acid production when the 

temperature was changed from 13° to 5° or 0°C and from 5° to 0°C (Smith et al. 1993), 

indicating that this species can exist and produce DA in winter conditions. Similarly, P. 

seriata from Danish waters produced higher levels of DA when exposed to 4°C than when 

grown at 15°C (Lundholm et al. 1994). This might suggest that DA production was a 

response to temperature stress. However, P. seriata is assumed to be a cold water species 

and known to occur at low temperatures (Smith et al. 1993), and hence should not show 

signs of stress at low temperature.

A study with the domoic acid producing P. calliantha (as P. pseudodelicatissima) showed 

the effects of various temperatures and salinities on the growth rate, valve morphology 

and toxicity (Lundholm et al. 1997). AU cultures expressed an optimal salinity of 25 for 

growth at aU temperatures, while ceUs did not grow at salinity of less than 10. Growth 

was enhanced at higher temperatures. Domoic acid was detected, but its production could 

not be related to the external factors. Effects on the valve morphology (e.g. a change in 

the poroid pattern) were not detected.

The effect of temperature on DA production of other toxin producing Pseudo-nitzschia 

species is still unknown.
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1.8.4 Light and DA production

While the photo period appears to influence DA production (e.g. Bates et al. 1991), it is 

not clear, whether light intensity plays an important role (e.g. Lewis et al. 1993; Cusack 

et al. 2002). The influence of day length will be discussed in section 4.1.4 (chapter 4, 

experiment C).

The effect of ultraviolet radiation on P. multiseries, P. pungens and P. fraudulenta was 

studied by Hargraves et al. (1993). While the growth of non-toxic strains of P. 

fraudulenta and P. pungens was significantly (the former) and slightly (the latter) 

inhibited, P. multiseries appeared to have acquired a tolerance against UV. The DA data 

were ambiguous, UV exposure reduced the cellular DA content in 35-day old cultures, 

but the effect was not clear in 63-day old cultures. The authors concluded that, in regard 

to increasing UV light as a result of global ozone depletion, P. multiseries apparent UV- 

resistance may have implications on phytoplankton species compositions in coastal 

waters.

1.8.5 Trace metals and DA production

A few studies on P. multiseries have investigated the influence of trace metals on DA 

production. Zhiming & Subba Rao (1998) showed that increasing Germanium (Ge), in 

form of germanic acid GE(OH)^, inhibited growth. Exposed to a Ge:Si ratio of 35, P. 

multiseries cells ceased to produce DA.

In contrast to Ge, enrichment with lithium (Li) significantly sustained and enhanced the 

DA production in P. multiseries (Subba Rao et al. 1998). The Li supply triggered by a 

massive ffeshwater-runoff, over and through an adjacent dump, following a drought may 

have played a role in the bloom formation and enhancement of toxin production of P. 

multiseries in Cardigan Bay, PEI, Canada in 1987.

The effect of iron on domoic acid production of P. multiseries was studied by Bates et al. 

(2001). Cultures exposed to an increased iron concentration produced 5-10 times more 

chlorophyll a (chi a) than cultures that were grown without additional iron. Cultures with 

added iron showed increased DA production in stationary phase, while iron-stressed 

cultures showed very httle increase in DA levels. It was suggested that DA has iron
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chelating abilities (Rue & Bruland 2001; Maldonado et al. 2002). But results indicated 

that DA is not produced as a chelator to increase the availability of iron (Bates et al.

2001). As described by Bates et al. (2001) iron is a key component of enzymes essential 

for nitrogen uptake and production of precursors for DA biosynthesis. Decreased cellular 

chi a levels reduce the capacity of capturing photosynthetically active radiation and lead to 

a deficit in energy for all processes in the cell. Therefore the cause of the decrease in DA 

production may be explained by the fact that iron-deficit conditions have a limiting effect 

on the two resources that are a requirement for DA biosynthesis, nitrogen uptake and 

energy.

All of the above described laboratory studies showed that DA is produced when cell 

division rate slows because of nutrient limitation, or through the effects of temperature 

and irradiance. However, these effects do not explain clonal variability in toxin 

production. One other factor that might play an important role in this regard are bacteria 

(see section 4.1.5 and 1.8.6 below).

1.8.6 Interactions between bacteria and harmful algae

The studies reviewed above were conducted with xenic (bacteria containing) cultures. 

Bacteria are recognised to play an important role in the biology and ecology of unicellular 

eukaryotic algae due to the interaction between them (Doucette 1995).

1.8.6.1 Bacterial influence on domoic acid production

Douglas & Bates (1992) verified the toxin production of P. multiseries in absence of 

bacteria (following treatment with gentamicin, penicillin and streptomycin). The division 

rate of the axenic culture was comparable with that reported for xenic cultures, and DA 

was similarly produced once cell division had ceased. The axenic culture achieved similar 

biomass, and toxin per cell yields, to corresponding xenic cultures (Subba Rao et al. 

1988b; Bates et al. 1989; Bates et al. 1991). The results provided the first evidence, that 

P. multiseries produces DA in the absence of other microorganisms.
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The above studies did not preclude the possibility that bacteria may enhance the growth 

and toxin production of P. multiseries. Comparison of two clones of P. multiseries 

isolated from PEI, Canada, in axenic cultures, indicated slightly higher cell division rates 

and a two to three weeks longer viability of the xenic culture (Douglas et al. 1993). Both 

cultures produced DA, and the toxin level was up to 20 times greater in the xenic culture, 

compared to the axenic one.

In a further study Bates et al. (1995) found evidence that the presence of bacteria in P. 

multiseries cultures had a marked impact on toxicity of the algae. The réintroduction of 

bacteria isolated from xenic P. multiseries cultures to axenic ones enhanced the DA 

production by 2 to 95-fold, while division rate and cell yields were not substantially 

affected. Introduction of bacteria isolated from a non-toxic Chaetoceros sp. culture also 

enhanced DA production per cell (by 115-fold), showing that the bacteria have not 

necessarily to be isolated from a toxic culture to enhance toxin production. There was no 

evidence of intracellular bacteria in P. multiseries cells from axenic cultures, but various 

species of bacteria were isolated from xenic cultures. The authors concluded that DA 

production in P. multiseries is enhanced by several bacterial species and also bacteria are 

important, but not essential for DA production. Together, all studies with axenic and 

xenic P. multiseries strains showed that the degree of enhancement in DA production 

varied considerably with both the diatom and the bacterial strain tested (Bates et al. 1995). 

As none of the bacterial strains were so far known to be capable of autonomous DA 

production, it appears that the bacteria invoked enhanced toxicity is a result of an indirect 

contribution, such as the synthesis of DA precursor molecules (Doucette 1995).

Osada & Stewart (1997) confirmed the above findings for P. multiseries and extended 

them to show that the addition of the bacterial products proline and glutamic acid 

enhanced the algal growth considerably.

1.8.6.2 Evidence for bacterial toxin production

The role of bacteria in phycotoxin production, whether it is autonomous bacteria 

toxigenesis or algal toxicity as the result of bacterial interaction, is considered in Doucette 

(1995).
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Smith et al. (2002) found bacteria isolated from a toxic strain of P. multiseries and from 

mussels (Mytilus edulis), to produce trace amounts of DA when grown in marine broth 

without the algae. Toxin production was enhanced in the presence of silt particles, 

suggesting that the adhesion to the particles might play a role in bacterial toxin production. 

However the results have yet to be confirmed (E. Smith, personal communication). 

Testing the hypothesis that free-living bacteria, rather than P. multiseries cells are the 

source of DA in stationary phase. Bates et al. (2004) concluded that bacteria were not able 

to autonomously produce DA. Their results confirmed the previous conclusions (Douglas 

et al. 1993; Bates et al. 1995) that the observed increase of DA after réintroduction of 

bacteria to axenic P. multiseries cultures was not due to autonomous production of DA by 

those bacteria.

1 .9  The ASP situation in Scottish waters

Although there are no reported cases of marine wildlife deaths, no reports of human 

sicknesses or human death following ASP, toxic Pseudo-nitzschia species are known to 

be abundant and are responsible for vast shellfish closures in Scottish waters (Campbell et 

al. 2001; Gallacher et al. 2001).

Following the EC shellfish hygiene directive 91/492/EC and the Food Safety (Live 

Bivalve Molluscs and other Shellfish) Regulations in 1992, a phytoplankton and shellfish 

monitoring programme for HABs and phycotoxins was initiated for Scotland in 1995, 

undertaken by the Marine Laboratory Aberdeen on behalf of the Scottish Office 

Agriculture Environment and Fisheries Department (SOAEFD). In 1996, 23 sites were 

monitored around the Scottish coast, including the Orkney Islands and Shetland, selected 

on the basis of their importance as shellfish growing harvesting sites. Phytoplankton and 

shellfish samples were taken by volunteer helpers and shellfish farmers weekly, 

fortnightly or monthly. Toxic phytoplankton species were coimted and identified (to 

genus level) by light microscopy. The genus Pseudo-nitzschia was found in 71% of all 

samples. This monitoring program gave the first indication of ASP in Scotland. On 6 

June 1996 a maximal concentration of 3.5 x 10̂  Pseudo-nitzschia spp. cells per litre was 

counted from a site off Shetland and DA was detected in mussel samples (Kelly &
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Macdonald 1997). It is not known what species that bloom consisted of, as cells were not 

identified to group or species level.

From 1997 onwards, the funding for the monitoring programme was provided by the 

Ministry of Agriculture, Fisheries and Food. In 1997 the monitoring sites were increased 

to 26 and a level of 1.5 x 10̂  cells • of Pseudo-nitzschia spp. was set as the threshold 

above which shellfish samples should be taken for DA testing. This level was only once 

exceeded in that year, when more than 2 x 10̂  cells • of Pseudo-nitzschia spp. were 

observed on the Scottish east coast (Stonehaven) (Kelly & Fraser 1998).

In 1999 the threshold level for DA testing in shellfish was lowered to 5 x 10"̂  cells • of 

Pseudo-nitzschia spp.. The sampled sites were increased to 31 and Pseudo-nitzschia spp. 

were observed at all sites and were present in 71% of the samples, with a maximum 

concentration on 16 July 1998 of more than 3 x 10̂  cells • L'̂  at a site around the Orkney 

Islands. DA was detected on 57 occasions with a maximum level of 70 mg • g'̂  (Kelly & 

Fraser 1999), which clearly exceeded the EC Shellfish Hygiene Directive (that the 

maximum value of DA in the whole animal or any edible part separately should not exceed 

20 pg • g^). Kelly & Fraser (1999) observed a general trend of elevated DA levels in 

shellfish occurring about two to three weeks after detection of maximum Pseudo-nitzschia 

concentrations.

In 1999, 32 sites were sampled around the Scottish coasts and 30 in 2000 (Bresnan et al. 

2002). To monitor harmful algae species from some offshore locations, infrequent 

samples were taken ad-hoc by chartered vessels. Maximum Pseudo-nitzschia spp. cell 

densities of more than 2.3 x 10̂  cells • L'̂  were recorded from Loch Etive (west coast) in 

1999 and a maximum of 1.6 x 10̂  cells • L'̂  from Shetland in 2000. From offshore 

samples a maximum density of 2 x 10̂  cells • L^ was observed in 2000 in the Minch west 

of the Isle of Skye. During both years toxin accumulation occurred extensively in 

offshore scallops on the west coast, Moray Firth and Orkney. DA levels above 20 pg • g'̂  

were found in scallop gonads from some west coast sea lochs (Bresnan et al. 2002). The 

contamination of king scallops (Pecten maximus) prompted a widespread closure of the 

king scallop fisheries across areas of northern and western Scotland starting in July 1999. 

Closures persisted for more than 10 months and covered a maximum of 49,000 km^. To
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date, this represents the largest fisheries closures world-wide due to a harmful algal 

bloom (Campbell & Kelly 2001; Campbell et al. 2003). Two P. australis cultures were 

established and shown to be capable of producing DA (Campbell et al. 2001), however, it 

was not known if other species were responsible for toxin production during that period. 

Between spring 2001 and spring 2002 maximum Pseudo-nitzschia spp. concentrations of

5.1 X 10̂  cells • from inshore and 1.6 x 10̂  cells • from offshore sites were 

reported. Ten samples were analysed and based on morphological characters some 

Pseudo-nitzschia species were identified, as P. australis, P. cf. delicatissima, P. 

fraudulenta, P. cf. heimii, P. multiseries, P. pungens, P. cf. pseudodelicatissima and P. 

seriata var. obtusa (Bresnan 2003). However, none of the species were isolated and 

cultured, the essential requirement for toxin analysis, experimental work, identification by 

genetics and phylogenetic analysis. Furthermore, as identifications were mainly based on 

LM (and limited TEM), some of the records may be questionable.

1.9.1 Implications of ASP for the Scottish economy

Information on the economic impact of ASP in Scotland is given by EKOS (2002). Over 

the last decade the scallops fishery has become increasingly important with the Scottish 

coast providing extensive scallop grounds. Scallops are mainly harvested by dredging, 

small quantities are landed by divers (Campbell et al. 2001). From 8,900 tonnes in 1991, 

the landings into Scotland by UK vessels have been steadily grown to over 16,600 tones 

in 1998. Following ASP and consequent shellfish closures landings fell to under 13,500 

tonnes in 1999 and below 13,000 in 2000, before they recovered again in 2001 to 15,300 

tonnes. The value of landings was equivalent to £19.5 million (EKOS 2002).

From 300 scallop-divers a few years ago only 150-200 are in business today (EKOS 

2002). Some small volumes of queen scallops (Aquipecten opercularis) and king scallops 

{Pecten maximus) are farmed. The farmed shellfish production in Scotland is dominated 

by mussels {Mytilus edulis) and oysters {Ostrea edulis), which can also be affected by 

ASP, although those bivalves do not retain the toxin for as long periods as scallops 

(Novaczek et al. 1992; Blanco et al. 2002a, b).
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During 2001 the number of days shellfish areas were closed was reduced, but the number 

of closed areas was increased. In 2002 only 18 boxes (one box representing an area of 15 

X 15 nautical miles), compared to at times 56 boxes in 1999 (from Figure 1 in Gallacher ei 

al. 2001), had to be closed for the king scallop fishery. Currently, the trend in banned 

areas is decreasing (EKOS 2002).

1.10 Current state of research in Pseudo-nitzschia and objectives of this 

study

Although DA is regularly detected in Scottish shellfish, it is not known which Pseudo- 

nitzschia species occur in Scottish waters and which of those present, are toxic or 

potentially toxic in this region. Information on the seasonal occurrence of Pseudo- 

nitzschia species and their spatial distribution across the shelf is lacking.

Species identifications firom previous studies were mainly based on LM and some 

samples were inspected by TEM. No genetic identification of Scottish Pseudo-nitzschia 

strains had been attempted. Genetic identification by sequencing parts of the rDNA 

operon is necessary for the future development of molecular probes which could then 

simplify and speed up species identification in monitoring programs.

Only two P. australis and one P. pungens strains had been cultivated from Scottish 

waters, but apart from the confirmation of P. australis as a DA producer, no other studies 

of DA production have been undertaken. To investigate the dynamics of DA production 

laboratory experiments are necessary. While experiments had previously been undertaken 

with P. multiseries (see section 1.9.2), no data existed about the effects of nutrient 

limitation on other Pseudo-nitzschia species in either Scotland or world-wide.

The objectives of this study were therefore:

• To identify Pseudo-nitzschia species present in western Scottish waters using 

morphological and genetic approaches.

• To determine if Pseudo-nitzschia species abundances follow a seasonal cycle and are 

in any way annually predictable.
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• To assess the spatial distribution of Pseudo-nitzschia species across the Scottish 

continental shelf.

• To establish uni-algal cultures of potentially toxic Pseudo-nitzschia species.

• To screen these strains for DA production.

• To investigate the dynamics of DA production in Pseudo-nitzschia under P and /or Si

limitation.

• To investigate relationships between Pseudo-nitzschia species and associated marine

bacteria.

1.10.1 Work undertaken within this study

To assess, isolate and cultivate toxic and non-toxic Pseudo-nitzschia species in western 

Scottish waters and to study their ecophysiology, growth dynamics, DA production 

behaviour and their genetic characteristics, the following steps were taken:

• A phytoplankton monitoring programme was instigated at a coastal station (LYl) in 

the Lynn of Lome near SAMS in November 2000. This examined seasonal changes 

of the phytoplankton community, nutrient concentrations and hydrographic 

parameters over 33 months (still ongoing). The aim was to resolve which Pseudo- 

nitzschia species occur in Scottish waters and under what environmental conditions. 

Other diatom and dinoflagellate species were included into the monitoring to reveal 

seasonal patterns and patterns of co-occurrences with Pseudo-nitzschia species 

(chapter 2). From net samples single cells or chains of cells were isolated and clonal 

cultures established (chapter 3).

• A transect of seven stations through parts of the Lynn of Lome and Loch Creran, 

including the LYl permanent monitoring site, was sampled on three occasions in 

summer 2002 in order to monitor the phytoplankton distribution and chemical and 

physical parameters, to determine if the LYl site was representative of locations north 

and south of it (chapter 2).
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• To obtain an insight on the cross shelf distribution of Pseudo-nitzschia species, 

samples were taken on a transect from the Isle of Mull (western Scotland) to the open 

Atlantic (the "EUett Line", see chapter 2). Chemical and physical parameters were 

recorded. The horizontal and vertical distribution of Pseudo-nitzschia and other 

phytoplankton species was investigated (chapter 2). Some Pseudo-nitzschia cells were 

isolated and cultured for genetic identification (chapter 3).

• Isolated and cultured Pseudo-nitzschia spp. were identified via classic morphological 

and genetic techniques. This work led to the records for Scottish waters, of the toxic 

species, P. seriata f. seriata. A phylogenetic analysis of Pseudo-nitzschia species was 

carried out to assess the genetic relationship among Scottish strains (chapter 3).

• The domoic acid production of P. seriata isolated from Scottish waters was studied 

under Si and P limitation in laboratory batch cultures (chapter 4).

• To investigate the impact of different nitrogen sources on the growth of P. seriata, 

laboratory cultures grown with either nitrate or ammonium as an N-source were 

compared (chapter 4).

• Observations from field monitoring, indicated a spring bloom of P. delicatissima and 

high cell numbers of the P. seriata group in summer. Therefore P. delicatissima and 

P. seriata were grown in laboratory batch cultures under spring (short light phase) and 

summer (long light phase) light conditions to compare their growth rates (chapter 4).

• Single P. seriata cells were incubated at the presence and absence of bacteria and 

bacterial exudates. The algal growth was monitored to test if bacteria or their exudates 

impact algae division rates. Three bacterial strains associated with P. seriata were 

isolated and characterised to provide some ground work for further studies to 

investigate the influence of those bacteria on diatom DA production (chapter 4).
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2 Chapter 2; Temporal and spatial phvtoplankton distribution

2.1 Introduction

2.1.1 Succession of phytoplankton

Temporal changes and seasonal patterns in the phytoplankton community composition

have been studied extensively in many areas of the world (e.g. Karentz & Smayda 1984;

Maddock et al. 1989; Lange et al. 1992; Smith & Hobson 1994; Reid et al. 1995). Cleve

(1903) concluded from his phytoplankton observations that each current-system carries

its own plankton, when currents mix with other currents, the phytoplankton assemblage

becomes modified. This implies that the seasonal variability of the phytoplankton

assemblage of a certain locality would be influenced in its composition solely by the

transport of water masses of different origin, with no reference to ecological

requirements (Lange et al. 1992). In response to Cleve (1897), Gran (1915) suggested

that changes in the phytoplankton community were not just caused by a change of water

masses, but would depend on changes occurring within that water mass. These views

were synthesised by Braarud et al. (1953), suggesting that changes in the phytoplankton

community at one locality may be due partly to succession of species within a water

mass. A change in the phytoplankton assemblage due to transport of water masses

through the observed area would be a ’sequence of plant societies'.

There are many examples of phytoplankton succession during an annual cycle. One is

given by Drebes (1974) in the introduction to his phytoplankton identification key,

where he described the seasonal cycle of the temperate phytoplankton in North Sea

waters around the German island Helgoland: A typical spring bloom lasting throughout

March and April was instigated due to the balance of enhanced light availability and

reduced turbulence. Once the nutrients were diminished by their uptake by

phytoplankton, algal growth ceased. Additionally, grazing by zooplankton was reducing
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the phytoplankton number. During summer a smaller phytoplankton population was 

maintained by recycled nutrients, due to remineralisation of organic matter, by for 

example zooplankton metabolism. A second bloom was occasionally observed in 

autumn, when turbulent mixing regenerated nutrients from deeper water layers and light 

availability was still sufficient. The bloom persisted until the beginning of winter, when 

short light periods and mixing of the algae into deeper aphotic layers of the water 

column prevented their growth. During winter a complete mixing of the water column 

added nutrients back to surface waters in sufficient concentrations to start the seasonal 

cycle again, once the light and physical conditions were again favourable for algal 

growth. In general, many phytoplankton species were part of the plankton community 

throughout the year, particular species appeared mainly at particular times of the year, 

being adapted to either warm or cold water conditions.

Succession of phytoplankton and/or associated parameters (such as chi a) in Scottish 

waters has previously been studied (Tett & Wallis 1978; Jones 1979; Tett et al. 1981a, 

b; Lewis 1985; Tett et al. 1986; Tett 1992).

This study aimed to investigate seasonal succession of phytoplankton in Scottish west 

coast waters at site LYl in the Lynn of Lome (Firth of Lome). Within the analysis of 

seasonal succession potentially harmful phytoplankton were monitored with special 

focus on the diatom genus Pseudo-nitzschia and other members of the phytoplankton 

assemblage. A knowledge of seasonality of harmful algae can help predict blooms and 

in case of Pseudo-nitzschia species, prepare communities for ASP events.

2.1.2 Spatial distribution of phytoplankton in regard to shelf seas and open ocean

Phytoplankton data have been collected along cmise tracks, mapping phytoplankton 

distributions for large areas (e.g. Parsons et al. 1984). From such studies it is apparent
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that there is small-scale and a larger-scale patchiness in the spatial distribution of 

species.

Differences in the composition of the phytoplankton assemblages can be observed in 

different oceanic areas. Shelf seas differ in many respects from open oceanic waters 

(Barnes & Hughes 1988), being generally well mixed by wind action and richer in 

nutrients. Coastal waters also receive the discharge of ground water and drainage of 

river water, containing on average twice as much nutrients per unit volume as sea-water 

(Bames & Hughes 1988). This nutrient richness within shelf seas leads to elevated 

phytoplankton biomass and production. Although the shelf seas occupy just about 10% 

of the world ocean, neritic phytoplankton contributes about a quarter of the 

phytoplankton primary production (Ott 1996). In contrast, the surface water of the open 

ocean is in general relatively nutrient-poor and stable.

The phytoplankton of both, shelf seas and open ocean is generally dominated by 

diatoms and dinoflagellates (Ott 1996). However, due to differences in nutrient richness 

and hydrographical factors, differences in cell densities and taxa between coastal and 

oceanic sites are common. An example of a phytoplankton group that is typically found 

in offshore and oceanic waters are the coccolithophorids (Prymnesiophyceae) (Smayda 

1958).

2.1.3 Pseudo-nitzschia field studies

Other field survey studies have investigated the temporal and spatial distribution of

Pseudo-nitzschia species in coastal waters in different parts of the word. Those areas

included North America (e.g. Martin et al. 1990; Homer & Postel 1993; Lange et al.

1994; Bates 1997; Fryxell et al. 1997; Parsons et al. 1999; Stehr et al. 2002; Trainer et

al. 2002; Couture et al. 2001; Kaczmarska et al. 2004), South America (e.g. Rivera

1985), Australia/ New Zealand (e.g. Hallegraeff 1994; Rhodes 1998) Asia (Cho et al.
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2002) Africa (Akallal et al. 2002) and Europe (e.g. Hasle et al. 1996; Cusack et al. 

2000; Beliaeff et al. 2001; Orsini et al. 2002).

2.1.4 Objectives

In this study the phytoplankton assemblage, with special focus on Pseudo-nitzschia 

species, was studied taking into account two aspects: I. the temporal phytoplankton 

distribution at the coastal site LYl and II. the spatial distribution across the shelf 

towards the open Atlantic.

2.1.4.1 Aims of LY1 : temporal study

The coastal site LYl was monitored in a high temporal resolution over a period of

nearly three years, with a number of aims:

• to identify seasonal trends (species succession) in the phytoplankton assemblage,

• to examine associations between phytoplankton, physical (temperature, salinity,

density) and chemical parameters (dissolved inorganic phosphate, silicate, nitrate 

and ammonium concentrations),

• to assess the occurrence of Pseudo-nitzschia species to identify potential toxin 

producers,

• to provide toxic and non-toxic Pseudo-nitzschia species for cell isolation and 

cultivation,

• to conduct laboratory experiments investigating their growth and toxin dynamics,

• to determine the suitability of LYl as a sampling site in representing the local

coastal waters, through sampling a transect from Loch Spelve to Loch Creran.
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2.1.4.2 Aims of the Ellett Line cmise: spatial study

During a cruise with RV Discovery (D257) in autumn 2002, shelf and open ocean 

stations along the Ellett Line were sampled:

• to investigate the spatial (horizontal and vertical) distribution of Pseudo-nitzschia 

and other phytoplankton species,

• to compare the coastal and open ocean phytoplankton assemblages,

• to relate the spatial distribution of the phytoplankton assemblage to physical and 

chemical factors.

2.1.5 Study sites

2.1.5.1 Phytoplankton monitoring and Spelve-Creran transect

Figure 2.1 shows the location of the phytoplankton monitoring site LYl, that was 

sampled fortnightly during winter and weekly at other times, and the other stations 

along the transect from Loch Spelve to Loch Creran (hereafter referred to as the Spelve- 

Creran transect), that were sampled on three occasions in summer 2002. The exact 

positions and water depth at stations are given in table 2.1 (section 2.2.1.1).

Site LYl, is located in the Lynn of Lome, which is part of the Firth of Lome (separating 

the Island of Mull and Ardnamurchan from the main part of Argyll). The depth was 

approximately 52 m. LY2, LY3 and 700 lie on a line south of LYl, at approximately 3.3 

to 6 km distance from each other. From their location, LYl and LY2 might have been 

directly influenced by outflow from the sea lochs Etive and Creran. C2 was situated 

north of LYl, close to the entrance of Loch Creran. Stations C3 and C5 were in the 

main basin of Loch Creran.
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Fig. 2.1 Location of the phytoplankton monitoring station LYl and stations 700 to C5 
along the Spelve-Creran transect.

Loch Creran is situated approximately 15 km north of Oban. According to Landless & 

Edwards (1976) it is a typical fjordic Scottish sea loch regarding its dimensions, 

freshwater input and tides. It consists of an upper and lower (main) basin. Samples were 

taken in the lower basin (Fig. 2.1). The lower basin is approximately 11 km long and 1.5 

km wide with a maximum depth of 53 m (Milne 1972). In most places within the lower 

basin the water depth does not exceed 20 m. However, in two areas water depth greater 

than 20 m can be found (Jones 1979). The area with greatest depth occurs at the western 

end of the lower basin, the second location of deeper water is found around station C5, 

which lies in the centre of the loch. Loch Creran connects with the Lynn of Lome by a 

200 m wide channel, separated by a sill of minimum 5 m water depth (Tett & Wallis
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1978). The main freshwater source is the river Creran, which enters at the head of the 

upper basin.

2.1.5.2 Ellett Line transect

Figure 2.2 shows the cross-shelf transect that was sampled during cruise D257 in 

September/ October 2000 with RV Discovery. Sampling sites and surface current 

patterns (Ellett 1979; McKay et al. 1986) that affected those sites are indicated on the 

map.
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Fig. 2.2 Ellett Line stations (F, M, lOG, 90, 70, 60, 40, 20, lO) and circulation 
patterns of the Scottish coastal current and the North Atlantic surface water. Circulation 
patterns redrawn after Ellett 1979 and McKay et al. 1986).

The north-western Scottish shelf area is bounded approximately by latitudes 55°30'N to 

59°N and longitudes 6°W to 9°W (Fig. 2.2), the beginning of the shelf edge is indicated
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in Fig. 2.2 by the 200 m contour line. In this study coastal stations east of Barra Head 

(IG to lOG) were sampled and compared with stations M and F. While IG to lOG 

mostly represented Scottish coastal water, M and F were influenced by the North 

Atlantic current.

The maximum depth at the shelf stations was about 190 m (lOG), M and F were 

considerably deeper with 2150 and 1800 m (for approximate maximal depth at each 

station see Tab. 2.2, section 2.2.1.2).

distance [km]
100 200 300 400

500

2000

2500

Fig. 2.3 Schematic diagram showing the depth at stations and their distribution across 
the shelf and open ocean. A circle indicates a sampled station. F and M were the open 
ocean stations.

Fig. 2.3 shows the distance between stations and the depth at stations. It illustrates the 

difference between the stations due to their location either in the open ocean (F and M) 

or on the shelf, near the Scottish coast (lOG to IG).
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2.1.6 Previous work conducted in the study area

2.1.6.1 LY1. Loch Creran

Most of the previous studies of Firth of Lome stations including LYl were undertaken 

from 1979 to 1981 (Grantham 1983a, b; Grantham et al. 1983) and investigated 

temperature, salinity, nutrients and chi a concentrations in a low temporal resolution. 

Past studies conducted in Loch Creran also focussed on chi a and nutrient cycles (Tett 

& Grantham 1978; Tett & Wallis 1978; Jones 1979) and phytoplankton ecology (Jones 

1979; Tett et al. 1981a, b; Tett et al. 1985; Lewis 1985; Harris 1995).

For the Firth of Lome area Tett et al. (1981b) provided one of the few studies which 

included actual phytoplankton counts over the annual phytoplankton cycle. They 

monitored the phytoplankton community weekly at two locations in Loch Creran during 

1979, along with physical and chemical properties, enumerating the main species of 

diatoms, dinoflagellates and other microflagellates. At that time the genus Pseudo- 

nitzschia had not been established (Hasle 1994). Hence, most of the species, which 

today belong to the P. seriata group were then enumerated as Nitzschia seriata (e.g. as 

described for Allen in Lange et al. 1994). Species today assigned to the P. delicatissima 

group, were then called Nitzschia delicatissima. Only since the ASP event in Prince 

Edwards Island, Canada in 1987 (Bates et al. 1989), has it been realised that some of the 

Pseudo-nitzschia species were capable of producing DA. This has resulted in emphasis 

on differentiation between Pseudo-nitzschia species. Before then, Pseudo-nitzschia 

species were even summarised with other species, that were then called Nitzschia. For 

example Tett (1973) and Tett et al. (1981b) presented cell count data of total Nitzschia' 

species together with Cylindrotheca closterium (which was then called Nitzschia  

closterium). Hence, from early Nitzschia records it is not possible to make conclusions 

about the annual cycle of Pseudo-nitzschia spp. abundance. However, in their recent
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review Tett & Edwards (2002) present the cell count data on N. seriata and N. 

delicatissima from Loch Creran, that were summarised in Tett et al. (1981b).

2.1.6.2 Ellett Line transect

Since 1975, repeated physical measurements have been undertaken on a transect from 

the Scottish west coast to the open Atlantic (e.g. Ellett 1979; Ellett & Edwards 1983). 

The "Ellett Line" transect consists of a series of stations from the Scottish continental 

shelf, starting at the Isle of Mull, leading across the Minch towards Barra Head and 

across the shelf to Rockall. The time series was established by David Ellett and hence 

named after him. Most work on this transect investigated the current flows and water 

mass properties through the Rockall Trough. Only the study of Savidge & Lennon 

(1987) investigated the distribution of phytoplankton and the hydrography along the 

Ellett Line, in May and August 1983. They also enumerated the main phytoplankton 

species and summarised what might have been different Pseudo-nitzschia species as 

"Nitzschia spp.". However, it is not known if Nitzschia spp. stood for the P. seriata or P. 

delicatissima group or as in Tett et al. (1981b) comprised both plus other species. Only 

two other studies look at the phytoplankton in the area. Gowen at al. (1998) investigated 

the distribution of zoo- and phytoplankton in the region south of the Ellett Line, the 

southern Malin Shelf in August 1996. Moreover, abundance of Pseudo-nitzschia species 

was not presented. More recently Yallop (2001) analysed the phytoplankton assemblage 

from samples collected in close vicinity to the area studied in this thesis. He identified 

physical, chemical and biological parameters along the 20° median from 37 to 59°N and 

studied an eddy for several days at 59°N 20°W. As in this study, Pseudo-nitzschia 

species were analysed as P. seriata and P. delicatissima groups, but then combined with 

Cylindrotheca closterium and Nitzschia longissima. From his observations Yallop
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(2001) concluded that Pseudo-nitzschia species, together with C. closterium and 

Thalassiosira oestrupii were associated with waters of a mixed depth down to 20-40 m.

2.2 Material & Methods

2.2.1 Sampling locations

2.2.1.1 Coastal sites

The phytoplankton monitoring at a coastal site in the Lynn of Lome at station LYl 

(56°28.9N, 5°30.1W, 52 m depth) was instigated in November 2000 and data included 

in this study were obtained until the end of July 2003 (100 sampling occasions). LYl 

was sampled fortnightly from November until April and weekly throughout the rest of 

the year. The position of the sampling site was chosen because of its coastal location, its 

representational properties of local waters (Grantham 1983a, b), its convenient 

accessibility (20 minutes steaming with RV Seol Mara) and because it had been 

sampled, with a low temporal resolution (two to four times a year), between 1979 and 

1981 by Brian Grantham (physical data, nutrient and chi a analysis).

Table 2.1 Names and positions of stations sampled on a transect from Loch Spelve to

Station Position approx. Depth [m]
700 56° 22.8 N, 05° 39.3 W 130
LY3 56° 24.6 N, 05° 37.1 W 200
LY2 56° 26.7 N, 05° 33.9 W 42
LYl 56° 28.9 N, 05° 30.1 W 52
C2 56° 31.9 N, 05° 26.05 W 33
C3 56° 31.0 N, 05° 22.4 W 48
C5 56° 32.1 N, 05° 19.4 W 25

To verify the representational properties of LYl for the local waters, a transect of seven 

stations, including LYl, from Loch Spelve (Isle of Mull) to Loch Creran (see Tab. 2.1
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and Fig. 2.1 for positions and depths) was sampled on three occasions (on 18 July, 23 

August and 13 September) during summer 2002.

2.2.1.2 Ellett Line transect

A transect of nine stations along the Ellett Line across the shelf and in the open Atlantic 

(stations and positions see Tab. 2.2 and Fig. 2.2) was sampled between 29 September 

and 4 October 2001 during cruise D257 (with RV Discovery) to assess the spatial 

abundance, distribution (vertical and horizontal) and composition of the phytoplankton 

community, with special focus on Pseudo-nitzschia spp.. Bad weather and ship time 

requirements prevented the sampling of more stations along the Ellett Line.

Table 2.2 Names, positions, dates and depths of stations sampled on a transect Mull 
(western Scotland) to Rockall (North Atlantic) on cruise D257 (RV Discovery)^ 21.09.- 
09.10.2001. Station IG to lOG were situated on the shelf, while stations M and F were

Station Position Date
(2001)

approx. 
Depth [m]

Depths sampled [m]

IG 56° 40.03 N, 06° 08.21 W 29.09. 180 5,15,40, 80,120,171
2G 56° 41.08 N, 06° 09.25 W 29.09. 35 5,15,25
4G 56° 44.1 N, 06° 26.82 W 29.09. 96 5,15, 30,40,60, 85
6G 56° 43.98 N, 06° 45.31 W 30.09. 41 5,15,30,35
7G 56° 44.45 N, 06° 59.38 W 30.09. 135 5,15,40, 80,100,130
9G 56° 43.41 N,07° 19.34 W 30.09. 146 5,15,40,60,80,130
lOG 56° 44.15 N, 07° 30.67 W 30.09. 220 5,30,50,100,150,190
M 57° 17.96 N, 10° 22.94 W 03.10. 2200 5,15,30,100,1000,2150
F 57° 30.5 N, 12° 14.96 W 04.10. 1804 5,15, 30,100, 850,1800

2.2.2 Sample collection and analysis

2.2.2.1 LY 1 and Spelve-Creran transect

Water samples for cell counts, chi a and inorganic nutrient analysis were collected in 

three casts from 10 m depth (LYl) or 5 m (on Spelve-Creran transect) with a 1 L Niskin 

bottle attached to a winch. LYl was sampled at 10 m to sample a depth that is not much
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influenced by a freshwater surface layer. The Spelve-Creran transect was sampled at 5 

m due to shallow water depth in some parts of Loch Creran. Integrated net samples for 

further identification of plankton and isolation, cultivation and identification of Pseudo- 

nitzschia spp. (see chapter 3) were taken from 0-20 m depth with a 20 pm mesh hand 

plankton net (Hydro-Bios, Kiel). Temperature (T), and salinity (S) profiles of the upper 

15 m of the water column were recorded with a CTD probe (Seabird 19). From T and S 

profiles the density (D) profile was derived. T, S and D data sets were kindly 

downloaded from the probe by SAMS staff from the Marine Technology group. C. 

Griffith kindly provided T, S and D raw contour plots for LYl, the Spelve-Creran and 

Ellett Line transects.

A 200 ml subsample of the Niskin bottle water sample was used for phytoplankton cell 

counts, and 50 ml of the plankton net sample was taken for electron microscopical 

identification of the Pseudo-nitzschia species composition in the field. These samples 

were preserved immediately with Lugol's Iodine (1% final concentration). The 

remaining water was transported back (in the dark and within one hour) to the 

laboratory, to be prepared for chi a and nutrient analysis.

Immediately after returning from the sampling site, 500 ml of the water sample were 

filtered in duplicate on 25 mm glass fibre filters (type A/E, Pall Corporation) and stored 

frozen at -20°C, to be later used for chi a analysis. Prior to the analysis filters were 

thawed, and pigments were extracted over night into 8 ml of 90% acetone. Filters were 

sonicated for one minute and after centrifugation (at 3000 rpm for 5 min) chi a was 

measured with a Turner TD-700 fluorometer.

Non-preserved net samples were immediately investigated under the microscope (Zeiss 

Anxiovert 100) for identification of taxa and isolation of mainly Pseudo-nitzschia cells 

for cultivation (see chapter 3).
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Samples for the determination of inorganic nutrient concentrations (silicate, phosphate 

and nitrate, ammonium was analysed starting on 28 February 2(X)2) were collected from 

filtrate (A/E glass fibre filters), stored frozen at -20°C prior to analysis, and analysed by 

T. Brand (SAMS) with a LACHAT Quick chem 8000 autoanalyser using standard flow 

injection autoanalyser methods.

2.2.2.2 Ellett Line transect

At each Ellett Line station a CTD (conductivity, temperature, depth) profile was 

recorded, providing salinity, temperature, depth (in form of pressure) and density data. 

Water samples from six depths (see Tab. 2.2) were taken with 10 L water bottles 

attached to the CTD (Seabird 911), after observation of the CTD profile. The mixed 

layer, deep water and bottom water were sampled. Water samples were processed 

onboard the ship and later analysed as above. Plankton net samples were collected and 

analysed as described above.

2.2.3 Isolation and cultivation of Pseudo-nitzschia spp.

At LYl, from non-preserved fresh net samples, single Pseudo-nitzschia cells or chains 

were isolated and grown in culture, as described in chapter 3. Species were identified 

using morphological and molecular methods and maintained as described in chapter 3. 

From samples from cruise D257 Pseudo-nitzschia spp. were isolated in a similar way to 

those from LYl. However, on the ship, a Zeiss 4651251 light microscope was used for 

micropipette isolates and cultures were initially grown in a modified refrigerator with a 

varying temperature from 4 to 8 °C and a 15:9 light-dark cycle, until they were 

transferred to the CCAP culture facilities at the end of the cruise. Here they were re
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isolated, grown, identified and maintained together with the other Pseudo-nitzschia 

cultures as described in chapter 3.

2.2.4 Cell counts

Phytoplankton cells from all samples (LYl, Spelve-Creran transect and D257) were 

counted after the Utermohl method (Utermohl 1931) from 50 ml Lugol's Iodine fixed 

subsamples. Samples were settled in a 50 ml Utermohl chamber, for 24 hours prior to 

the counts. Protists > 5pm were counted using an inverted light microscope (Zeiss 

Anxiovert 100) at 200 x magnification. The area of at least half a chamber or 100 cells 

of the most abundant species were counted from each sample. Counting the whole 

chamber fixed the limit of detection of any species at 20 individuals • L '\ Included in 

the counts were common diatom, dinoflagellate and, if they were abundant, some ciliate 

species (only Mesodinium rubrum was included in the analysis). Most of the 

dinoflagellate species were summarised in two size classes (dinoflagellates < 20 pm and 

> 20 pm), but species belonging to the genera Ceratium, Dinophysis or Prorocentrum 

were identified based on their morphology. Because of their great variety, Chaetoceros 

species were also enumerated in two size classes (> 10 pm and < 10 pm, taking into 

account the body of the cell and not the setae). For morphological identification species 

keys by Tomas (1997) and Homer (2002) were used.

For Pseudo-nitzschia spp. the whole area of the chamber was inspected and all cells 

counted. Species were initially divided into three groups (Tab. 2.3). As it is not possible 

to confidently distinguish between Pseudo-nitzschia species within the Pseudo-nitzschia 

groups (JP. seriata group: width > 3 pm, P. delicatissima group width < 3 pm (Hasle 

1965)) using the light microscope, groups one and two were combined for data analysis 

as the P. seriata group, leaving just two groups {P. seriata and P. delicatissima) for the
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data analysis (see Tab. 2.3). P. americana was counted separately, but was not 

recognised in samples prior to September (cruise D257) or December 2002 (LYl).

Table 2.3 Groups of Pseudo-nitzschia species that were initially counted, and then 
summarised for data analysis as the P. seriata and P. delicatissima groups after (Hasle,
1965).
P . seriata group P . delicatissima group
Group 1 Group 2 Group 3
P. australis P. pungens P. delicatissima
P. seriata P. multiseries P. pseudodelicatissima
P. fraudulenta P. calliantha
P. of. subpacifica other Pseudo-nitzschia species < 3 

pm width

Sampling events where Pseudo-nitzschia spp. occurred in high diversity and cell density 

were identified by light microscopy. Net samples from those events were then inspected 

by transmission electron microscopy (TEM), to identify which Pseudo-nitzschia species 

commonly occurred in western Scottish waters. Most of the cultures were also inspected 

by TEM and additionally identified by genetic analysis. For information on species 

identification by TEM and genetic methods see chapter 3.

2.2.5 Statistical analysis of data sets

Data sets of phytoplankton abundance at LYl, along the Spelve-Creran transect and at

the Ellett Line stations (cruise D257) were analysed with the multivariate statistical

technique multidimensional scaling (MDS). This analysis illustrates similarities in the

phytoplankton assemblage in different samples. Other multivariate techniques such as

principal component analysis (PGA) and redundancy analysis (RDA) were applied to

visualise the similarity between D257 stations regarding their environmental factors

(with PGA) and to relate the biological factors (phytoplankton abundance) to the

physical and chemical factors measured at LYl and the D257 stations (with RDA).

MDS and PGA were performed with the software package PRIMER^^^ (Plymouth
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Routines in Multivariate Ecological Research, Plymouth, UK), RDA was carried out 

with the CANOCO software (Leps & Smilauer 2003). The analysis was performed in 

conjunction with T. Wilding (SAMS).

2.2.5.1 Multidimensional Scaling

First introduced by Shephard (1962) and Kruskal (1964), MDS (Clarke & Warwick 

2001) constructs a map or configuration of the samples in a specified number of 

dimensions which attempts to satisfy all the conditions imposed by a rank 

(dis)similarity matrix. On the ordination the placement of samples, rather than 

representing their geographical location, reflects the similarity of their biological 

communities. The distances between samples on the ordination attempts to match the 

corresponding dissimilarities in community structure. Hence, nearby points have very 

similar communities, while samples which are far apart have few species in common or 

the same species at very different levels of abundance (Clarke & Warwick 2001).

At LYl MDS was used to illustrate seasonality in the samples. Hence, abundance data 

for each species were summarised to express cell numbers for each month of the year. 

Mean monthly abundance values for the sampling period from November 2000 to July 

2003 were calculated and used in the analysis.

For the Spelve-Creran transect MDS was applied to evaluate differences in assemblage 

composition at the different stations, in order to evaluate the representativeness of LYl, 

as a permanent monitoring station. First, species composition and abundance data for 

every sample (each of the three months) at each station were plotted. Then abundance 

data for each species for each station were calculated as the average of cell numbers in 

the three samples taken in July, August and September.

Along the Ellett Line the aim was to study differences in species abundance and

composition between stations. The number of sampled depths and the actual sampled
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depth was not the same at each station. Furthermore, most of the taxa were not present 

or occurred in only low numbers below 100 m depth. Hence, for each station only the 

mean of samples of the top 100 m of the water column, the approximate mixing depth, 

was used in the analysis.

For all sites, prior to the analysis, species abundance data were fourth root transformed, 

to down-weight the effect of highly abundant species. As cell numbers were taken into 

account and not biomass, a chain forming species with small cell size, as e.g. 

Leptocylindrus minimus would otherwise get a lot more weight than a species which 

consists of large, single cells, such as e.g. Ditylum brightwellii.

After transformation, MDS plots were constructed based on a Bray-Curtis dissimilarity 

matrix, which compares species pairs across each sample. The "stress" factor, shown on 

each MDS plot, is a measure of the degree to which the 2D or 3D representations of 

space portray the full dimensional space. It indicates the extent, to which the spatial 

configuration of points had to be stressed in order to obtain the data distances. A small 

value of "stress" factor (close to 0) is desirable. In general stress < 0.05 for ecological 

data gives an excellent representation of the data with no prospect of misinterpretation 

(Clarke & Warwick 2001).

2.2.5.2 Principal Component Analysis

The technique of principal component analysis (PCA) was first described by Pearson 

(1901). Similar to multidimensional scaling, PCA is a technique to approximate high

dimensional information in low-dimensional plots (Clarke & Warwick 2001). Data from 

a dissimilarity matrix of the environmental data sampled at different stations are used to 

define the positions of samples in relation to axes representing the full set of measured 

environmental parameters (Clarke & Warwick 2001). As in MDS ordination, the

distance between two stations in the plot is a measure of their dissimilarity. The further
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two points are apart, the more the environmental parameters at that station differ from 

each other. PCA uses Euclidean distances between samples while MDS used Bray- 

Curtis. Euclidean distance is appropriate where there are few zero values. PCA was 

used for multivariate analysis of the environmental data (temperature, salinity, density, 

phosphate, silicate and nitrate) along the stations of the Ellett Line transect. Again data 

from the upper 100 m water column were used after a square root transformation (the 

only option for root transformation in that programme) and normalisation across 

samples.

2.2.S.3 Redundancy Analysis

Redundancy analysis (RDA) was originally developed by Rao (1964). It can be 

described as a series of multiple linear regressions, using a linear model of relationships 

among environmental parameters and between the biological and environmental 

parameters. RDA may also be considered as a constrained extension of Principal 

Component Analysis (PCA) which identifies trends in the scatter of data points that are 

maximally and linearly related to a set of constraining (explanatory) variables 

(Makarenkov & Legendre 2002). RDA is used to investigate the strength of 

relationships between measured environmental factors (in this study: temperature, 

salinity, density, and inorganic nutrients) and individual species within a multivariate 

data set (Ter Braak & Smilauer 2002). As for PCA, RDA uses the Euclidean distance 

(Ter Braak & Prentice 1988). A Monte Carlo test is used to test the significance 

between environmental variables and the biotic composition.

RDA was carried out on the LYl and D257 data sets to investigate which environmental

factors significantly influenced species presence and abundance patterns. Prior to

analysis, species abundance data were square root transformed to down-weight highly

abundant species. At LYl, RDA was based on the absolute abundance of species to
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reflect changes in species numbers due to seasonality. For the D257 dataset species 

abundance was normalised (across samples) to analyse the relative abundance of each 

species in a given sample. The resultant ordination therefore reflects the relative species 

composition rather than absolute abundance differences between samples. For the D257 

stations again the top 100 m of the water column were taken into account.

2.3 Results

2.3.1 LYl

2.3.1.1 Hydrography

2.3.1.1.1 Temperature

The temperature profile of the upper 15 m of the water column at LYl firom the period 

February 2001 to end of July 2003 is presented in Figure 2.4. Data from November 

2000 to February 2001 were excluded, because they were measured with a hand-held 

probe that was unreliable and was replaced by a new probe. The profile shows 

temperature stratification, indicating that the water column was well mixed at LYl 

during the sampled period.

A strong seasonal signal was observed with the coldest temperatures regularly found in 

March and the warmest in September. Between the seasons, a narrow temperature range 

in the 1 m surface water (6.4-14.5 °C) was observed as expected for Scottish coastal 

water (C. Griffith, personal communication). Some interannual variability was evident 

with a lower minimum temperature in the first winter (March 2001) than in early 2002 

and 2003 and the highest annual temperature maximum in summer 2003 when 15 °C in 

1 m depth (on 8 August 2003) were measured.
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Fig. 2.4 Temperature profile of the 0-15m water column at LYl from February 9 2001
until July 25 2003. Sampling events of which temperature data were included are
indicated by a dot (•).

Samples for inorganic nutrient and phytoplankton analysis were taken from 10 m depth. 

Hence temperature, salinity and density data are presented for that depth in Figs. 2.5, 

2.7 and 2.9.

Figure 2.5 shows the temperature data for 10 m depth at LYl during the sampled 

period. The sinusoidal profile was expected, as water temperatures in these latitudes are 

typically increasing from spring towards autumn and decreasing in winter. The data 

reflect the strong seasonal signal that was observed in the upper 15 m of the water 

column (Fig. 2.4). Temperatures varied seasonally, reaching a minimal value in 

February and March and were highest during September and October. In general, the 

water temperature in 2001was slightly colder than in 2002 and 2003.
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Fig. 2.5 Water temperature at LYl in 10 m depth from January 2001 until July 2003.

23.1.1.2 Salinity

The salinity profile of the 15 m water column (Fig. 2.6) does not show the obvious 

seasonal patterns observed in temperature, although some trends can be recognised. 

Fresh water influxes from Loch Etive and Loch Creran were observed in August and 

early November 2001, February and May to August 2002, February to April and from 

May 2003, leading to surface stratification in the upper 9 m. April and May were 

usually the months with the highest measured salinity, except for May 2003, reflecting 

the great amount of precipitation during that month (it rained for most of May 2003). 

The highest salinity at the surface was reached on 19 April 2001 (33.8) and the lowest 

of 23.3 on 15 February 2002.

In general the water at 10 m depth (from which phytoplankton and samples for 

inorganic nutrient analysis were taken) was not greatly influenced by a freshwater 

influx. However during months with high precipitation (for example November 2001 

and late February 2002 and May 2003, see also Fig. 2.6) the freshwater influx led to the 

rapid decrease of salinity at that depth.
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LYl, Salinity
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Fig. 2.6 Salinity profile of the 0-15 m water column at LYl from 9 February 2001 until 
25 July 2003. Sampling events of which salinity data were included are indicated by a 
dot (•).

As already noted for the upper 15 m of the water column, salinity in 10 m water at LY 1 

did not show the clear seasonal pattern as was observed in the water temperature (Fig. 

2.7).
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Fig. 2.7 Salinity of the water in 10 m depth at LY 1 from January 2001 until July 2003.
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Salinity in 10 m was very variable, although some trends were recognised, such as a 

general decrease from late May to November, with an increasing trend thereafter 

towards the next summer. Salinity ranged from 31.9 (28 February 2002) to 33.9 (1 June

2001) with high values usually found in May or early June and low values in November. 

Due to heavy and persistent precipitation, salinity minima were observed in early 

November 2001, at the end of February 2002 and in late May 2003.

2.1.1.1.3 Density

The density profile (Fig. 2.8) mirrors the salinity profile.

LY 1, Density wr

M A M  J J A S O N D J  F M A M J  J A S O N D J  F M A M J  J 
12002 12003

26

25

24

23

22

21

Density

Fig. 2.8 Density [oj profile of the 0-15 m water column at LYl from February 2001 
until July 25 2003. Sampling events of which density data were included are indicated 
by a dot (•).
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In general, the density profile shows the low stratification of the upper 15 m, with some 

surface stratification at periods of fresh water influx. Highest densities were found from 

March to May. From 8 m downwards a seasonal pattern, mainly influenced by the water 

temperature, with a slight interannual variability could be recognised: high densities 

from February to June 2001, March to June 2002 and in April 2003; low densities from 

October to December 2001 and August to mid-October 2002.
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Fig. 2.9 Density [a j of the water in 10 m depth at LYl from January 2001 until July 
2003.

Density values at 10 m showed seasonal trends that reoccurred in all years (Fig. 2.9). 

The density reached values between 26.5 (23 March 2001) and 24.1 (5 October 2001) 

with highest values observed from March to May and low densities in October, 

November 2001 and August 2002. High precipitation in May 2003 led to a rapid 

decrease in density until the end of that month.
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2.3.1.2 Nutrients

2.3.1.2.1 Phosphate

The dissolved inorganic phosphate (DIP) concentration reflects a seasonal pattern with 

highest values in winter and lowest values in summer (Fig. 2.10). Interannual variability 

was recognised: the DIP concentration generally increased between the years, with 

lowest values in 2001 and highest in 2003. Values between May and July 2003 showed 

high variability. Over a seasonal cycle, the inorganic phosphate concentration rapidly 

decreased from March (2001, 2003) or April (2002) until the summer. This was 

followed by an increase between July and December. Phosphate concentrations then 

stayed relatively constant until February. A significant negative correlation between the 

DIP concentration and salinity was found (Spearman rank, p < 0.0001).
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Fig. 2.10 Dissolved inorganic phosphate concentration in the water column at 10 m 
depth at LYl from January 2001 until July 2003.

2.3.1.2.2 Silicate

The dissolved inorganic silicate (DSi) concentration in 10 m water (Fig. 2.11) followed 

a similar seasonal pattern as in the DIP concentrations, with highest values in February
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(2001 and 2003) or March (2002), which rapidly decreased until April (in 2002 and 

2003) or May (in 2001) and thereafter showed an oscillating increase.
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Fig. 2.11 Dissolved inorganic silicate (DSi) concentration in the water column at 10 m
depth at LYl from January 2001 until July 2003.

Interannual variability was expressed in generally higher concentration in February 

2003 and during 2002 compared to 2001. The DSi concentration was negatively 

correlated with salinity at 10 m depth (Spearman rank, p < 0.0001).

2.3.1.2.3 Nitrate

The dissolved inorganic nitrate (DIN) concentration (Fig. 2.12) showed a clear 

sinusoidal, seasonal pattern with lowest concentrations during the summer months (June 

to August) and highest concentrations during late winter (end of February). Nitrate 

concentrations were generally lower during the spring and summer decrease in 2001, 

apart from this period interannual variability was low. A negative correlation between 

salinity and the DIN concentration was observed (Spearman rank, p < 0.0001).
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Fig. 2.12 Dissolved inorganic nitrate (DIN) concentration in the water column at 10 m 
depth at LYl from January 2001 until July 2003.

2.3.1.2.4 Ammonium

The concentration of ammonium in 10 m water showed considerable variability (Fig. 

2.13). The number of samples taken was not sufficient to make conclusions about 

interannual trends. In general, elevated ammonium concentrations were observed from 

May to September, with sudden decreases during July, and low values during autumn 

and winter. The ammonium concentration was not significantly correlated with 

temperature or salinity (Spearman rank, p = 0.48, p = 0.22, respectively).
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Fig. 2.13 Ammonium concentration in the water column at 10 m depth at LYl fi*om end 
of February 2002 until July 2003.
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2.3.1.3 Phytoplankton

During the phytoplankton monitoring at station LYl, between November 2000 and end 

of July 2003, 53 taxa were identified (see species list overleaf). They included 35 

diatom taxa belonging to 20 genera, 16 dinoflagellate taxa comprising ten genera, which 

were mainly enumerated in two size classes, the silicoflagellate Dictyocha speculum and 

the cilitate Mesodinium rubrum. Based on the revision of Krainer & Foissner (1990), 

this ciliate is also called Myrionecta rubra. However, as in the literature it is mostly 

referred to as Mesodinium rubrum, this name is also used in this study. Other ciliates 

were present in low numbers, but were not identified or enumerated.

To obtain cumulative species densities, cell numbers from each sample were summed. 

Numerically the most abundant taxon was Chaetoceros spp. cells < 10 pm (Tab. 2.4), 

reaching the highest cumulative value with about 27 x 10̂  cells • L^ and also the highest 

observed maximal number of cells in a single sample (about 4 x 10® cells • L'^). The 

second most numerous species was Skeletonema costatum, a species which was highly 

abundant during the spring bloom in all three years and also during most of the rest of 

the year, occurring in 95% of the samples.

Pseudo-nitzschia species belonging to the delicatissima and seriata groups were the 

fourth and fifth most abundant species on a cumulative basis, with maximum cell 

numbers in a single sample of 1.6 x 10® and 1.1 x 10® cells • L % respectively. They 

occurred in 95% {P. delicatissima group) and 83% {P. seriata group) of all samples. P. 

americana was usually found as an epiphyte on other diatoms such as Chaetoceros spp. 

and was not recognised prior to December 2002. Hence it was only identified in 7 of 23 

samples.
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Species list:

Bacillariaceae
P. seriata group (including species with a width > 3 pm, such as: P. australis Frenguelli, P. seriata 

(P. T. Cleve) H. Peragallo, P. fraudulenta (P. T. Cleve) Hasle, P. pungens (Grunow ex P. T. Cleve) 
Hasle, P. multiseries (Hasle) Hasle, P. cf. subpacifica (Hasle) Hasle)

P. delicatissima group (including species < 3 pm wide, such as: P. delicatissima (P. T. Cleve) 
Heiden, P. pseudodelicatissima (Hasle ex Hasle) Lundholm, Hasle et Moestrup, P. calliantha 
Lundholm, Moestrup et Hasle)

P. americana (Hasle) Fryxell 
Asterionellopsis glacialis (Castracane) Round 
Chaetoceros spp. [genus: Ehrenberg] (>10 pm)
Chaetoceros spp. [genus: Ehrenberg] (< 10 pm)
Corethron sp.[genus: Castracane]
Coscinodiscus spp. [genus: Ehrenberg]
Cylindrotheca closterium (Ehrenberg) Lewin & Reimann
Dactyliosolenfragilissimus (Bergon) Hasle
Ditylum brightwellii (West) Grunow
Eucampia zodiacus Ehrenberg
Guinardia delicatula (P. T. Cleve) Hasle
Lauderia annulata P. T. Cleve
Leptocylindrus danicus P. T. Cleve
Leptocylindrus minimus Gran
Meuniera membranacea (P. T. Cleve) P. C. Silva
Odontella mobiliensis (Bailey) Grunow
Paralia sulcata (Ehrenberg) Cleve
Pleurosigma sp. [genus: W. Smith]
Rhizosolenia setigera Brightwell 
Rhizosolenia styliformis Brightwell 
Skeletonema costatum (Greville) P. T. Cleve 
Stephanopyxis turris (Amott in Greville) Ralfs 
Thalassionema nitzschioides (Grunow) Grunow
Thalassiosira spp. [genus: P. T. Cleve] (including T. anguste-lineata (A. Schmidt) Fryxell & Hasle, 
T. nordenskioeldii P. T. Cleve, T. rotula Meunier, and other unidentified species)

Pinophyceae 
Dinoflagellates > 20 pm

(including Protoperidinium spp. [genus: Bergh], Gonyaulax spp. [genus: Diesing], 
Lingulodinium polyedrum (Stein) Dodge, Gymnodinium spp. [genus: Stein], Gyrodinium 
spp. [genus: Kofoid & Swezy], Katodinium spp [genus: Fott]., Alexandrium spp. [genus: 
Halim])

Dinoflagellates < 20 pm
(including Gonyaulax spp. [genus: Diesing], Gymnodinium spp. [genus: Stein], Gyrodinium 
spp. [genus: Kofoid & Swezy])

Ceratium fusus (Ehrenberg) Dujardin 
Ceratium furca (Ehrenberg) Claparéde & Lachmann 
Ceratium lineatum (Ehrenberg) P. T. Cleve 
Ceratium longipes (Bailey) Gran 
Ceratium tripos (O.F. Müller) Nitzsch 
Dinophysis norvegica Claparéde & Lachmann 
Dinophysis acuta Ehrenberg 
Dinophysis acuminata Claparéde & Lachmann 
Prorocentrum micans Ehrenberg

Dictyochophvceae 
Dictyocha speculum Ehrenberg

Ciliata
Mesodinium rubrum Lohmann
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Table 2.4 List of the enumerated taxa at LYl in rank order of total density over the 
sampling period, with cumulative cell • L^ values, the maximum cell number found in a 
single sample, frequency of occurrence in 100 samples and the average number per 
sample in which a species was present. The latter was calculated by dividing the 
cumulative number by the frequency, this was used as the threshold cell number in 
Figure 2.6.
Taxon Cumulative 

number 
[cells • L ]̂

Max. number 
[cells • L'̂ 1

Frequency Average [cells • 
L 'l

Chaetoceros spp. < 10 pm 26,948,763 3,892,666 82 328,643
Skeletonema costatum 22,045,027 3,146,285 95 232,053
Chaetoceros spp. > 10 pm 4,416,369 478,176 81 54,523
Leptocylindrus minimus 4,293,640 1,676,487 55 78,066
P. delicatissima group 935,205 161,120 95 9,844
P. seriata group 824,240 105,840 83 9,931
Thalassiosira spp. 660,004 125,600 90 7,333
Leptocylindrus danicus 487,951 80,380 60 8,133
Guinardia delicatula 445,171 14,1894 71 6,270
Dinoflagellates < 20 pm 371,760 23,000 95 3,913
Mesodinium rubrum 356,741 150,096 21 16,988
Asterionellopsis glacialis 222,720 40,400 44 5,062
Cylindrotheca closterium 214,280 10,260 100 2,143
Dinoflagellates > 20 pm 163,320 13,120 92 1,775
Dactyliosolen fragilissimus 134,780 27,240 37 3,643
Eucampia zodiacus 121,020 39,860 47 2,575
Lauderia annulata 97,540 26,880 42 2,322
Thalassionema nitzschioides 37,740 6,000 52 726
Dictyocha speculum 21,300 2,520 58 367
Paralia sulcata 18,660 1,580 53 352
Rhizosolenia setigera 15,120 2,540 35 432
Ditylum brightwellii 12,500 1,760 63 198
Prorocentrum micans 11,800 2,200 49 241
Rhizosolenia styliformis 8,080 1,920 25 323
Pleurosigma sp. 5,420 720 62 87
Meuniera membranacea 4,600 1,120 16 288
Ceratium fusus 3,100 500 32 97
Dinophysis norvegica 2,400 340 37 65
Stephanopyxis turris 1,240 240 9 138
Ceratium lineatum 1,180 300 12 98
Ceratium furca 940 180 15 63
Dinophysis acuta 740 120 18 41
Dinophysis acuminata 560 220 10 56
Coscinodiscus spp. 460 180 10 46
P. americana 180 40 7 (out of 23) 26
Ceratium longipes 60 40 2 30
Odontella mobiliensis 40 40 1 40
Corethron 40 20 2 20
Ceratium tripos 40 20 2 20

Cylindrotheca closterium was the only diatom that was present in all samples, even 

during winter (between late November and early February), when only a few taxa were
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present. Despite that it never reached a cell density higher than 10"̂  cells • L \  Some 

species occurred only rarely (in 2% of all samples or less) and in very low numbers (60 

or less cells • L % representing 3 cells or less in a whole counting chamber), e.g. 

Ceratium longipes, C. tripos^ Odontella mobiliensis^ Corethron sp. and Coscinodiscus 

sp.. Those species were excluded from the analysis. Cell numbers at each sampling 

occasion for each taxon (including Pseudo-nitzschia species) are plotted in appendix 1. 

While some of the species were found at a particular season of the year, others were 

more variable (see appendix 1). Chaetoceros species and Dactyliosolen fragilissimusy 

for example, occurred mainly from April until the end of July, while Asterionellopsis 

glacialis and Leptocylindrus danicus were most abundant from June until October. 

Paralia sulcata showed an unpredictable abundance pattern with highest numbers (up to 

1600 cells • L*̂ ) during December. Stephanopyxis turris, although only observed in low 

cell numbers (< 250 cells • L'^), was only found in late August and September.

2.3.1.4 Chlorophyll a concentration and bloom events

Figure 2.5 presents chlorophyll a (chi a) concentrations from January 2001 until end of 

July 2003. The start of the "spring increase", defined by Tett & Wallis (1978) as the 

date on which chi a concentrations first exceed 1 pg - L \  was regular in its timing and 

occurred in 2001 between 9 March and 23 March, in 2002 between 18 March and 28 

March and in 2003 between 7 March and 21 March. Due to the sampling interval of two 

weeks during that time of the year, the exact date was not recorded.
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Fig. 2.14 Chlorophyll concentrations in 10m water at LYl from 2001 to the end of July 
2003. Numbers within the plot indicate chi a maxima, interpreted as reoccurring bloom 
events.

100

Chi a maxima were interpreted as events of high phytoplankton biomass (blooms) and 

are plotted in Figure 2.14. Taking into account chi a data from January 2001 until July 

2003, six events of high chi a concentrations were identified in each year. The first 

maximum of the chi a concentration (1) (see Tab. 2.5 and Fig. 2.14) was observed in 

early April (2001 and 2002) and March (2003). At this time, Skeletonema costatum was 

the most abundant taxon during spring in all years, second and third highest numbers 

were found in diatoms belonging to the P. delicatissima group and Thalassiosira spp., 

respectively (in 2003 Thalassiosira spp. reached higher numbers than cells of the P. 

delicatissima group).

The second bloom, with a higher chi a maximum in 2002 and 2003 and a lower 

concentration than the first bloom in 2001, occurred in April (2003) or May (2001 and

2002) and was dominated by species belonging to the genus Chaetoceros. In 2003 this 

"second" bloom event was represented by two peaks. A high chi a concentration on 

April 25, was followed two weeks later, on 9 May, by a second peak in the chi a 

concentration at which time high numbers of Chaetoceros spp. were observed.
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The next bloom (3) was observed in late June (in 2003 in late May and early June) and 

was again dominated by Chaetoceros spp.. In 2002 and 2003 the Chaetoceros spp. 

bloom was accompanied by Skeletonema costatum and in 2002 also by diatoms 

belonging to the P. delicatissima group. This third bloom again occurred in two events 

at the end of May and beginning of June, where high chi a concentrations were 

observed.

Table 2.5 Events of high chlorophyll concentrations ("blooms") and taxa that were most 
abundant at that time.

Bloom/
Month

Date Julian
day

Most abundant taxa

1)
March,

10.4.2001 100 Skeletonema costatum, Pseudo-nitzschia 
delicatissima group, Thalassiosira spp.

April
12.4.2002 102 Skeletonema costatum, P. delicatissima group, 

Thalassiosira spp.

21.3.2003 80 Skeletonema costatum, Thalassiosira spp., P. 
delicatissima group

2)
April, May

17.5.2001 137 Chaetoceros spp. < 10 pm, Thalassiosira spp., 
Skeletonema costatum, Leptocylindrus minimu.

24.5.2002 144 Chaetoceros spp. (all sizes), Eucampia zodiacus

25.4.2003, 115 Chaetoceros spp. (all sizes).
9.5.2003 129 Chaetoceros spp. (all sizes), Skeletonema costatum.

3) 22.6.2001 173 Chaetoceros spp. (all sizes)
May, June

14.6.2002 165 Chaetoceros spp. (all sizes), Skeletonema costatum, 
P. delicatissima group

23.5.2003, 143 Chaetoceros spp. < 10 pm, S. costatum
6.6.2003 157 Chaetoceros spp. < 10 pm, S. costatum

4)
July

27.7.2001 208 Mesodinium rubrum, Leptocylindrus danicus, P. 
group

5.7.2002 186 Mesodinium rubrum, P. seriata group, 
dinoflagellates (all sizes)

4.7. 2003, 185 P. seriata group, L. minimus
25.7.2003 206 P. seriata group, Mesodinium rubrum

5)
August,

7.9.2001 250 Skeletonema costatum, Asterionellopsis glacialis, 
Chaetoceros spp. >10 pm

September 29.8.2002 241 Leptocylindrus danicus, Guinardia delicatula 
Chaetoceros spp. (<10 pm), P. seriata group

6)
September,

12.10.2001 285 Skeletonema costatum, Chaetoceros spp. (all sizes), 
P. seriata group

October 27.9.2002 270 Skeletonema costatum, Chaetoceros spp. (<10 pm), 
P. seriata group, Thalassiosira spp.
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2.1.1.5 Temperature and species succession

Figure 2.15 describes the range of the water temperature over which different taxa 

occurred. It also indicates the temperature at which each taxon was found in maximal

cell density.

Thalassiosira spp, 
Skeletonema costatum 
P. delicatissima group

Dactyliosolen fmgilissimus 
Leptocylindrus minimus 

Eucampia zodiacus 
Chaetoceros spp., <10 pm 
Chaetoceros spp., >10 pm 

Paralia sulcata 
Cylindrotheca closterium 

Ditylum brightwellii
Mesodinium rubrum 

P. seriata group 
Leptocylindrus danicus

Meuniera membranacea 
Dinoflagellates, >20 pm 
Rhizpsolenia styliformis 

Asterionellopsis glacialis 
Rhizosolenia setigera 

Ceratium spp 
Prorocentrum micans

Dinophysis spp. 
Dictyocha speculum 
Guinardia delicatula 

Pleurosigma sp. 
Thalassionema nitzschioides 

Lauderia annulata 
Dinoflagellates, <20 pm 

 Stephanopyxis turris

Temperature [°C] 
10

10 12 14
Temperature [°C]

Fig. 2.15 Range of temperatures (|-|) and temperature (x) at which the maximum 
abundance of the individual taxa was observed.

The seasonal succession of taxa, as observed at LYl, is shown in Figure 2.16. For each 

species only a cell density above an individual threshold of cells • (as indicated in 

parentheses) was taken into account. This threshold represents the average abundance of 

each taxon per sample in which it was present. It was calculated by dividing the total
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number of cells for each taxon by the number of samples in which that taxon was 

observed (see Tab. 2.4).

The water temperature observed at LYl in 10 m depth between January 2001 and July 

2003 ranged from 6.55 to 14.0 °C. Most of the species occurred over this entire 

temperature range, and apart from Stephanopyxis turris all taxa were found between 8 

and 13.8°C. However, differences were observed in the temperature of their maximum 

cell density (Fig. 2.15), suggesting a preferred temperature. For easier description of the 

observations, taxa were divided into five groups related to their temperature 

preferences.

The first group consisted of Thalassiosira species, Skeletonema costatum and species 

belonging to the P. delicatissima group. They all occurred over the entire temperature 

range, but were most abundant in spring, when the water temperature was around 8°C 

(Fig. 2.15), regularly forming the spring bloom (Fig. 2.16). Skeletonema costatum and 

species of the P. delicatissima group were also regularly found between mid-March and 

late September, with occasional high cell densities during summer. More details about 

the occurrence of the P. delicatissima group are described below (see also Tab. 2.6). 

Thalassiosira species showed a maximal abundance in March, high numbers in May or 

June as well as later in July and September (Fig. 2.16).

The second group of species exhibited a temperature optimum of 9 to 11°C 

(Dactyliosolen fragilissimus, Leptocylindrus minimus, Eucampia zodiacus, Chaetoceros 

species, Paralia sulcata, Cylindrotheca closterium and Ditylum brightwellii). Together 

with Thalassiosira spp., Skeletonema costatum and P. delicatissima group, the above 

species represented the continuation of the spring bloom, also recognised in the second 

chlorophyll maximum (Fig. 2.14, peak 2). Chaetoceros species persisted mainly from 

April to early July, while Dactyliosolen fragilissimus cell numbers exceeded threshold 

for only about two month (Fig. 2.16). Cylindrotheca closterium was the only species
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present in all samples, and reached a cell density above the average mainly from May to 

early October and also occasionally showed high abundance in February or March. 

Eucampia zodiacus bloomed during the summer, from late May to early August. 

Ditylum brighwellii was found in relatively high cell densities over a period of seven 

months (from late March until mid-October).

Paralia sulcata was the only species that was present above its threshold throughout 

winter (Fig. 2.16). It was the earliest species to appear in each year (January or early 

February) and its highest density was found in December.

Leptocylindrus minimus reached greatest cell densities for a relatively short period from 

mid-May until early July, contributing to the spring and summer blooms.

The next group of taxa represents those responsible for the yearly observed summer 

bloom (Fig. 2.14, peak 4). Mesodinium rubrum, diatoms belonging to the P. seriata 

group and Leptocylindrus danicus were present in maximal cell numbers at 

temperatures between of 11 to 12°C (Fig. 2.15). The ciliate was regularly found in high 

numbers from July to mid-August, while L. danicus bloomed from late June until 

September. Species belonging to the P. seriata group were found in high numbers 

between mid-June and early October, and are listed in more detail below (see Tab. 2.7). 

Group four included Meuniera membranacea, Rhizosolenia styliformis and R. setigera, 

Asterionellopsis glacialis, dinoflagellates > 20 pm, Ceratium species and Prorocentrum 

micans, and showed highest cell densities at a water temperature between 12.4. and 

13.1°C. Those species might be typical summer/ early autumn species. While Meuniera 

membranacea was the second earliest species to be found at LYl (end of January, Fig. 

2.16) it reached its maximum cell density in late summer. Asterionellopsis glacialis was 

abundant between the end of June and mid-October (Fig. 2.16). Rhizosolenia species 

were found in higher cell densities between July and mid-October.
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Fig. 2.16: Species succession at LYl, in 10 m water depth. For each species the period 
of its occurrence at a cell density • L^ above an individual threshold (total number of 
cells / frequency [cells • L'^], given in parentheses behind each species name). Periods of 
high abundance are presented for each species from January 2001-July 2003 (for each 
species top bar = 2001, middle bar = 2002, lowest bar = 2003). In some years certain 
species did not occur in numbers above the threshold. A bar (|-|) indicates a period of 
time when cells • L'̂  were above the threshold, while + indicates a single observation of 
high cell density at that sampling occasion. Time is indicated in months and Julian days.
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Most of the dinoflagellates showed greatest abundance during summer and early 

autumn. The high numbers of dinoflagellates > 20 pm in July reflects the high 

abundance of Lingulodinium polyedrum at that time. Ceratium species occurred in 

numbers exceeding the threshold cell number per litre from July until the end of 

October, Prorocentrum micans was present during July and again from September until 

early November (Fig. 2.16). The last group comprised taxa with maximum cell densities 

at the highest measured temperature (13.5-14°C): the diatoms Guinardia delicatula, 

Pleurosigma sp., Thalassionema nitzschioides, Lauderia annulata and Stephanopyxis 

turris, the silicoflagellate Dictyocha speculum, dinoflagellates < 20 pm and those 

belonging to the genus Dinophysis (Fig. 2.15). Thalassionema nitzschioides, Lauderia 

annulata, Guinardia delicatula, Pleurosigma sp. and Dictyocha speculum were present 

in high cell numbers during spring and late summer/autumn (Fig. 2.16), but most 

abundant in late summer/autumn, demonstrating a preference for water temperatures 

representing late summer conditions.

Stephanopyxis turris had the smallest temperature range of all taxa. It was found at 

temperatures between 12 and 14°C (Fig. 2.15), reaching highest cell numbers between 

the end of August and end of September (Fig. 2.16). Dinoflagellates < 20 pm showed 

maximal abundance from April to the end of September. Similarly, Dinophysis species 

were abundant from April to the end of August, with high cell numbers of D. 

acuminata, D. norvegica and D. acuta appearing at the end of April, in early and late 

June, respectively.

2.3.1.6 Pseudo-nitzschia spp. blooms

A major objective of this study was to investigate the occurrence and ecology of

Pseudo-nitzschia species. Tables 2.6. and 2.7 show the occurrence of diatoms belonging

to the P. delicatissima and P. seriata group in densities of approximately their average
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(= 10"̂  cells • L' )̂ and half average (= 5000 cells • L^) observed abundance (see appendix 

1 for time series graphs).

Table 2.6 Occurrence of diatoms belonging to the P. delicatissima group from January

Year C ells-L ‘ Time period Approx. number 
of weeks

2001 >5000 9.3.-19.4. 6
>10000 9.3.-19.4. 6
>5000
>10000

10.8.-17.8.
10.8.-17.8.

1

>5000 31.8. 1
2002 >5000 28.3.-17.5. 7

>10000 28.3.-10.5. 6
>5000 7.6.-21.6. 2
>10000 14.6.-21.6. 1
>5000 18.7.-15.8. 4
>10000 18.7.-15.8. 4
>5000 27.9.-4.10 1
>10000 27.9. 1

2003 >5000 21.3.-11.4. 4
>10000 21.3.-11.4. 4
>5000 23.5. 1
>5000 6.6. 1

Cell counts showed re-occurring seasonality in species belonging to the P. delicatissima 

(Tab. 2.6) and P. seriata (Tab. 2.7) groups. Diatoms belonging to the P. delicatissima 

group, in Scottish waters potentially including P. delicatissima, P. pseudodelicatissima 

and P. calliantha (see chapter 3), showed greatest abundance in spring and during the 

summer. Blooms with numbers > 10"̂  cells • L'̂  persisted for up to six weeks in spring 

(March, April, also May) smaller and shorter blooms were present in June, July and 

August (Tab. 2.6, appendix).

Diatoms belonging to the P. seriata group, which included the toxic species P. australis

and P. seriata and non-toxic strains of P. fraudulenta, P. pungens and P. cf. subpacifica

(see chapter 3) reached highest densities between June and October (Tab. 2.7). The P.

seriata group regularly occurred in highest cell density in July. Bloom events with cell
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numbers > 10"̂  cells • would persist sometimes for just a short period of less than a 

weeks time (Tab. 2.7, appendix 1).

Table 2.7 Occurrence of diatoms belonging to the P. seriata group from January 2001 to

Year cells • L'^ Time period Approx. number 
of weeks

2001 >5000 29.6.-17.8. 7
>10000 5.1.-21.1. 5
>5000 14.9.-5.10 3
>10000 10.8. 1

2002 >5000 7.6.-26.7. 7
>10000 21.6., 5.7.-18.7. i;2
>5000 15.8.-11.10 8
>10000 15.8., 29.8.-6.9., i ; i ;

20.9.-4.10. 2
2003 >5000 24.6.-25.7 >4

>10000 24.6.-25.7. >4

2.3.1.7 Statistical analysis of samples from LY1

2.3.1.7.1 Multidimensional Scaling

The MDS plot in Figure 2.17 illustrates the seasonality observed in phytoplankton 

samples collected from station LYl. The analysis arranged the month, representing 

species composition and abundance at that time of the year, in an approximate circle. 

This configuration reflects species succession and changes in cell density over the year. 

Months representing winter (Nov, Dec, Jan, Feb) were configured closely together, 

March seemed to represent a month of transition between winter and spring. April, May 

and June continued the circle, representing typical spring and early summer samples. 

Species composition and abundance in summer were represented by July, September 

and August. September and July samples were more similar than July and August 

samples. October samples, as a transition between summer and winter samples, 

represented typical autumn samples. The relatively low stress factor of 0.04 indicates
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that the degree of similarities between months is well represented in the 2-dimensional 

diagram.

LYl

Aug
NovOct

Jan
Dec

Jun

May
Feb

Apr
Mar

Stress: 0.04
Fig. 2.17 MDS plot representing the assemblage similarities of samples taken at LYl 
between November 200 and July 2003, averaged for every month of the year (see 
Materials and Methods section 2.1.1.1 for details). The lesser the distance between two 
month, the greater was the similarity of the species composition and species abundance 
in those two month. Data were fourdi root transformed.

2.3.1.7.2 Redundancy Analysis

The Monte Carlo test showed that dissolved inorganic silicate (DSi, p = 0.002),

inorganic phosphate and nitrate (DIP and DIN, p = 0.04), temperature (p = 0.04) and

salinity (p = 0.064) had significant impact on the phytoplankton assemblage.

Figure 2.18 illustrates the results of the RDA. Axes represent a multiple linear

regression of the environmental parameters accounting for the species ordination. The

length of an arrow reflects the relative importance of the environmental factor. Arrows

pointing in the same direction indicate a positive correlation of factors and/or species,

arrows pointing in opposite directions can be interpreted as negative correlations. In

Figure 2.18, 25% of the species distribution was accounted for by the constrained axes.

The diagram shows that of all environmental factors salinity (shortest arrow) had the

lowest impact on the species assemblage. Arrows for DIN and DIP were positioned

close to each other and show the same orientation, indicating that those two factors were
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highly correlated. Opposed to DIN, DIP and DSi were typical summer species, such as 

Eucampia zodiacus, Dinophysis norvegica, D. acuminata and Leptocylindrus minimus. 

Those species were associated with low nutrient concentrations in the water column. 

Paralia sulcata was positively correlated with DSi.
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Fig. 2.18 RDA Correlation biplot of all samples taken at LYl based on the absolute 
phytoplankton abundance and environmental parameters that significantly (Monte-Carlo 
test, p < 0.1) influenced the species ordination. All species were included, cell numbers 
were square root transformed prior to analysis. Species abbreviations: Asg, 
Asterionellopsis glacialis, Cb, Chaetoceros spp. > 10  |Lim; Cfc, Ceratium furca; Cfs, 
Ceratium fusus; Cli, Ceratium lineatum; Cs, Chaetoceros spp. < 10 pm; Cyl, 
Cylindrotheca closterium; Dac, Dinophysis acuta; Daf, Dactyliosolen fragilissimus; 
Dam, Dinophysis acuminata; Db, Dinoflagellates > 20 pm; Dib, Ditylum brightwellii; 
Dis, Dictyocha speculum; Dno, Dinophysis norvegica; Ds, Dinoflagellates < 20 pm; 
Ezo, Eucampia zodiacus; Gui, Guinardia delicatula; Lau, Lauderia borealis; Led, 
Leptocylindrus danicus; Lem, Leptocylindrus minimus; Mem, Meuniera membranacea; 
Mer, Mesodinium rubrum; Pas, Paralia sulcata; Pd, P. delicatissima group; Pie, 
Pleurosigma sp.; Prm, Prorocentrum micans; Ps, P. seriata group; Rhs, Rhizosolenia 
setigera; Rhy, Rhizosolenia styliformis; Skc, Skeletonema costatum; Stt, Stephanopyxis 
turris; Tha, Thalassiosira sp.; Thn, Thalassionema nitzschioides. Environmental 
parameters: DIN, dissolved inorganic nitrate; DIP, dissolved inorganic phosphate; DSi, 
dissolved inorganic silicate; T, temperature; S, salinity.
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Summer species as Stephanopyxis turris, Ceratium fusus and Rhizosolenia setigera, 

were positively correlated with temperature. Thalassiosira sp. and Skeletonema 

costatum, species associated with the spring bloom and colder water, were negatively 

correlated with temperature, but showed no association with nutrients. They were also 

potentially influenced by other factors, not measured in this study. The same applied for 

some other species (e.g. P. seriata group, Leptocylindrus danicus, Asterionellopsis 

glacialis), which were not directly correlated with any of the measured environmental 

factors.

2.3.2 Transect from Loch Spelve to Loch Creran

2.3.2.1 Hydrography

Along the Loch Spelve-Creran transect, temperature, salinity and density profiles of the 

upper 19 m water column were taken. In addition to the 19 m depth profiles, the 

physical data from the biological sampling depth of 5 m are shown.

2.3.2.1.1 Temperature

Temperature profiles of the 19 m water column along the Loch Spelve-Creran transect 

(Fig. 2.19) show in general increasing temperatures between station 700 and Loch 

Creran, and a decrease in temperature with depth. The water column at station 700 and 

LY3 was well mixed at all three sampling occasions. In September a slight temperature 

stratification of the upper 6 and 8 m of the water column was observed at LY2 and LYl, 

respectively. At LYl a plume of colder water was found below 10 m depth, which 

stretched out towards C2, rising to about 8 m depth. The water column down to 6 m in 

Loch Creran reached temperatures above 13 °C and was only about half a degree colder 

below that depth.
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Fig. 2.19 Temperature profiles of the upper 19 m of the water column along the transect
from Loch Spelve to Loch Creran, taken at three sampling occasions, on 18 July , 23
August and 13 September 2002. Recording of profiles started at Im.
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In August the water column had warmed up by about a degree. The thermocline at LY 1 

was found in about 9 m depth, while the water column at C2 was well mixed. A 

temperature gradient with the thermocline at about 7 m was observed at C3 and C5.

In September the water was less stratified by temperature. The warmest surface 

temperature was found at C3 and decreased towards station 700. In general, from the 

temperature profiles the water column seemed to be well mixed at all stations, with 

temperature differences below 0.5 °C between the surface and 9 m at all stations.

At 5 m, a general increase from station 700 towards C3 was found in all months with a 

slight temperature drop at C5 (Fig. 2.20). The median temperatures were found at LY2 

(in July), €2 (in August) and LYl (in September). In general, the temperature increased 

between LY3 and C3, but the lowest temperature was found at C2. Temperatures were 

lowest in July and similar during August and September.
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station

Fig. 2.20 Water temperature along the Spelve-Creran transect in 5 m on 18 July, 23 
August and 13 September 2002.
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2.3.2.1.2 Salinity

Similar to the temperature profiles, the salinity profile for the upper 19 m (Fig. 2.21) 

shows that there was little salinity invoked stratification at stations 700 and LY3. The 

most saline water was found at those two stations, due to their seawards location.

In July 2002 salinity stratification influenced the upper 6 or 10 m at LY2 and LYl, 

respectively. At C2 salinity gradients were not as strong as found at LYl and LY2 and 

some stratification was observed at 03, with less at C5, affecting the upper 7 m of the 

water colunm. Interestingly, the lowest salinity was found in the upper 3 m at LYl. 

Close to the surface the water at LY2 was very similar in its salinity to that at C2 and 

03.

In August 2002 the upper 10 m of the water colunm at LY2 and LYl were stratified by 

a salinity gradient, the water column at 02 was again well mixed. Within Loch Oreran 

water the surface layer (upper 5 m) was stratified.

In September, at LY2 and LYl a salinity gradient had established in about 6 to 8 m. The 

water column at 02 and in Loch Oreran showed only little stratification. Salinity in the 

upper 2 m was lower at LYl and LY2 than at 03 and the Loch Oreran stations.
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Fig. 2.21 Salinity profiles of the upper 19 m of the water column along the transect from
Loch Spelve to Loch Creran, taken at three sampling occasions, on 18 July , 23 August
and 13 September 2002. Recording of profiles started at Im.
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In general, salinity values in 5 m water depth showed a reverse trend compared to 

temperature, with highest values usually found near Loch Spelve and lowest in Loch 

Creran (Fig. 2.22). Salinity was higher at C2 than at LY2 and LYl. In all months 

relatively low values were found at LYl, in August they were even lower than in Loch 

Creran, indicating influx fresh water at stations LY2, LYl, C3 and C5. The median 

value was measured at LY2 (July and September) and C2 (August).
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Fig. 2.22 Salinity along the Spelve-Creran transect in 5 m on 18 July, 23 August and 13 
September 2002.

2.3.2.7.5 Density

The density profiles of the 19 m water column on the transect between Loch Spelve and 

Loch Creran (Fig. 2.23) mirrored the salinity profile.

The water column was, in general, well mixed at stations 700 and LY3. At stations LY2 

and LYl the water column down to about 10 m was stratified in July, a similar structure 

was found at C2. The lowest densities down to 23 were found in Loch Creran at C3 in 2 

to 4 m. At C3 and C5 the surface of the water column down to about 6 m showed a 

slight stratification, but in general the water was well mixed.
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Fig. 2.23 Density profiles of the upper 19 m of the water column along the transect from
Loch Spelve to Loch Creran, taken at three sampling occasions, on July 18, August 23
and September 13 2002. Recording of profiles started at Im.
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In August profiles at LY2 to C5 showed the continuation of the stratification trends that 

were observed in July. LY2 and LYl showed stratification down to 10 m and were well 

mixed below that depth. No density stratification was observed at C2, but a clear density 

gradient was found at C3 and C5 down to about 6 and 8 m respectively.

In September the stratification at LY2 and LYl had stabilised and was found at LY2 to 

about 7 m depth and to about 10 m at LYl. The stratification was not so established at 

C2, but a slight gradient was observed down to about 12 m depth. At C3 and C5 the 

stratification observed in August had weakened but now reached deeper, down to about 

11 m at C3 and 8 m at C5.

The density values in 5 m depth found along the transect mirror the salinity data (Fig. 

2.24). In each month density decreased from Loch Spelve towards Loch Creran with 

low values at LY2 and LYl. The median was represented by LY2 (July, September) and 

C2 (August).
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Fig. 2.24 Density [ctJ along the Spelve-Creran transect in 5 m on 18 July, 23 August 
and 13 September 2002.
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2.3.2.2 Nutrients

Dissolved inorganic nutrient concentration did not show clear trends along the transect. 

However, for each station nutrient concentrations generally increased between July and 

September (except for silicate, which decreased from July to August at some stations; 

ammonium also was an exception).
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Fig. 2.25 Dissolved inorganic phosphate (DIP) concentration [|iM] along the Spelve- 
Creran transect in 5 m on 18 July, 23 August and 13 September 2002.

The dissolved inorganic phosphate (DIP) concentrations showed a pattern of elevated 

values at stations 700, LYl and C5 (Fig. 2.25). In July and September DIP 

concentrations were relatively constant, with some fluctuation, but more variability in 

August.

The patterns of the dissolved inorganic silicate (DSi) concentration differed between the 

three months (Fig. 2.26). Marked changes were observed within Loch Creran, where the 

DSi concentration was increased in July and September, but decreased in August.
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Fig. 2.26 Dissolved inorganic silicate (DSi) concentration [|iM] along the Spelve- 
Creran transect in 5 m on 18 July, 23 August and 13 September 2002.

Similar to the pattern observed in the DIP concentrations, dissolved inorganic nitrogen 

(DIN) concentrations showed local maxima at LYl (Fig. 2.27). In July 2002 this pattern 

led to DIN being depleted at all stations except stations 700 and LYl. In August and 

September increases at all stations were observed. In September DIN concentrations 

were generally higher at each station than in the previous months. The pattern along the 

transect was the same as in August with decreasing concentrations between station 700 

and LY2, followed by an increase towards LYl, a steep decline towards C3 with a 

raised concentration at C5. The maximum concentration was measured at LYl (2.34 

pM) and the lowest at C3 (0.88 pM).
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Fig. 2.27 Dissolved inorganic nitrate (DIN) concentration [|iM] along the Spelve-Creran 
transect in 5 m on 18 July, 23 August and 13 September 2002.

Similar to the DIP and DIN concentrations, local maxima of the ammonium 

concentration were found at LY 1 in all months (Fig. 2.28).
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Fig. 2.28 Ammonium concentration [jiiM] along the Spelve-Creran transect in 5 m on 18 
July, 23 August and 13 September 2002.

In each month the concentration decreased between station 700 and LY3 (LY2 in 

September), increased towards LYl, then was followed by a decrease towards C2.
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2.3.2.3 Biological parameters

All species that were found at any of the other stations were also found at LYl. The 

dinoflagellate Lingulodinium polyedrum, that was included in the dinoflagellate group > 

20 pm, when analysing samples from the monitoring programme at LYl, was counted 

separately, although it was only abundant in Loch Creran (stations C3 and C5 in August 

and September). For each species abundance in cells • L * was plotted and figures are 

presented in appendix 2. Table 2.8 shows the total abundance for each taxon that was 

found at all stations along the Spelve-Creran transect, the highest total density of a 

taxon that was observed at any station, its percentage of the total abundance, and the 

station at which a taxon occurred in the highest abundance. In section 2.3.1.3 it was 

noted that Chaetoceros spp. <10  pm was the most abundant taxon at LYl, when all 

seasons were included. In summer 2002 the taxa with highest cell densities along the 

Spelve-Creran transect were Leptocylindrus danicus and L. minimus, followed by 

Chaetoceros spp. < 10 pm (Tab. 2.8). Highest numbers of the former two were 

observed at LYl (26.1 and 28.4% of total abundance) and the latter at C5 (30.8%). 

Pseudo-nitzschia species of the P. seriata group were, with a total of > 350 x 10̂  cells • 

L % the sixth most abundant taxon, about 27% of the cells were found at LY2. The 

highest percentage of P. delicatissima species was again found at LY2 (26.2%).

LYl was the station where in total the maximal abundance of Chaetoceros spp. (all 

sizes), Guinardia delicatula, Leptocylindrus danicus and Ditylum brightwellii were 

found. More than 45% of all Guinardia delicatula cells were found at LYl, but 

abundance of other species at LYl did not exceed 30% of the total abundance (of all 

stations).
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Table 2.8 Species found along the Spelve-Creran transect in summer 2002 in rank order 
of total density.
Taxon Cumulative 

abundance 
[cells • L ‘] at 
all stations

Max.
abundance at 
one station 
[cells • L ‘]

Max. abundance at 
one station [%] as 
percentage of total 
abundance at all 
stations

Station at 
which max. 
abundance 
was found

Leptocylindrus danicus 1,369,896 358,005 26.1 LYl
Leptocylindrus minimus 865,863 266,644 30.8 C5
Chaetoceros spp. < 10 pm 629,429 178,799 28.4 LYl
Mesodinium rubrum 484,292 178,803 36.9 C5
Chaetoceros spp. > 10 pm 406,912 115,287 28.3 LYl
P. seriata group 350,640 93,420 26.6 LY2
Skeletonema costatum 295,431 88,458 29.9 LY2
Guinardia delicatula 221,981 101,022 45.5 LYl
Dinoflagellates < 20 pm 96,560 24,140 25.0 C5
Thalassiosira spp. 84,160 33,680 40.0 C3
Dinoflagellates > 20 pm 84,020 19,340 23.0 C3
P. delicatissima group 73,220 19,160 26.2 LY2
Cylindrotheca closterium 54,480 11,720 21.5 C3
Thalassionema nitzschioides 45,580 9,820 21.5 LY2
Asterionellopsis glacialis 36,520 14,960 41.0 C3
Lingulodinium polyedrum 35,880 34,700 96.7 C5
Lauderia annulata 28,800 6,720 23.3 C2
P. americana 28,720 8,420 29.3 C3
Ceratium jurca 26,020 25,500 98.0 C5
Dictyocha speculum 25,180 11,500 45.7 C5
Eucampia zodiacus 11,260 3,600 32.0 LY3
Prorocentrum micans 7,660 3,280 42.8 C5
Rhizosolenia styliformis 4,240 1,660 39.2 C3
Pleurosigma sp. 3,320 700 21.1 C2
Ceratium lineatum 2,680 1,360 50.7 C5
Paralia sulcata 2,240 780 34.8 LY3
Meuniera membranacea 2,140 460 21.5 C5
Ditylum brightwellii 2,040 560 27.5 LYl
Stephanopyxis turris 960 340 35.4 LY3
Ceratium fusus 940 380 40.4 C5
Dinophysis acuta 740 180 24.3 C5
Dinophysis norvegica 540 200 37.0 C5
Rhizosolenia setigera 200 60 30.0 C2, C3
Dinophysis acuminata 200 80 40.0 C5

The highest total abundance of all dinoflagellate taxa was found in Loch Creran. 23% of 

all dinoflagellates > 20 pm were observed at C3 and all other dinoflagellates occurred in 

highest percentages at C5. Lingulodinium polyedrum and Ceratium furca were with 

percentages of 96.7% and 98.0% were almost solely found at C5. More than half of all 

observed cells of Ceratium lineatum (50.7%) were present at C5. All other 

dinoflagellates (dinoflagellates < 20 pm, Prorocentrum micans, Ceratium fusus, and the
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Dinophysis species) were observed at C5 in percentages between 23 to 40.4. Station 700 

was the only station at which none of the taxa was found in higher abundance than at 

the others.

23.2.3.1 Pseudo-nitzschia spp. along the Spelve-Creran transect

The cell density of the P. delicatissima group was highest at all stations along the 

transect in July and decreased towards August and September (Fig. 2.29). In July P. 

delicatissima group abundance decreased from station 700 (10.5 x 10̂  cells • L )̂ 

towards Loch Creran (2.6 x 10̂  cells • at C3), an increased cell density was observed 

at LY2, where numbers exceeded 15.8 x 10̂  cells • L \  In August cell numbers of the P. 

delicatissima group had decreased to less than 2.5 x 10̂  cells • at all stations. 

Numbers increased from station 700 towards Loch Creran with highest densities at 

intermediate stations LY2 and LYl (2.4 and 2.3 x 10̂  cells • L^ , respectively). A 

further decrease of cell density was observed in September at all stations.

Abundance of the P. seriata group followed a more variable pattern than the P. 

delicatissima group (Fig. 2.29). In July and August, again the highest cell density of 

species assigned to the P. seriata group was found at LY2 and the lowest at station 700. 

Yet, at the same station (700), the highest cell density of that group was observed in 

September.

Cell densities of the P. seriata group were, in general, highest in August at each station, 

and in July and September decreased from LY2 or LYl towards Loch Creran. In 

August, numbers in Loch Creran were elevated.
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700 LY3 LY2 LYl C2 C3 C5 
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Fig. 2.29 Abundance [cells • L^] of species belonging to the P. delicatissima and P. 
seriata group along the transect from Loch Spelve to Loch Creran in summer 2002.

2.3.2.4 Chlorophyll a concentration along the Spelve-Creran transect

Chlorophyll a (chi a) concentrations generally increased along the Spelve-Creran 

transect towards Loch Creran, with elevated concentrations in July at LY1 and C2 and 

to a lesser extent in August at LY2 and LYl (Fig. 2.30).

Jul
Aug

10 -

hJ
â
ed

§

700 LY3 LY2 LYl C2 C3 
station C5

Fig. 2.30 Chi a concentration [pg • L^] along the Spelve-Creran transect at 5 m on 18 
July, 23 August and 13 September 2002.
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2.3.2.5 Statistical analysis of samples along the Spelve-Creran transect

2.3.2.5.1 Multidimensional Scaling

The MDS ordination in Figure 2.31 A, based on phytoplankton abundance and species 

composition, shows that samples taken along the transect in July, August and 

September 2002 were configured in three groups, depending on the time of sampling. 

Samples taken in July clustered together on the left side, samples taken in August 

occupied the middle section and samples taken in September were found on the right 

side of the plot.

Spelve-Creran transect
A)

Stress: 0.1

C5Jul
LY3Au

700Au

mmp

C3Aug

C2
700
LY3 C3C5

Stress: 0.01
Fig. 2.31 MDS ordination of samples taken along the Spelve-Creran transect. In A) each 
sample, containing species abundances, is named after the station and month when it 
was taken. In B) for each station (700 to C5) the mean of species abundances for each 
station was taken. Data were fourth root transformed.

For each of the three months, stations 700 and LY3 were placed close together,

indicating great similarity of those samples. In July LYl and LY2, and C2 and C3 were
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very similar in their species assemblage. In August samples from LYl, LY2 and C3 

resembled each other well, while in September LYl, LY2 and C2 showed great 

similarity and C3 was clustered with C5. Samples at station 700 and LY3 from August 

and September had a high similarity in species abundance. The stress factor of 0.1 

indicates that the 2-dimensional illustration is an accurate representation of similarities 

between stations.

The MDS ordination in Figure 2.3 IB indicates considerable similarity in species 

composition at stations 700 and LY3, LYl and LY2 and C3 and C5. Station C2 is most 

similar to stations LY2 and LYl. This configuration closely reflects the geographical 

location of the stations: stations 700 and LY3 represent the seaward stations, stations 

LY2, LYl and C2 are located in the Lynn of Lome and C3 and C5 situated in Loch 

Creran. The MDS ordination, with LYl in the middle, also shows that for summer 

2002, LYl represented a "median" of other stations along the transect. In the 

configuration LYl was placed between stations 700, LY3, C3 and C5, which as 

monitoring sites would rather represent seawards conditions (700 and LY3) or sea-loch 

conditions (C3 and C5).

2.3.3 Discovery cruise D257

2.3.3.1 Hydrography

2.3.3.1.1 Open ocean stations

The water temperature at stations M and F ranged from ~ 13.5 to -  3.5°C at both ocean

stations (Fig. 2.32). Highest values at both stations were found in the upper 50 m, with

the lowest temperature in the greatest sampled depth. The thermocline was situated at

around 150 m depth. For both stations salinity values were homogeneous in the top 70

m with values around 35.33 (M) and 35.34 (F). They increased rapidly to 35.41 (M) and
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35.39 (F) at about 100 m water depth, indicating the halocline. Lowest salinity values of 

34.92 were found at ~ 1900 m. Derived from temperature and salinity, the density 

profile (expressed as a,) ranged at both stations from 26.53 and 26.57 in the top metres 

to 27.8 at the bottom of the water column, with the pycnocline situated in about the 

same depth as the thermocline (around 150 m).

SalinityTemperature [°C]
34.9 3514

250-250-
500-500-

?  750-I  730-
•S 1000- 
G 1250-

•S 1000- 

o  1250-

1500-1500-
1750-1750-
20002000 Temperature Salinity

Density
26.50 26.75 27.00 27.25 27.50 27.75

250-

500-

750-e
■S 1000-
S:Q 1250-

1500-
1750-

2000- Density

Fig. 2.32 Temperature, salinity and density profiles at stations M and F.

2.1.1.1.2 Shelf stations

2.1.1.1.2.1 Temperature

Figure 2.33 shows the temperature distribution within the water column at the shelf 

stations lOG to IG. At stations 7G to IG the water column temperature was relatively
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homogenous. At station 9G the water temperature of the upper 50 m was half a degree 

warmer than at the other stations, a thermocline was found at about 75 m. lOG surface 

water was half a degree colder than the other shelf stations and temperature declined 

from about 25 m to reach 10.5°C in 100 m.

Station
4G 2G IG

0 10 20 30 40 50 60 70 80
Distance [km]

Fig. 2.33 Contour plot of water temperature [°C] along the Ellett Line shelf stations lOG 
to IG.

2.1.1.1.2.2 Salinity

The salinity distribution in the water column is shown in Figure 2.34. Salinity in surface 

waters increased from stations IG and lOG, as one moves offshore. At IG and 2G 

slightly fresher water, with salinities between 34.2 and 33.8, lay on top of the otherwise 

well mixed water column. 4G and 6G were well mixed. At 7G water with higher 

salinity (above 35), was found at about 90 m. The water column at 9G was well mixed 

down to about 80 m and showed a salinity again higher than 35. At lOG salinity 

increased slowly with depth, no strong gradients were observed.
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Fig. 2.34 Contour plot of salinity along the Ellett Line shelf stations lOG to IG.

2.1.1.1.2.3 Density

Figure 2.35 indicates that the water column at all shelf stations was quite well mixed, 

with no strong density gradients. Stations IG to 4G were influenced by the Scottish 

coastal current, with a relatively lower density in the upper water column, compared to 

the other shelf stations.

Statioi
lOG

50-

100 ---- 27 5

S '150-

200 ■

250
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10 20 7060 80

Fig. 2.35 Contour plot of density [a,] along the Ellett Line shelf stations lOG to IG.
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The density of the surface water at IG was reduced by freshwater land runoff. Water 

below 50 m at 4G showed a density above 26.5, indicating it belonged to the same water 

mass that was found at lOG, 9G and 7G at approximately 30 m, 40 m and 70 m, 

respectively. Below those depths, stations lOG, 9G and 7G were clearly influenced by 

high salinity water. This is further demonstrated in the T-S diagram (Fig. 2.36).

2.1.1.1.3 T-S diagram

T-S diagrams are used to identify the origin of water masses and to distinguish between 

them (Dietrich et al. 1992), water belonging to one water mass having the same T/S 

relationships. Surface waters are influenced by the seasons, wind- and tidal mixing. 

Hence, their density changes with the seasons, due to alterations in surface temperature 

and salinity, and therefore the T/S relationship is not useful in distinguishing surface 

water masses. However, should water at a depth which is not strongly influenced by the 

seasons, have the same T/S relationship throughout the year, the TS-curve would be 

displayed by one value. T/S values for one station plotted from different depths are 

depicted in a single line (e.g. Fig. 2.36). T/S lines that are close to each other, or 

overlap, indicate that the same characteristic water mass was present at those stations. 

Figure 2.36 presents the T/S diagram for the Ellett line stations.
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Fig. 2.36 Temperature-salinity diagram of stations along Ellett Line transect (D257 in 
autumn 2002).

In the T-S diagram (Fig. 2.36) surface values (those with the highest temperature)

differed between the stations. As explained above, the T/S values of surface water

should not be taken into account when making conclusions about similarities between

water masses at different stations. In deeper waters, however, definite trends were

present. T/S values for 2G appeared as a single data point (hidden by points for IG).

This indicated that the water column at 2G was homogeneous, well mixed, which was

expected as the water depth at 2G was only 26 m, a depth that can still be affected by

wind or tidal mixing especially in autumn. The co-incidence between the data of 2G and

IG, indicated that those two stations were located within the same water mass. Data

points and lines for stations 4G, 6G and 7G all lie very close together. 6G, with only 36
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m depth a relatively shallow station, was represented by the same water mass as that at 

station 7G from 34 to 80 m. 6G surface water, to a depth of about 24.5 m, also 

resembled that of 4G between 33 and 43 m. This water mass was the same as found at 

7G from 8 m to 67 m. The deeper water at station 4G was an intermediate form of lOG 

and 7G water.

The upper water mass at lOG seemed to resemble a mixed form of water at stations IG 

in 170 m and 4G from about 45 m depth. This is consistent with a current (Ellett 1979; 

McKay et al. 1986), which flows in a gyre, cormecting station lOG with the area 

between IG and 4G, as indicated in Fig. 2.2. At depth less than 68 m station 9G was 

relatively distinct from the other stations, but in its properties closest to 7G, M and F. 

The T-S diagram showed that deeper water at stations 7G, 9G and lOG had probably 

originated from the same water mass source. From approximately 97 to 100 m, 7G 

water was identical to that at 9G in approximately 68 m depth. 7G water at 107 m 

resembled lOG water at 75 m. 9G and lOG water were identical at 106 m and 190 m, 

respectively.

Stations M and F clearly represented one water body, indicated by their overlapping T/S 

lines. The closeness of T/S lines of lOG and 9G evidenced that the bottom water of 

stations 9G (124 m) and lOG (190 m) shared the same origin as water at approximately 

228 and 146 m depth at M and F, respectively.

2.1.1.2 Inorganic nutrients along the Ellett Line transect 

2.L 1.2.1 Open ocean stations

Figures 2.37, 2.38 and 2.39 show profiles of inorganic nutrient concentrations at the 

open ocean stations M and F. For all nutrients these generally increased with depth. DIP 

concentrations <0.1 pM were found between the surface and 80 m depth. Thereafter
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DIP rapidly increased until about 150 m. The DIP concentration then increased again, 

but not as rapidly, between -1 5 0  and -  1000 m at both stations. In greater depth DIP 

concentrations stayed relatively constant with maximum concentration 10 times that at 

the surface, reaching -  1 pM in the deepest samples.

Phosphate [pM]
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1750-
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Fig. 2.37 Depth profiles of dissolved inorganic phosphate (DIP) concentration in pM at 
station M and F.
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Fig. 2.38 Depth profiles of dissolved inorganic silicate (DSi) concentration in pM at 
station M and F.
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At both open ocean stations dissolved inorganic silicate (DSi) was almost depleted in 

the top 15 m of the water column (Fig. 2.38). The DSi concentration at stations M and F 

were below 1 pM in the upper 15 m water depth. This increased to a maximum of -  17 

pM in the greatest depth.

The profile of the dissolved inorganic nitrate (DIN) (Fig. 2.39) concentration reflected 

that of the DIP concentration at both stations. The concentrations were lowest in the 

upper 80 m of the water column, increasing rapidly below this depth until about 150 m. 

Below that depth the increase was less rapidly until about 1000 m (at M) and 800 m 

depth (at F). Thereafter the DIN concentration stayed relatively constant with maximum 

values of 14.54 (1200 m, M) and 15.13 pM (1800 m, F).
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Fig. 2.39 Depth profiles of dissolved inorganic nitrate (DIN) concentration in pM at 
station M and F.

2.7.7.2.2 Shelf stations

Nutrient concentrations at the shelf stations IG to 60, were either homogeneous 

(mainly at station 20) or concentrations increased only slowly with depth. A rapid
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increase in the nutrient concentration was found at stations 7G (in about 60 to 80 m), 9G 

(in about 50 to 60 m) and in a weaker form at lOG (in about 20 to 30 m).

Figure 2.40 describes the DIP concentration in the water colunm along the shelf stations 

lOG to IG. The DIP concentration at stations IG to 6G was relative low throughout 

most of the water column, with weak increases observed at station 4G at about 75 m and 

at IG about 100 m depth. In general, no steep gradients in the DIP concentrations were 

measured at those stations. However, at stations lOG, 9G and 7G zones of rapid DIP 

increase were observed in about 10 to 30 m, 50 to 60 m and 60 to 80 m depth, 

respectively. At those stations the DIP concentration in the deepest water had increased 

about six fold (at lOG), twelve fold (at 9G) to five fold (at 7G) compared to the surface 

water.

Station
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Fig. 2.40 Contour plot of dissolved inorganic phosphate [pM] of the water column 
along the Ellett Line shelf stations lOG to IG.
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The DSi concentrations in the water column at stations lOG to IG are presented in 

Figure 2.41. DSi concentrations along the shelf transect ranged from 0.55 pM (4G, 30 

m) to 6.93 pM (7G, 130 m). They were in general slightly higher in the surface water at 

stations IG, 2G, 9G and lOG and increased with depth. As already observed in the DIP 

concentration, the DSi concentration at stations IG, 2G and 6G did not vary rapidly 

with depth. Increases similar to those in DIP were observed at lOG, 9G and 7G.

Station

40 50
Distance [km]

Fig. 2.41 Contour plot of dissolved inorganic silicate [pM] of the water column along 
the Ellett Line shelf stations lOG to IG.

The DIN concentrations are illustrated in Figure 2.42. The lowest DIN concentration of 

0.21 pM was observed at 5 m at 4G and the highest (11.53 pM) at 9G in 13 m. At 2G 

the DIN concentration was homogeneous within the whole water column at 2G and 

down to about 60 m at IG. It increased more rapidly with depth at stations 6 G and 4G. 

The highest concentration in 4G bottom water was about 29 times higher than at the 

surface.
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As previously described for DIP and DSi, steep gradients were found at lOG, 9G and 

7G in about 10 to 30 m (lOG), 50 to 65 m (9G) and 65 to 80 m (7G). The DIN 

concentration was 6 times (lOG), 20 times (9G) and 10 times (7G) higher than values in 

5 m.

Station

40
Distance [km]

Fig. 2.42 Contour plot of dissolved inorganic nitrate [pM] of the water column along 
the Ellett Line shelf stations lOG to IG.

In summary, nutrient concentrations in the surface waters of the shelf stations were in a 

similar range (~ 0.1 DIP, -1 .5  pM DIN and -  1.5 pM DSi) to those found at the open 

ocean stations. It was only at depths exceeding these of the shelf stations, that nutrient 

concentrations at M and F were further elevated.

2.1.1.3 Phytoplankton along the Ellett Line transect

Table 2.9 lists the species that were enumerated at shelf and open ocean stations along 

the Ellett Line. Most of the species found were also present at station LY 1 between
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November 2000 and end of July 2003. The only species that were not previously 

enumerated at LYl were the dinoflagellate Ceratium horridum (Cleve) Cleve, the 

silicoflagellate Ebria tripartita (Schumann) Lemmermann and the diatom Guinardia 

striata (Stolterfoth) Hasle. A diatom presumably belonging to the genus Dactyliosolen^ 

which was not D. fragilissimus, as frequently observed in LYl samples, was only found 

at stations M and F.

Species found at LYl, but not during cruise D257 were Leptocylindrus minimus^ 

Coscinodiscus spp., Odontella mobiliensis and Mesodinium rubrum. These results were 

not surprising, as L. minimus was generally not found at LYl after August and 

Mesodinium rubrum was only observed during July and August. Coscinodiscus spp. and 

Odontella mobiliensis were very rarely found in LYl samples; Coscinodiscus spp. were 

found in low numbers mainly in July, and in total two cells of O. mobiliensis were 

enumerated in a February sample.

As stations differed in their depth and different numbers of samples were taken at each 

station, cell numbers for each species were averaged per station over the top 100 m of 

the water column. The top 100 m were chosen because most of the taxa were only 

abundant down to that depth.

The genus which was most abundant was Chaetoceros. Chaetoceros spp. > 10 pm were 

most prevalent at 4G (with more than 25.6 x lO'̂  cells • L^ in the standardised sample at 

that station), while Chaetoceros spp. <10  pm were most abundant at 2G, with about 

71% of all enumerated Chaetoceros spp..

Diatoms belonging to the P. seriata group were the fifth most abundant group in the 

averaged samples, with mean maximal abundance of about 1.9 x lO'̂  cells • L'  ̂ per 

sampled depth at station 2G. Most of the enumerated taxa were observed in highest 

average abundance at station 2G or 4G. Phytoplankton that was most abundant at one of 

the coastal stations (IG to 4G) was present at that station in a percentage of its total
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abundance below 50%, except at 6G, where 54% of all Guinardia striata cells were 

found. At lOG most of all P. americana and Rhizosolenia styliformis cells were 

observed. No species was found in maximal numbers at station 9G.

Table 2.9 List of the enumerated taxa along the Ellett Line transect. For each species the 
mean of cell abundance sampled in the top 100 m was taken. The maximal abundance 
of a species at one station is shown, the max. abimdance observed at that station as 
percentage of the total mean abundance found in all samples, and the station at which 
the abundance of the taxon was highest (averaged per sample in the top 100 m depth at 
that station).
Species Cumulative Max. abundance Max. abundance at Station at

mean [cells • L ‘] in one station [%] as which max.
abundance one sample percentage of total abundance
[cells • L ] at abundance at all was found
all stations stations

Chaetoceros spp. >10 pm 693,922 256,242 36.9 40
Chaetoceros spp. < 10 pm 269,482 192,473 71.4 20
Lauderia annulata 172,456 56,410 32.7 40
Dinoflagellates < 20 pm 62,072 11,210 18.1 F
P.seriata group 56,407 18,780 33.3 20
Asterionellopsis glacialis 22,407 7,413 33.1 20
Eucampia zodiacus 21,332 5,853 27.4 20
Thalassiosira spp. 19,881 6,393 32.2 40
P. delicatissima group 19,660 4,340 22.1 F
Dinoflagellates >20 pm 19,591 3,257 16.6 40
Leptocylindrus danicus 17,380 4,603 26.5 40
P. americana 9,898 2,625 26.5 lOO
Guinardia delicatula 6,267 1,404 22.4 lO
Ceratium lineatum 4,600 1,520 33.0 20
Cylindrotheca closterium 4,262 1,160 27.2 20
Rhizosolenia styliformis 4,237 1,210 28.6 lOO
Thalassionema nitzschioides 3,071 1,387 45.2 20
Ditylum brightwellii 1,610 400 24.8 lO
Rhizosolenia setigera 1,475 920 62.4 40
Prorocentrum micans 1,128 408 36.2 lO
Paralia sulcata 825 273 33.1 20
Dactyliosolen sp. 758 545 71.9 M
Ceratiumfusus 570 167 29.2 20
Ceratium furca 519 247 47.5 20
Dictyocha speculum 421 196 46.6 lO
Pleurosigma sp. 398 93 23.5 20
Guinardia striata 394 213 54.1 60
Dinophysis acuta 339 107 31.5 20
Corethron sp. 299 127 42.4 20
Ceratium tripos 198 55 27.7 F
Ceratium horridum 166 60 36.2 60
Dinophysis acuminata 127 47 36.6 20
Skeletonema costatum 123 57 46.2 40
Meuniera membranacea 101 48 47.4 70
Dinophysis norvégien 97 53 55.0 40
Ebria tripartita 82 33 40.7 20
Stephanopyxis turris 47 24 50.7 40
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At the open ocean stations M and F, diatoms belonging to the P. delicatissima group 

(station F), Dactyliosolen sp. (M), Ceratium tripos (F) and dinoflagellates < 20 pm (F) 

were most common. Dactyliosolen sp. was only present at M and F, while the P. 

delicatissima group and dinoflagellates were also found at the other stations. The 

average abundance of the P. delicatissima group at M represented ca. 33% of its 

average abundance at all stations. Of all species, only diatoms of the P. delicatissima 

group, Dactyliosolen sp., P. seriata. (in very low numbers), Chaetoceros spp., 

Cylindrotheca closterium, Guinardia striata (only three cells), the two Rhizosolenia 

species, Thalassiosira spp., dinoflagellates enumerated in size classes, all Ceratium 

species, Dinophysis norvegica, Dictyocha speculum and Ebria tripartita occurred at the 

open ocean stations. In general densities were lower in the open ocean than at the shelf 

stations.

The abundance of each species averaged per sample for the top 100 m is shown in 

appendix 3. Cell density profiles for species that were abundant at three or more depths 

at the open ocean stations are shown below. Also presented are contour plots showing 

the distribution along the shelf stations of diatoms belonging to the Pseudo-nitzschia 

groups and other representative abundant diatom and dinoflagellate species.

2.1.1.3.1 Phvtoplankton at M and F

Figure 2.43 shows diatoms that were found at stations M and F in three or more depths:

P. delicatissima group, Cylindrotheca closterium and Thalassiosira spp.. All of these

were also abundant at the shelf stations. Diatoms of the P. delicatissima group reached

their highest concentrations at the open ocean stations (6.6 x 10̂  cells • L * in 30 m at

M), while Cylindrotheca closterium and Thalassiosira spp. were found in higher

densities at the shelf stations. Cells were mainly found in the upper 100 m. For diatoms

of the P. delicatissima group highest cell densities at M and F were found in 30 m
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depth, only very few cells of the P. delicatissima group were observed below 100 m. 

Cylindrotheca closterium and Thalassiosira spp. were abundant in the top 30 m at both 

stations.
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Fig. 2.43 Depth profiles of cell numbers of the most abundant diatoms at station M and 
F. Note the changing scale of the abscissa below 100 m depth.

Figure 2.44 illustrates the distribution from surface to bottom waters of dinoflagellates

enumerated in size classes greater and smaller than 20 pm and Ceratium species.
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Similar to the diatoms, these organisms were also mainly found in the surface water. 

Dinoflagellates > 20 pm were observed in greatest cell density within the top 30 m. 

About twice as many cells were found in the surface water at F than at M. No 

dinoflagellates of that size class were found below 100 m depth, Dinoflagellates < 20 

pm were observed in all depth at both stations, with maximum cell density at 30 m. 

Again, the dinoflagellates were more abundant at F than at M.

cells L "(x 10^ cells L"’(x 10 3)
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Fig. 2.44 Depth profiles of cell numbers of the most abundant dinoflagellates at station 
M and F. Note the changing scale of the abscissa below 100 m depth.
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At both stations Ceratium species were found in maximal numbers in 15 m depth and 

no cells were found below 30 m. Although their cell numbers (with a maximum of 320 

cells • L \  15 m at M) were relatively low, as these cells were amongst the largest of all 

species mentioned in this study, their biomass may be significant.

2.1.1.3.2 Ph\toplankton along the shelf stations

All taxa were most abundant in the top 100 m of the water column. For many taxa the 

maximum depth in which they were found decreased from IG towards lOG. Lowest cell 

densities were found at 9G.

Station
lOG 9G 7G 6G 4G 2G IG
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Fig. 2.45 Contour plot of vertical and horizontal distribution of P. seriata group 
abundance in [cells • x 10̂ ] along the shelf stations (lOG to IG).

Cells belonging to the P. seriata group (including P. seriata, P. australis, P. cf. 

subpacifica, P. fraudulenta and P. pungens, see chapter 3) were mainly found in the top

126



Chapter 2

100 m, with a local maximum (more than 26 x 10̂  cells - L^) in 40 m depth at IG, and a 

decrease in density from 1 G to 9G throughout the water column (Fig. 2.45).

Figure 2.46 shows abundance data for the P. delicatissima group (including P. 

delicatissima and P. pseudodelicatissima, see results chapter 3) obtained from stations 

lOG to IG. Again highest cell densities were found above 100 m water depth.

Station 
7G 6G 2G IG

____

225-

250

Distance [km]

Fig. 2.46 Contour plot of vertical and horizontal distribution of P. delicatissima group 
abundance in [cells • x 10̂ ] along the shelf stations (lOG to IG).

Similar patterns to the P. seriata group were observed, except at 6G, where a slightly 

elevated cell density was found in 15 m depth. However, cell densities were 

considerably lower, ranging from 300 cells • to 3.7 x 10̂  cells • L \

Cell densities of Chaetoceros species (both size classes) are presented in Figure 2.47. 

Below 100 m, cell density was low (at IG), or zero. Highest Chaetoceros spp. cell 

numbers • were usually found between 5 and 30 m, and with maxima at stations IG
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(540 X 10̂  cells • L % 5 m) and 4G (364 x 10̂  cells • L \  5 m). Lowest numbers were 

found at 9G. From 9G towards lOG Chaetoceros spp. cell density again increased in 

waters < 25 m, following the same pattern as the other species.

Staticm

3D 40 a  
Distance [km]

Fig. 2.47 Contour plot of vertical and horizontal distribution of Chaetoceros spp. (both 
size classes together) abundance in [cells • L'  ̂ x 10̂ ] along the shelf stations (lOG to 
IG).

The vertical and horizontal distribution of abundance of other diatoms (e.g. 

Thalassiosira spp., Lauderia annulata and Leptocylindrus danicus) was very similar to 

that of Chaetoceros species, with no cells or very low densities below 100 m, maxima 

of cell densities at 4G and lowest numbers at 9G.

The distribution of the abundance of dinoflagellates enumerated in the size class > 20 

pm is presented in Figure 2.48.
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They were found in maximal abundance (6.6 x 10̂  cells • L^) in 5 m water depth at 4G. 

Cell numbers in that depth decreased towards 2G and lOG. At 9G most of the diatom 

taxa occurred in low numbers throughout the water column, this was different for the 

dinoflagellates. In 5 m at 9G ~ 3.5 x 10̂  cells • L ' were found, their abundance 

decreased with depth, but still about 1000 cells were enumerated in 62 m depth. A 

similar concentration was found at lOG in 25 m depth, at 7 G in 90 m, 4G in 70 m and 

at IG in about 60 m. At stations IG, 6G and 7G local maximal concentrations of 

dinoflagellates > 20 pm were observed in 15 m depth.

Station

Distance [km]

Fig. 2.48 Contour plot of vertical and horizontal distribution of dinoflagellates > 20 pm 
abundance in [cells • x 10̂ ] along the shelf stations (lOG to IG).

Dinoflagellates < 20 pm showed a similar abundance pattern. However, the maximum 

cell density was observed at station 9G (17.1 x 10̂  cells • L^). The distribution of 

Ceratium spp. was similar to that of Chaetoceros species, with highest cell numbers in 

about 15 m at 4G and a decreasing trend in abundance with depth and towards 9G.
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2.1.1.4 Statistical analysis of samples along the Ellett Line transect

2.7.1.4.1 Multidimensional Scaling

Figure 2.49 illustrates similarity in species assemblage in samples taken along the Ellett 

Line transect. The MDS ordinations of samples divides open ocean stations (M and F) 

from the shelf stations, and indicates great similarity in species composition and 

abundance in samples taken at M and F and within the shelf stations.

D257

lOG
M# #

9G. 6G
70

F# 2 c f '°

Stress: 0.01
Fig. 2.49 MDS ordination of stations along the Ellett Line transect, sampled during 
D257. Samples above 100 m depth were included, data were fourth root transformed. 
Dots ( • ) symbolise the placement of station.

The ordination of the shelf stations broadly reflected their geographical location. The 

shelf stations IG and 2G, 4G and 6 G and 7G and 9G were placed very closed to each 

other. The very low stress factor of 0.01 indicates the good 2-dimensional representation 

of the multidimensional species space.

2.1.1.4.2 Principal component analysis

The ordination of Ellett Line stations IG to F according to their measured 

environmental parameters temperature, salinity, density, phosphate, silicate and nitrate 

using PGA is shown in Figure 2.50.
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Fig. 2.50 Principal component analysis of stations along the Ellett Line transect, 
including normalised environmental data (temperature, salinity, density, phosphate, 
silicate and nitrate) of the upper 100 m of the water column. The ordinate represents the 
first component and the abscissa represents the second component.

The majority (58.4%) of the variance in the data was explained by the principal 

component 1 (PCI), while component 2 (PC2) accounted for 35% of the variation (total 

variation = 93.4%), making the 2-dimensional ordination a good representation of 

differences in environmental factors between stations. Within PCI nitrate was the 

variable with the highest influence on the ordination, followed by temperature, 

phosphate, silicate and salinity (see Tab. 2.10). In PC2 salinity was most important for 

the placement of stations, followed by silicate, phosphate, temperature and nitrate. 

Similarly to the MDS plots, the PCA diagram placed stations lO and 20, 90  and 70  

and M and F close to each other, indicating a high similarity in the effect of the above 

environmental factors at those stations. While PCI separated the coastal stations lO to 

60 from the other shelf and the open ocean stations, PC2 divided all shelf stations (lO  

to lOO) from the open ocean stations (M and F).
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Table 2.10 Eigenvalues of the environmental variables (coefficients in the linear
combinations of variables making up PCs]

Variable PC I PC 2 PC 3 PC 4 PCS
nitrate -0.561 -0.12 0.524 0.014 0.629
phosphate -0.46 0.436 0.205 -0.567 -0.485
salinity -0.314 -0.62 0.215 0.358 -0.586
silicate -0.314 0.582 -0.177 0.714 -0.062
temperature 0.509 0.27 0.778 0.203 -0.148

2.1.1.4.3 Redundancy analysis

RDA indicated that of all measured environmental parameters, only salinity (Monte 

Carlo test, p = 0.044) had significant impact on the composition and distribution of the 

phytoplankton assemblage. Species that were explained by up to 85% by the axes were 

included in Figure 2.51. The arrow representing salinity was placed along the x-axis, 

while the y-axis can be interpreted as standing for other, not measured, environmental 

factors. Open ocean, high salinity stations M and F are placed furthest left, in the same 

direction as salinity. Stations lOG to 4G were situated between x-axis positions -0.5 and 

+0.5, indicating intermediate salinity conditions, while IG and 2G were explained by a 

negative correlation with salinity. All stations and species seemed to be influenced by 

other, not measured, factors. The analysis divided species that were present and 

relatively abundant at the open ocean stations M and F from those that mainly occurred 

at the shelf stations. Species, such as the P. delicatissima group and Dactyliosolen sp. 

were closely associated with stations M and F, where they were the most abundant 

species, together with dinoflagellates (both size classes), Ceratium species and the 

diatom Cylindrotheca closterium.
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Fig. 2.51 RDA correlation triplot as result of an RDA of samples taken in the upper 100 
m of the water column along the Ellett Line transect. Analysis was based on the relative 
phytoplankton abundance (standardised by norm) and environmental parameters 
significantly (Monte-Carlo test, p < 0.1) influencing the species ordination. Sampled 
stations are indicated by circles, phytoplankton species and salinity are represented by 
arrows. Species abbreviations: Asg, Asterionellopsis glacialis, Cb, Chaetoceros spp. > 
10 pm; Cfc, Ceratium furca; Cfs, Ceratium fusus; Cho, Ceratium horridum; Co, 
Corethron sp.; Cs, Chaetoceros spp. < 10 pm; Cyl, Cylindrotheca closterium’, Dac, 
Dinophysis acuta’, Daf, Dactyliosolen sp.; D am , Dinophysis acuminata’, Db, 
Dinoflagellates > 20 pm; Dib, Ditylum brightwellii; Dis, Dictyocha speculum, Ds, 
Dinoflagellates < 20 pm; Ezo , Eucampia zodiacus’, Gui, Guinardia striata’, Lau, 
Lauderia borealis’. Led, Leptocylindrus danicus’, Mem, Meuniera membranacea; Pd, P. 
delicatissima group; Prm, Prorocentrum micans’, P s , P. seriata group; Tha, 
Thalassiosira sp.; Thn, Thalassionema nitzschioides.

The other species shown in Figure 2.51, including the P. seriata group, Asterionellopsis 

glacialis and Chaetoceros species, were either not present, or occurred in very low 

numbers at the open ocean stations M and F. They were influenced by factors that were 

not measured and showed no direct correlation with salinity.
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2.1.2 Main results

The main results from LYl, the Spelve-Creran transect and the Ellett Line are 

summarised here:

2.1.2.1 Temporal study at LY1

• The water colunm at LYl was well mixed and occasionally influenced by 

freshwater influx; a seasonal pattern was reflected in the temperature profile.

• Elevated nutrient concentrations were found in winter and low nutrient 

concentrations in summer.

• DIP, DSi and DIN were negatively correlated with salinity.

• Fifty-three phytoplankton taxa were identified at LYl, Chaetoceros spp. and 

Skeletonema costatum were numerically the most abundant taxa.

• Six bloom events were observed in each year; while the P. delicatissima group was 

highly abundant during the spring blooms, the P. seriata group dominated the 

summer bloom.

• Most species occurred over a wide temperature range, although individual maximal 

cell densities were observed at certain temperatures (P. delicatissima: ~ 8 °C, P. 

seriata group: ~ 11.5 °C, Stephanopyxis turris: ~ 14°C).

• A significant positive correlation was found between the abundance of the P. seriata 

group and temperature.

• Several events of high cell density (exceeding the average density of all samples) of 

P. delicatissima and/or P. seriata occurred during the year, persisting from one 

week to several weeks.

• A statistically significant seasonal pattern in the floristic composition and abundance 

of phytoplankton was evident; temperature and nutrient concentrations were the 

main factors influencing the phytoplankton assemblage.

2.1.2.2 Spelve-Creran transect

• The seawards stations 700 and LY3 showed physical characteristics of the open sea 

(higher salinity, lower temperature), stations LY2, LYl and C2 shared 

hydrographical features, although LY2 and LYl were influenced by freshwater 

runoff, C3 and C5 represented sea-loch conditions.
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• The DSi concentration rapidly decreased in Loch Creran between July and August.

• The most abundant species in summer 2002 was Leptocylindrus danicus, 

dinoflagellates were more abundant in Loch Creran than at other stations.

• The similarity of LYl, LY2 and C2 in their physical, chemical and biological 

parameters, indicated that the monitoring site represented Scottish inshore waters of 

the Firth of Lome - not sea-loch or "exposed, open sea" conditions.

2.1.2.3 Ellett Line transect

Open ocean and shelf stations were well mixed in the upper ~ 100 m.

Salinity increased from coastal waters towards the open ocean, while temperature 

decreased (apart from 9G, where temperature was elevated in the top 50 m). 

Phytoplankton was abundant in the top 1(X) m.

Open ocean stations M and F consisted of the same water mass.

The properties of the water mass at station 9G were more similar to 7G, M and F 

than lOG water.

Stations IG and 2G as well as 4G and 6G represented the same water masses.

The inorganic nutrient concentrations were similar throughout the top 100 m at shelf 

stations.

The concentration of phytoplankton was higher on the shelf than in the open ocean. 

Within the shelf the phytoplankton density was lowest at 9G, except for 

dinoflagellates < 20 pm.

The P. delicatissima group, was more abundant at the open ocean stations than at 

the shelf stations.

Open ocean stations M and F showed significant differences from the shelf stations 

in the phytoplankton composition and abundance.

Salinity was the only factor measured that had a significant statistical influence on 

the phytoplankton assemblage; other, not measured, factors might have played an 

important role as well.
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2.2 Discussion

2.2.1 Temporal monitoring at LY 1

2.2.1 ■ 1 Long-term phytoplankton monitoring

Long-term monitoring of phytoplankton is necessary to detect any differences in the 

phytoplankton assemblage that have occurred due to climatic or hydrographic changes 

(e.g. as speculated in Lange et al. 1992). An intensive monitoring program can help 

detecting trends against a background of short-term, seasonal and interannual 

variability.

Although some sampling of the phytoplankton community and related environmental

factors was conducted in the Firth of Lome and Loch Creran in the seventies and the

early eighties (e.g. Tett & Wallis 1978; Tett et al. 1981a, b; Grantham 1983a, b;

Grantham et al. 1983), a time series was not maintained. A long term series in the Firth

of Lome could have provided information about occurrences of toxic blooms in the past

before the establishment of fish farming and the shellfish industry, and hence given

insight about potential anthropogenic impact on the ASP situation in Scottish waters.

Therefore there was a requirement to start a new time series, and also to conduct

laboratory experiments (see chapter 4), to investigate the impact of environmental

factors on Pseudo-nitzschia species and domoic acid production.

The information from early studies is of limited use due to changes in taxonomy and/or

grouping of phytoplankton species (e.g. Dortch et al. 1997; Vrieling et al. 1996). When

studying the phytoplankton in Loch Creran in 1979, Tett et al. (1981b) summarised N.

delicatissima, N. seriata and Cylindrotheca closterium. However, their drawings

suggested the species P. delicatissima (then called N. delicatissima), P. seriata, P.

australis and/or P. fraudulenta (all called N. seriata in that study) might have been

present. Within this study, original phytoplankton samples that had been taken by P.
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Tett during the 1970's in local waters were obtained and re-examined. However, 

unfortunately all diatom frustules in the Lugol's Iodine preserved samples had dissolved 

and hence could not be re-examined for Pseudo-nitzschia species determination using 

modem taxonomy.

2.2.1.2 LYl suitability as a monitoring site

Sampling the transect from Loch Spelve to Loch Creran in summer 2002 indicated that 

LYl represented westem Scottish coastal waters, that were not typical for a sea loch and 

also did not mirror exposed, seawards locations. The conditions in Loch Creran were 

characteristic of a typical Scottish sea loch, in its dimensions, freshwater input and tides 

(Tett & Wallis 1978) and temperature and salinity stratification down to about 7 m (in 

August 2002). In contrast to the Loch Creran stations, station 700 and LY3 were 

influenced by the open sea, showing higher salinities and well mixed water columns, 

Hence, not characterised by sea loch or open sea conditions, stations LY2, LYl and C2 

were represented the general properties of the Lynn of Lome. The occasional fresh 

water influx observed at LYl only rarely influenced 10 m depth, from which 

phytoplankton and nutrient samples were taken. Results of multidimensional scaling, 

showed that in the configuration LYl was placed between the seawards stations and the 

sea loch stations, supporting its good representation of "average" westem Scottish 

coastal waters.

2.2.1.3 Phytoplankton monitoring at LY 1

The phytoplankton monitoring at LYl showed a repeatable annual cycle of 

phytoplankton species succession. Pseudo-nitzschia species blooms also occurred in a 

regular pattem. A typical species succession pattem, related to availability of inorganic
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nutrients and their recycling, as observed in temperate waters (e.g. Drebes 1974) was 

found, with diatoms dominating the spring bloom and the occurrence of ciliates and 

dinoflagellates during summer and early autumn. However, in this study 6 chi a peaks 

were observed throughout the year (see table 2.5, section 2.3.1.4), which is different 

from the "classical" species succession model, consisting of one phytoplankton spring 

bloom, and a late summer/ early autumn bloom (e.g. Ott 1996). Those chi a peaks 

reoccurred with a similar timing and species composition, and were always composed 

of multiple diatom species.

The multiple chi a maxima also demonstrate the necessity of regular and temporally 

highly resolved sampling, when monitoring phytoplankton, and in particular harmful 

algae. Some blooms, including those of potential harmful Pseudo-nitzschia species 

would sometimes persist for just a short period of less than a weeks time. A monthly or 

fortnightly sampling would likely miss blooms that are potentially of only short 

duration, but could be highly toxic.

Some species were found at one time of the year (e.g. Stephanopyxis turris, 

Rhizosolenia setigera), while others were found during the whole year (e.g. Paralia 

sulcata, Cylindrotheca closterium). Species like Stephanopyxis turris and Rhizosolenia 

setigera might have a preference for higher temperatures as found in westem Scottish 

waters in late summer/ early autumn. The occurrence of Paralia sulcata, which was the 

only species to be found regularly dining winter, might be related to the fact that it is 

generally a benthic species, but might have been transported into the water column by 

tidal mixing and turbulence caused by storms, as observed during the winter. 

Cylindrotheca closterium was the only species that was present in every sample, despite 

its relatively low numbers, indicating its broad tolerance to many environmental factors.
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With exception of the ciliate blooms in summer, the study confirmed the impression that 

the Firth of Lome phytoplankton was diatom dominated, in contrast to the Firth of 

Clyde, where large dinoflagellates, including Ceratium spp. and Protoperidinium 

species, were abundant in summer (Tett 1992).

'Small flagellates' (< 5 pm) were not enumerated, but were present in the samples 

throughout the year. They might be an important component of the phytoplankton 

community in Scottish waters, as for example observed in late spring in Loch Striven by 

Wood et al. (1973).

2.2.1.3.1 Spring blooms

Two consecutive blooms were observed in spring, the first one lasting from March until 

April and the second one in April and May. This was consistent with results from 

Sakshaug & Myklestad (1973) from the TrondheimsQord in Norway, who also observed 

two spring blooms in 1970 and 1971.

In the present study, the first chi a peak of the year with a concentration above 1 pg • L^ 

occurred in March, which agrees with observations from Loch Creran in the 1970's 

(Tett & Wallis 1978). The dominant species in the first spring bloom in this study and 

past studies of local waters and the Trondheimsford (Sakshaug & Myklestad 1973; Tett 

et al. 1981b; Tett et al. 1986; Tett & Edwards 2002) were Skeletonema costatum, P. 

delicatissima and Thalassiosira spp..

Similar to the first bloom of the year described in the Trondheimsford, the first spring 

bloom at LYl started to develop in waters abundant in nutrients. Sakshaug & Myklestad 

(1973) described those conditions for the first spring bloom as analog to a "batch 

culture". A store of nutrients was built up during winter and was likely to be the main 

source of nutrients for this bloom. The same build up of nutrients over the winter
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months, and their rapid uptake by the first spring bloom was observed at LYl from 

2001 to 2003.

The second bloom in the present study was dominated by Chaetoceros species, which 

continued as a third bloom into June. As inorganic nutrients were largely used up during 

the first spring bloom, the second bloom and the following ones until July might have 

been governed by nutrient supply from runoff and outflow of nutrient rich water from 

the sea lochs. Additionally, the increasingly available light due to the increase in day 

length may have contributed to the following events of high phytoplankton density.

2.2.1.3.2 Summer blooms

In each year, the ciliate Mesodinium rubrum, diatoms of the P. seriata group and 

Leptocylindrus danicus (in 2001) dominated the summer bloom at LYl. High 

abundances of that ciliate are conunon in summer in Scotland (Tett et al. 1992) and 

world-wide (e.g. Bay of Fundy, Martin et al. 1990; Crawford 1989). Mesodinium 

rubrum contains cryptomonad endosymbionts, which possess a red phycobiliprotein 

pigment, giving blooms their characteristic red colour and enabling the ciliate to 

photosynthesise (for review see Crawford 1989). Water discoloration due to M. rubrum 

has previously been reported from Loch Spelve (Isle of Mull) (Tett et al. 1981b). 

Although there is no evidence of toxin production, blooms of M. rubrum have been 

associated with harmful effects on marine life (reviewed by Landsberg 2002). During 

summers of 2001 and 2002, when water discoloration due to M. rubrum was observed 

in the Lynn of Lome, SAMS was contacted by local salmon farmers who inquired about 

the current phytoplankton situation. They reported that their fish were showing an 

unusual behaviour ("vigorously jumping in the cages"). One might speculate that this 

behaviour was caused by a M. rubrum bloom. The ciliates, which carry cirri that are

arranged in a ring around the cell, might have clogged the fish gills.
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The measured chi a concentrations at LYl and along the Spelve-Creran transect in 

summer 2002 were related to the abundance of Mesodinium rubrum, the P. seriata 

group, Chaetoceros species and Leptocylindrus danicus. Again, those observations are 

consistent with results from Loch Creran from the late 1970's, where the summer bloom 

was then dominated by small Chaetoceros species, which reached numbers up to 10̂  

cells • L^ and Leptocylindrus danicus (10  ̂cells • L^ at beginning of September) (Tett et 

al. 1981b). Confirming observations of this study, in earlier studies Leptocylindrus 

danicus and 'Nitzschia seriata' were often reported together as the dominant 

phytoplankton species in local waters (e.g. in Scottish sea lochs in August 1926, 

Marshall & Ott 1927; Loch Etive in August 1970 and 1971, Wood et al. 1973) and 

southern UK waters in the summer (Maddock et al. 1989).

In this study dinoflagellates were most abundant during the summer and early autumn, 

but they did not dominate the phytoplankton assemblage. Similarly, in Loch Creran in 

the late 1970's, Tett et al. (1981b) observed dinoflagellates in high numbers only in late 

summer and early autumn. Interestingly, along the Spelve-Creran transect highest cell 

numbers of dinoflagellates (all taxa) were observed in Loch Creran. One factor 

influencing the abundance of dinoflagellates might have been the low salinity that was 

measured in the surface layer in Loch Creran. From observations in Loch Etive in the 

early seventies. Wood et al. (1973) concluded that dinoflagellates, which were 

numerous only in the surface layer, seemed to be favoured by low salinities.

2.2.1.4 Temporal distribution patterns of Pseudo-nitzschia spp.

The P. delicatissima and P. seriata group had different temporal distributions (see

appendix 1), with the former occurring in highest densities during spring and the latter

in summer and early autumn. The main differences between spring and summer

conditions in westem Scottish waters were high inorganic nutrient conditions in spring
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as opposed to low concentrations in summer, short day length in spring, long light 

availability in summer and cold water temperatures in spring contrasted by relatively 

warmer temperatures in summer. Hence the different time of maximal abundance 

suggests that both Pseudo-nitzschia groups have different tolerances of those factors.

For the P. delicatissima group the field observations suggested a tolerance for low 

temperature and short light conditions (the latter was confirmed in a laboratory 

experiment, see chapter 4, experiment C). The occurrence of P. delicatissima in summer 

and early autumn, although in a reduced cell density might indicate, that in spring and 

summer the group was composed of different species. Indeed, it is likely that the P. 

delicatissima group in spring was dominated by the non-toxic species P. delicatissima, 

as all cultures that were isolated during that time were identified as that species (chapter 

3). On the other hand in summer and early autumn, potentially toxic species of that 

group, such as P. calliantha, P. pseudodelicatissima and P. cf. delicatissima were 

identified by TEM from net samples together with P. delicatissima. This was also 

observed by Hasle et al. (1996) in samples from the Skagerrak and Norwegian coast 

between 1980 and 1993, who found P. delicatissima in highest abundance in spring and 

maximal P. pseudodelicatissima densities mainly in sununer. The maximal cell density 

of diatoms belonging to the P. delicatissima group (1.6 x 10̂  cells • L*̂ ) in the present 

study was found in April. This cell density is comparable with other reported maximal 

abundances of the P. delicatissima group found in other parts of the world (Table 2.11). 

In contrast to the P. delicatissima group, the P. seriata group seemed to be adapted to 

low inorganic nutrient conditions and long day lengths. In westem Scottish waters it 

contained at least two toxic species, P. australis and P. seriata (see chapter 3), which 

frequently occurred together with non-toxic P. fraudulenta, P. pungens and P. cf. 

subpacijjca. The maximum number of diatoms belonging to the P. seriata group in 

westem Scottish waters was ~ 10  ̂ cells • L '\ This is the trigger level of Pseudo-
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nitzschia density, which was noted by Bates et al. (Bates et al. 1998) to cause ASP. A 

cell density of the same magnitude had caused ASP in southern California in the 1990’s, 

killing pelicans (Buck et al. 1992; Work et al. 1993) and sea lions (Scholin et al. 2000). 

Although the average number of cells belonging to the P. seriata group was a 

magnitude smaller (10"̂  cells • L^) than the ASP trigger density, blooms in that density 

persisted for some weeks (Tab. 2.7), and might have lead to accumulation of DA in the 

food chain. Nitzschia seriata counts from Loch Creran in 1979 and 1980 (Tett & 

Edwards 2002) showed that potentially toxic species have occurred in numbers ~ 10̂  

cells • L^ for a couple of weeks, suggesting that DA contamination of marine life might 

have been possible at that time. However, shellfish was then not tested for DA and 

reports of shellfish poisoning in humans or marine wildlife are not known.

Cell numbers of diatoms belonging to the P. seriata group were comparable with other 

observations of blooms of those taxa at world-wide locations (see Tab. 2.12).

The precise timing of P. delicatissima and P. seriata maximal cell density might help 

forecasting blooms. However, to exactly predict and model the P. seriata occurrence, a 

better understanding of their physiology and the influencing factors are needed. The 

experimental work conducted in this study (chapter 4) gave some insight into P. seriata 

growth dynamics and its toxin production, but to establish a model for ASP prediction, 

further experiments on the algae and also algae-shellfish interactions are needed.
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2.4.1.5 Physical and chemical parameters at LY 1

Physical and chemical parameters at LYl obtained between 1978 and 1983 by 

Grantham (1983a, b), Grantham et al. (1983) and Tyler et al. (1983) were compared 

with this study (Fig. 2.52). Grantham (1983a, b) reported a relationship between low 

salinity surface water and high silicate concentration at LYl. This relationship was 

confirmed (Spearman rank p < 0.0001) and further negative correlations of DIP and 

DIN (p < 0.0001) at 10 m with salinity were identified. Salinity at LYl showed a 

variable annual pattem in years 2001 to 2003. This may be interpreted as a reflection of 

precipitation and fresh water influx influencing LYl, at 10 m depth. Precipitation was 

not measured, but the density and salinity profiles from LYl showed that, even at 10 m 

depth, LYl was from time to time affected by fresh water influx. This fresh water, 

presumably originating from outflow from Loch Creran, Loch Etive, or from further up 

the Firth of Lome (from Loch Linnhe), would have carried nutrients that contributed to 

the increase in the dissolved inorganic nutrient concentration at LYl and hence the 

observed negative correlation with salinity. Observations along the Spelve-Creran 

transect suggested that LYl was at times more strongly influenced by freshwater runoff 

from Loch Etive, than from Loch Creran. In July 2002, when lowest surface salinities 

were found at LYl an elevated salinity was observed at the entrance to Loch Creran 

(C2), compared to surface water in the Loch (see Fig. 2.22). The greater influence of 

Loch Etive freshwater runoff was due to the location of LYl, close to the entrance of 

Loch Etive and the higher fresh water mnoff from Loch Etive, which is with - 3x 10^ *  

m̂  • year about a magnitude higher than that from Loch Creran (~ 2.9 x 10® • m  ̂• year 

■̂) (Edwards & Sharpies 1986).
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Fig. 2.52 Comparison of physical (T, S) and chemical (NO3, PO4, Si, Chi a) parameters 
measured at LYl at 10m depth in 1978 - 1983 (diamond, squares, Grantham 1983a, b; 
Tyler et al. 1983) and in 2001-2003 (circles, this study).

Statistical analysis showed a significant difference in temperature (Mann-Whitney-U 

test, p = 0.007) in February between recent data (2001-2003) and those obtained 

between 1978 and 1983. While the average temperature in February between 1978 and
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1983 was 6.58°C (average from 5 data points), it was more than 1°C warmer between 

2001 and 2003 (7.74°C, average from 8 data points). This increase in temperature might 

be a result of warmer air temperature in winter, due to NAO (North Atlantic 

Oscillation), or possibly global warming, and could potentially cause an earlier start of 

the spring bloom. However, that would have resulted in an earlier peak of chi a, which 

was not observed. For other physical and chemical parameters and other times of the 

year (see Fig. 2.52) differences between recent and data from more than 20 years ago 

were not significant (p > 0.05). Most of the parameters, such as salinity, dissolved 

inorganic nutrient concentrations and chi a showed a high interannual variability.

2.4.1.6 Environmental factors and phytoplankton distribution

Redundancy analysis and Spearman rank correlation (p < 0.0001) showed that cell 

density of the P. seriata group was positively correlated with temperature, while 

abundance of the P. delicatissima group was not. In Monterey Bay, California during 

monitoring from 1989 to 1991, P. australis was also significantly correlated with 

temperature (maximum abundance during the warmer time of the year). However, many 

periods of high abundance were also associate with weak upwelling events that resulted 

in cooling at the sea surface (Buck et al. 1992).

While most of the species belonging to the P. seriata group that occur in Scottish waters

are known as temperate species (Hasle & Syvertsen 1996), P. seriata, is thought to be a

cold water species (Smith et al. 1994), with a restricted distribution to the North

Atlantic (Hasle 2002). It has previously been described as part of the under-ice

community (e.g. Smith et al. 1994; Quillfeldt von 1996; Fehling 2000), and can also

occur in the infiltration assemblage at the snow-ice interface, when the snow on the ice

surface is flooded with seawater (Homer 1990). However, cultured strains within this

study (chapter 3) were not affected by an upper lethal temperature limit of > 12° C, as
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found by Smith et al. (1994); they were successfully grown and maintained at 15° C. 

Furthermore, the temporal monitoring at LYl showed that diatoms of the P. seriata 

group were most abundant during summer and early autunrn, when water temperatures 

reached maximal values. Similar observations were made in eastern Canada, the Gulf of 

St. Lawrence region, where the higher abundances of P. seriata (> 5 x 10"̂  cells • L'^) are 

habitually found between June and September, when water temperatures range between 

10° C and 16° C (J.-Y. Couture, personal communication). The Scottish and Canadian 

field observations suggest that although seen as a psychrophilic species, P. seriata can 

adapt to higher temperatures and may occur at water temperatures > 12° C.

Apart from the correlation of some species with temperature, redundancy analysis 

showed a negative relationship between taxa that were abundant in the summer 

(including P. seriata group) and dissolved inorganic nutrients. Lowest, nutrient 

concentrations in the water were associated with highest phytoplankton abundance. 

Dortch et al. (1997) also observed a significant negative relationship between Pseudo- 

nitzschia spp. presence in Lousiana (USA) coastal waters and all nutrient 

concentrations. The low nutrient concentrations can be interpreted as a consequence of 

high phytoplankton cell density, rather than an indication of a preference of summer 

taxa for nutrient low water. The measured concentrations in the water are the remains of 

the nutrients that have been taken up and utilised by the phytoplankton, enhancing their 

biomass. As only dissolved inorganic nutrients were measured, it is not known what 

proportion of nutrients was steadily supplied, e.g. through efflux of nutrient enriched 

water from the sea lochs Etive, Creran, or water from further up the Lynn of Lome, and 

what proportion was immediately taken up by phytoplankton. It is likely that some 

nutrients such as silicate, phosphate or nitrate were limited in their abundance during 

the summer and may have governed the composition of the phytoplankton community 

at that time. In competition experiments with 11 marine phytoplankton species,
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including Pseudo-nitzschia pungens, Sommer (1994) showed that P. pungens (P. 

seriata group) was the dominant species at relatively low Si:N ratios. From this result 

one may conclude that in the field diatoms belonging to the P. seriata group might have 

still reached high cell numbers in the summer even at low DSi concentrations. Led by 

field observations from LYl, indicative of relatively high P. seriata group abundance 

during times of low DIP and DSi concentrations, the effect of phosphate and silicate 

limitation on P. seriata growth dynamics and domoic acid production was tested in 

laboratory experiments within this study (chapter 4, Fehling et al. 2004a). Results 

showed that P. seriata domoic acid production was enhanced by DIP or DSi nutrient 

limitation, and that the species was capable of utilising undetectable low concentration 

of silicate that had dissolved from empty firustules for renewed growth in late stationary 

phase. In the field, this ability to utilise even low amounts of silicate might hence 

explain the relatively high cell densities of the P. seriata group in summer at times of 

low DSi concentrations.

During summer 2002 a sharp decrease in the DSi concentration (see Fig. 2.26) was 

evident in Loch Creran from June to August. In the same time cell numbers of the P. 

seriata group increased rapidly (see appendix 2). Calculations from the silicate 

limitation experiment (chapter 4) showed that in stationary phase, before DSi was 

limited, cells had taken up approximately 0.6 nM DSi x cell'  ̂ • d a y T o  diminish the 

DSi concentration, in Loch Creran, Pseudo-nitzschia species would have taken up about 

2 to 4 nM DSi x cell'* • day'*, which is about an order of magnitude higher than the 

value obtained from the laboratory experiment. Diatoms belonging to the P. seriata 

group might have been only one of the diatom taxa that were causing the decrease in the 

DSi concentration in Loch Creran between July and August. At the same time rapid cell 

density increases were as well observed in Asterionellopsis glacialis, Chaetoceros 

species, Leptocylindrus danicus and Thalassionema nitzschioides (see appendix 2).
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RDA showed for LYl that apart from temperature and nutrient concentrations other 

factors, that were not measured in this study might have influenced the phytoplankton 

assemblage. Tett (1992) suggested for Scottish waters that apart from nutrients the 

phytoplankton floristic composition depends on light and mixing. One other factor 

might be grazing by zooplankton. It is known that zooplankton can influence 

phytoplankton dynamics by selective grazing and by differential excretion of limiting 

nutrients (e.g. Katechakis et al. 2002 and references therein). Data from continuous 

plankton records (CPR) (Colebrook 1982) showed a coupling between phytoplankton 

and zooplankton abundance, with highest numbers of zooplankton following those of 

phytoplankton. For the region between 48°N and 60°N it was suggested that 

zooplankton grazed the daily production of the phytoplankton (Colebrook 1982).

It has been hypothesized that DA might act as an antifeedant (summarized in Bates 

1998), due to the finding that DA was toxic to small estuarine copepods, although it was 

not toxic to larger copepods. Other studies (summarized in Bargu et al. 2003; Turner & 

Tester, 1997) found no effect of DA on copepod survival, but suggested that copepods 

may act as vectors to transport DA to zooplanktivorous consumers. For P. australis 

Buck et al. (1992) showed that they were grazed in high amounts by the midwater 

polychaete Poeobius meseres. Assuming that DA production doesn't negatively affect 

grazing on Pseudo-nitzschia species, it is likely that in Scottish waters one of the factors 

regulating Pseudo-nitzschia spp. and other phytoplankton blooms is grazing by 

zooplankton. However, in Loch Creran, Tett et al. (1985) observed relatively week 

mesozooplankton grazing.
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2.4.2 Ellett Line transect

2.4.2.1 Hydrographical features

Previous studies investigating the phytoplankton distribution and hydrographical 

parameters along (Savidge & Lennon 1987), or in the greater vicinity (Dodge 1993; 

Gowen et al. 1998; Yallop 2001) of the Ellett Line were conducted in spring and/or 

summer and hence make comparison with the present study difficult. However, some 

general hydrographical features, that influenced the phytoplankton distribution, were 

evident and may explain some of the observed results within the present study.

When sampling the Ellett Line, Savidge and Lennon (1987) distinguished between 

coastal waters (east of Barra Head), shelf waters (west of Barra Head) and open ocean 

(further west, beyond the shelf). Shelf waters were separated from the open ocean by a 

salinity boundary, this was also earlier reported by Ellett & Edwards (1983) and 

confirmed in the present study, where a strong difference in surface salinity was 

obvious between the shelf stations (mean surface salinity: ~ 35) and open ocean stations 

F (surface salinity > 35.3). However, because no additional shelf stations between lOG 

and M were sampled, the exact location of a salinity boundary could not be identified. 

Savidge and Lennon (1987) located a zone of active vertical mixing associated with 

strong tidal currents immediately adjacent to Barra Head (west of lOG). This spatially 

restricted zone is predominantly influenced by coastal water. Although in the present 

study this exact geographical region was not sampled, a change of hydrographical 

features was recognised at lOG, which was located close to that zone. Here the 

thermocline reached the surface and might have indicated the beginning transition to the 

hydrological features commonly observed in the Barra Head zone.

Physical, chemical and biological parameters at the shelf stations were affected by the 

general surface current patterns (see Fig. 2.2). The Scottish west coast water is mostly 

influenced by the Scottish coastal current, a northwards flowing stream of low-salinity
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water originating from the Irish Sea and Clyde Sea (McKay et al. 1986). The flow of 

this current was first shown by Ellett (1979) to diverge in the vicinity of Skye with part 

continuing northward through the Minch. A substantial fraction of this water was 

flowing in a narrow current southwards, close along the east coast of the Outer 

Hebrides. It would flow round Barra Head (southern tip of Outer Hebrides), continue as 

a northwards current west of the Outer Hebrides and mix with Northern Atlantic water 

(Fig. 2.2). As a result of the circular direction of part of the surface water current, 

surface water at lOG would have been composed of water that had flown northwards 

along the Scottish coast past the region of IG, 2G and 4G. This was confirmed by the 

T-S diagram (Fig. 2.36), which placed lOG water between water at IG, 2G and 4G, 

indicating that their water masses were similar. However, the surface temperature at 

lOG was slightly colder than that at IG, 2G and 4G and PCA and the MDS ordination 

separated lOG from the other stations, indicating that the water might have been 

modified by physical processes after passing stations IG, 2G and 4G. Temperature, 

salinity and nutrients in the top 30 m showed that surface water at lOG was represented 

by a similar water mass as found at IG, 2G and 4G in greater depth. Hence, it might be 

speculated that the deeper portions of the Scottish coastal current, surfaced somewhere 

between the eastern stations (IG, 2G and 4G) and lOG. The distribution of 

phytoplankton further connected lOG with the eastern stations. Most of the taxa (e.g. P. 

seriata and P. delicatissim a  group, Chaetoceros spp., Lauderia annulata, 

Asterionellopsis glacialis, Thalassiosira spp.) occurred in maximal cell densities at IG 

or 4G and again showed high numbers at lOG, in contrast to 9G and 7G.

At 9G the water column was well mixed in the upper 80 m and T and S values were 

elevated. Furthermore, the nutrient concentrations and phytoplankton density was lower 

in the top 50 m compared to the other shelf stations. This might have been due to the 

influence of Atlantic water which was evident in the increased salinity found at that
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station and towards 7G. Apart from the different origin of the water at 9G, the weather 

conditions during sampling might have affected the upper 50 m metres of the water 

column. 9G was sampled under severe gale conditions (Beaufort scale 9,47-54 miles • 

h'*), the storm might have mixed the water column.

The results from PCA separated coastal stations IG to 60  from the other stations 

mainly based on their nitrate concentrations, but also on T, the other nutrients and S. 

Stations IG to 6G were located closest to the coast and hence influenced by coastal 

runoff (evident in decreased surface salinity) which might have supplied nutrients. The 

separation of shelf stations from open ocean stations along PC2, with salinity as the 

main influencing factor, demonstrated that shelf and open ocean stations were subjected 

to different water masses and current systems. While the shelf stations were influenced 

by the Scottish coastal current and water that was modified by freshwater and Atlantic 

water influx, the open ocean stations were located in Atlantic water, with higher 

salinity.

The dissolved inorganic nutrient concentration increased with depth. This is in 

acordance with the general patterns of nutrient uptake by phytoplankton in the photic 

zone and typical regeneration processes (e.g. Parsons et al. 1984).

Savidge and Lennon (1987) found nitrogen concentrations in surface waters around 0.5 

pM • L * in August 1983. Concentrations observed in this study were in a similar range 

(1.5 to 0.25 pM • L'*) at the shelf stations, but elevated (up to 2.2 pM • L'*) in surface 

water at the open ocean stations. This might be an indication of nitrate resupply in open 

ocean waters. The deepening of the surface mixed layer, as observed in autumn, would 

entrain water from the thermocline, where nutrient concentrations are higher (see Tett & 

Wilson 2000).
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2.4.2.2 Phytoplankton distribution

2.4.2.2.1 General phvtoplankton
Most of the taxa that were found at LYl during the year where also observed during the 

cruise in late September/early October. However, physical, chemical and biological 

parameters indicated the end of summer conditions with a weakening vertical 

stratification and the beginning of a transition to autumn. This was evident by the lack 

of stratification, consequently enhanced sinking rates and declining phytoplankton 

growth due to lower light irradiance:

At stations IG to 6G, the difference between temperature in bottom and surface waters 

was less than 2°C. At stations 7G, 9G, M and F the upper 100 m and at lOG the top 80 

m showed little temperature stratification and hence significant mixing. This reflected 

the typical autumn decrease of phytoplankton in Atlantic waters north of 48 °N, which is 

associated with a reduction in the extent of thermal stratification to 2°C temperature 

difference in the top 200 m (Colebrook 1982). Mixing of the water column affected the 

vertical distribution of the phytoplankton. For some diatom species cell density maxima 

were found in about 40 m depth (e.g. Lauderia annulata and Leptocylindrus danicus at 

7G, Chaetoceros spp. in 15 m at 4G). Savidge & Lennon (1987) made similar 

observations in August 1983, with some diatoms being distributed with maxima of cell 

density spread over a great depth range.

Bienfang (1981) observed sinking rates of 0.2-1.7 m • day * for natural populations of 

temperate diatoms. The lack of stratification of the water column would have enhanced 

sinking rates. Furthermore, the phytoplankton decline would have been enhanced due to 

the lower irradiance levels in greater water depth and limited light availability as a 

consequence of shortening of the day length in these latitudes at that time of the year.
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2A.2.2.2 Dinoflaeellates
Dinoflagellates were present at all stations and distributed over a wide depth range. In 

the open ocean dinoflagellates < 20 pm exhibited very high cell numbers in the upper 

water column, while diatom numbers were insignificant. However, at the shelf stations 

dinoflagellates only played a minor role in terms of cell numbers, as diatoms dominated 

the phytoplankton. This was also observed by Savidge & Lennon (1987) in August 

1983. One station that proved an exception was 9G, where numbers of dinoflagellates < 

20 pm were elevated, although the water column was well mixed. This contrasted with 

results from other studies, which associated high dinoflagellate concentrations with 

vertical stability (intermediate to strong stratification) of the water column (Holligan et 

al. 1980; Lewis 1985; Dodge 1993). However, physical data indicated that 9G was 

strongly influenced by open ocean water. Hence, dinoflagellates might have been 

carried on the current to 9G.

2.4.2.2.3 Pseudo-nitzschia species
The phytoplankton monitoring had shown that the toxic Pseudo-nitzschia strains had 

appeared in late May and reached maximal abundance during July. However, this 

autumn cruise demonstrated the still high abundance of Pseudo-nitzschia species in late 

September, early October.

2.4.2.2.3.1 Horizontal distribution
The main difference between the P. delicatissima and P. seriata group was, that

diatoms belonging to the P. delicatissima group were most abundant at the open ocean

stations, while the P. seriata group was most abundant in shelf waters. In general,

numbers of the P. delicatissima group were relatively low (-  34% of P. seriata group

cell numbers). Results from the temporal phytoplankton distribution at LYl showed that

diatoms of the P. delicatissima group occurred in highest densities during spring and
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had generally low concentrations in late summer/ early autumn, indicating that this 

group did not show preferences for autunrn conditions. At the shelf stations species 

belonging to the P. delicatissima group were identified as P. delicatissima, P. cf. 

delicatissima and P. pseudodelicatissima (chapter 3). All species were present at the 

open ocean stations as well, although in higher numbers. This higher abundance in the 

open ocean might suggest a preference of the P. delicatissima for open ocean 

conditions, or might simply be related to the fact that the water mass in the open ocean 

was different to the water mass on the shelf and hence carried a different species 

composition.

In contrast to the P. delicatissima group, diatoms of the P. seriata group were a 

common and significant part of the phytoplankton community at LYl at that time of the 

year. Species belonging to the P. seriata group identified from shelf station samples 

included P. australis, P. seriata, P. pungens, P. fraudulenta and P. cf. subpacifica 

(chapter 3). The only with TEM and genetic methods identified and isolated species 

belonging to the P. seriata group found in the open ocean was P. cf. subpacifica. 

Interestingly, none of the toxin producing species was confirmed amongst the few cells 

belonging to the P. seriata group found in the open ocean. However, the numbers at M 

and F were low and other P. seriata group species might have been overlooked, because 

of their low abundance. In the vicinity of 59°N, 20°W in June 1996, diatoms belonging 

to the P. seriata group (then enumerated as the 'Nitzschia seriata complex') had been 

observed, confirming that they are present in open ocean waters, however, species were 

not identified (Yallop 2001). In the present study, the high density of potentially toxic 

P. seriata group species in coastal waters as opposed to the open ocean showed that at 

that time of the year the P. seriata group was mainly occurring in the Scottish coastal 

current. Conditions in the coastal water might have favoured the autumn bloom of that

group.
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The difference of the spatial distribution between the P. delicatissima and P. seriata 

group might be explained by the different water masses found in coastal waters and the 

open ocean. Colebrook (1986) noted that results from the continuous plankton recorder 

studies in the northern Atlantic and North Sea showed the phytoplankton species 

composition tended to be closely related to the current system.

P. americana was found in relatively high densities at the shelf stations (see appendix 

3). Cells were commonly found attached to Chaetoceros species and hence showed a 

similar distribution. This observation of P. americana as an epiphyte is common for the 

species (Lundholm et al. 2002b), but it’s occurrence had not previously been reported 

from north-western Atlantic waters (see also chapter 3).

2A.2.2.3.2 Vertical distribution

In the present study both groups were distributed over the top 100 m with maximal cell 

densities in certain depths, indicating decreasing stratification due to mixing of the 

water column. The P. delicatissima group was observed in highest abundance at about 

15 m (IG to 6G) and at the open ocean stations in 30 m depth. A similar depth 

distribution of this group was observed by Savidge & Lennon (1987) in the same 

waters, who found increased concentrations of Nitzschia species at 20-40 m. They did 

not specify the group of Nitzschia species, but as they made their observations in May 

(late spring) it can be assumed, that they had observed species belonging to the P. 

delicatissima group.

Diatoms of the P. seriata group were also distributed in high numbers in the upper 40 m

of the water column, with maximal concentrations found at 40 m at IG, 30 m at 4G and

15 m at IG. Those Pseudo-nitzschia species might have a tolerance for low light

intensities and could be adapted to a distribution in layers in depth exceeding 15 m. In

coastal waters a layer of freshwater and enhanced mixing, might have displaced surface
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blooms of the P. seriata group to greater depth (40 m). This had previously been 

observed in a Qord in Washington state, USA, coastal waters (Rines et al. 2002), where 

P. pseudodelicatissima, P. fraudulenta and P. pungens were observed with maximum 

concentrations in thin layers in about 30 m depth. The Pseudo-nitzschia species thrived 

at that depth for several weeks, indicating their low light intensity tolerance.

2.4.2.3 Factors influencing the phytoplankton distribution

Redundancy analysis of samples averaged over the top 100 m showed that salinity 

influenced the phytoplankton composition and distribution significantly. Species 

occurring at the open ocean stations were clearly separated from those occurring at the 

shelf stations. Salinity mainly characterises the water mass, hence the results from RDA 

might suggest that species were associated with a specific water mass (Atlantic water or 

Scottish coastal current) and distributed with it. The contribution of Atlantic water to 

the shelf water (especially at stations 9G and 7G) would have transported species found 

at M and F to shelf waters. However, cell numbers at M and F were considerably lower 

than at the shelf stations and it was likely that an increased mixing of the water column 

might have already decimated cell density of some of the species. While the measured 

inorganic nutrients did not show a statistically significant influence on the 

phytoplankton distribution in RDA and PCA, nutrients that were immediately taken up 

by phytoplankton (and hence not measured), might have played a role. Other, not 

measured factors such as grazing, mixing and light availability might have contributed 

to the separation of ocean and shelf stations. This was also demonstrated in previous 

studies of temperate waters, where differences in the species composition of 

phytoplankton have been explained in terms of the interaction amongst light, mixing 

and nutrient availability (Holligan et al. 1980; Jones & Gowen 1990).
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3 Chapter 3; Pseudo-nitzschia cultivation, identification and domoic 

acid quantification

3.1 Introduction

P. multiseries, P. australis and P. calliantha, are the three Pseudo-nitzschia species that 

have been identified to have caused ASP events or the closure of shellfish harvesting 

areas in Canada and North America. P. multiseries and P. australis have also been 

found to occur in Scottish waters (Gallacher et al. 2001), where in 1999 high levels of 

DA in king scallops {Pecten maximus) prompted the largest fisheries closure to date, 

due to a harmful algal bloom (Campbell et al. 2003). Two strains of P. australis from 

Scottish waters (Campbell et al. 2001) and one from Irish waters (Cusack et al. 2002) 

from prior to, and following, this event were cultured and their DA production was 

confirmed. However, it remained unknown whether this species alone was responsible 

for ASP. Therefore, there remains a need to determine if other species are also DA 

producers and which of these are of most concern in Scottish waters.

With light microscopy, Pseudo-nitzschia species can only be separated into two main 

groups, the P. delicatissima and P. seriata group (see chapter 1; Hasle 1965; Hasle & 

Syvertsen 1996). The delineation to species level requires electron microscopy (EM) or 

molecular methods (see chapter 1). Prior to this study, Pseudo-nitzschia species from 

Scottish waters had been identified by TEM, but only a few preserved samples from 

inshore-areas had been analysed (Gallacher et al. 2001). Potential DA producers such as 

P. multiseries, P. seriata, P. fraudulenta, P. pungens and P. delicatissima were named. 

However, those identifications have not been confirmed.

Even using EM, species identification based on the morphological fine structure can be

ambiguous. Pseudo-nitzschia seriata, for example, has previously been mistaken for P.

australis and vice versa (e.g. Villac et al. 1993b; Fryxell et al. 1997; Hasle 2002;
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Fehling et al. 2004b). However, molecular methods such as PGR (polymerase chain 

reaction) and sequencing can be applied for precise Pseudo-nitzschia  species 

identification. By a pairwise sequence alignment search of databases (e.g. using the 

FASTA algorithm, Altschul et al. 1994; Pearson 1990) the obtained sequences can be 

matched with sequences belonging to identified species.

Previously (see chapter 1, section 1.7.2.2) the small subunit (SSU), large subunit (LSU) 

and internal transcribed spacer (ITS) regions of nuclear DNA, coding for ribosomal 

RNA have been sequenced for Pseudo-nitzschia species from round the world, but 

Scottish strains had not been studied. For DNA extraction either single, non-preserved 

cells (for example from net samples) can be used and directly amplified. Or preferably, 

a subsample of a clonal culture is taken to provide greater amounts of DNA.

In this study toxic and non-toxic Pseudo-nitzschia spp. from western Scottish waters 

were isolated, cultured and identified using both, classic morphological and molecular 

techniques. New cultures were obtained from western Scottish waters during 33 months 

of monitoring site LYl and a cruise from the western Scottish coast across the shelf 

towards the open Atlantic (chapter 2). Cultures previously established by C. Bolch (in 

August 1999) were also examined. Most of the cultures were also tested for DA 

production.

Prior to this study, phylogenetic relationships among Pseudo-nitzschia species were 

established applying parsimony and maximum likelihood methods (for an introduction 

see Swofford et al. 1996) to partial LSU rDNA sequences (Lundholm et al. 2002a; 

Lundholm & Moestrup 2002; Orsini et al. 2002; Lundholm et al. 2002b) or ITS rDNA 

sequences (Lundholm et al. 2003). In this study ITS and partial LSU rDNA data were 

combined, giving larger sequence fragments and hence providing more data for the 

phylogenetic analysis. Maximum likelihood and Bayesian analysis were conducted on 

the Scottish strains, establishing their phylogenetic relationships.
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3.2 Material and Methods

3.2.1 Isolation and cultivation of Pseudo-nitzschia spp.

Most of the Scottish Pseudo-nitzschia cultured strains established during this study 

were isolated from plankton net samples (20 pm mesh size) taken at the monitoring 

station LYl (Lynn of Lome, 56°28'.9 N, 5°30'.1W) in close vicinity to SAMS over a 

period of 33 months between 2000 and 2003, and during cruise D257 of RV Discovery 

D257 in autunrn 2001 (chapter 2). Further Pseudo-nitzschia cultures were obtained by 

taking additional plankton net samples from the Dunstaffhage Marina pier.

Immediately after sampling, non-preserved fresh 20 pm plankton net samples were 

inspected under an inverted Zeiss Axiovert SlOO microscope on 100 x magnification. 

To obtain clonal cultures, a single chain or cell of Pseudo-nitzschia spp. was isolated by 

micropipette, washed several times in sterile filtered seawater and transferred into 5.5 

cm diameter petri-dishes containing 10 ml sterile F/2 medium (Guillard, 1975) plus 107 

pM Si (as metasilicate), referred to as F/2 + Si. Dishes were sealed with Parafilm^^ and 

incubated at 15° C under an irradiance of ca. 100 pmol • photons m'  ̂• s'  ̂ (12:12 h L:D 

cycle) and grown for approximately two weeks. If cells had undergone several 

divisions, and reached a density of at least ten cells per 100 x magnification field of 

view, the content of the petri-dish including cells and medium, was transferred into 100 

ml Erlenmeyer flasks containing 50 ml of sterile F/2 + Si medium and were incubated 

under the same temperature and light conditions as above. Two to three weeks later a 

subsample of about 10 ml was then transferred into 250 ml Erlenmeyer flasks 

containing 100 ml F/2 + Si medium and grown under the above conditions. To sustain 

the cultures, every three weeks approximately 10-20 ml of the parental culture were 

transferred under sterile conditions into a fresh 250 ml Erlenmeyer flask containing 

fresh, sterile F/2 + Si medium (autoclaved at 121 °C for 15 min). All cultures were
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maintained in the culturing facilities of CCAP (Culture Collection for Algae and 

Protozoa at SAMS).

Cultures were named after the site and sampling occasion, from which they were 

isolated (e.g. PLYlSt.70 was isolated at LYl from the 70^ sample, D257F was isolated 

during cruise D257 from station F).

3.1.2 Pseudo-nitzschia identification in samples and cultures

After identification and enumeration of phytoplankton in water samples taken at the 

monitoring site LYl and cruise D257 by light microscopy (chapter 2), plankton net 

samples from 15 sampling occasions at which high densities of Pseudo-nitzschia 

species were observed, were inspected by TEM (Tab. 3.1).

In total, 37 cultures were identified by TEM. From 26 of the 37 cultures, the fine 

structural frustule features of the cells were measured in detail (Tab. 3.2). Culture 

Paustralis3 (isolated by C. Bolch) was identified by scanning electron microscopy 

(SEM). The remaining 11 cultures were identified (together with N. Lundholm) by 

recognition of distinct structures (Tab. 3.5).

Field samples that contained high cell densities of diatoms belonging to the P. 

delicatissima or P. seriata group were additionally inspected by TEM and the species 

composition of the dominant Pseudo-nitzschia group present during that sampling event 

was analysed.

3.1.2.1 Acid cleaning of diatoms

Prior to electron microscopy, subsamples from cultures and preserved net samples were 

acid cleaned to remove organic material from the cells. This was done after the method 

of Lundholm et al. (2002a): 3-10 ml sample were poured into a 100 ml Erlenmeyer
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flask, 2 ml of 30% H2SO4 (sulfuric acid) and 10 ml saturated KMnO^ (potassium 

permanganate) were added. The mixture was left for 24 h and shaken from time to time. 

5-10 ml freshly made (C0 0 H)2 (oxalic acid) was added and the transparent sample was 

divided into centrifuge tubes and spun for 20 min at 3500 rpm. The supernatant was 

aspirated and the sample washed with distilled water five times. Cleaned diatom 

samples that were not immediately used for microscopy were stored in glass vials after 

the distilled water was exchanged with absolute ethanol.

3.1.2.2 Sample preparation for electron microscopy

For TEM a drop of acid cleaned diatom culture or field sample was mounted on a 300 

pm mesh formvar film coated copper grid (3.05 mm, Agar Scientific). Pictures of the 

morphological fine stmctures of the frustules were taken with a JEOL-IOOSX TEM at 

different magnifications (ranging from 1000 to 50,000 x). The negatives were 

developed using standard dark room techniques.

For SEM acid cleaned diatom frustules were concentrated on 1 pm polycarbonate filters 

(Osmonics), water was exchanged in an acetone dilution series and filters were mounted 

on SEM stubs, which were then sputter coated with gold. The stubs were then examined 

with a JEOL-35C SEM and pictures were taken digitally for measurements of the 

morphological frustule fine structures.

3.1.2.3 Measurement of the morphological fine structure on TEM micrographs

TEM pictures taken at magnifications greater than 1000 x show just a part of the 

Pseudo-nitzschia frustule, because of their size and elongated shape. Ideally, per cell 

one picture was taken of the centre of the frustule, and another one of the tip, allowing 

recognition of its shape. If possible, a picture at 1000 x magnification showing the
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whole length of a frustule was taken (unfortunately the exposure times are difficult to 

adjust with the microscope at SAMS at that magnification and most of the those 

pictures were overexposed). In some cases, mainly with species belonging to the P. 

delicatissima group, the poroids were pictured with a high magnification (max. 50,000 

x) to visualise the structure of the hymena covering them.

For identification, the following fine structural features of the Pseudo-nitzschia valve 

were taken into account and measured on the negatives or prints (see also Fig. 1.4 

chapter 1): the width was noted, if possible the length was measured and the middle of 

the frustule was inspected for the presence or absence of a central interspace. The rows 

of poroids per interstria were counted and the number of poroids in 1 pm measured. The 

number of fibulae and interstriae in 10 pm was noted. The fine structural features from 

up to 10 cells (~ 30 cells for P. seriata strains) were measured from cultured samples. 

Taking all the fine structure measurements into account, the cells were delineated to 

species level by comparing the measurements with keys from Hasle (1965), Hasle & 

Syvertsen (1996) and Skov et al. (1999).

As mixed field samples contained not only Pseudo-nitzschia cells, and grids were 

sometimes covered with other diatom species and detritus, only about 1-4 cells were 

measured per species at each station.

3.1.3 Genetic identification of Pseudo-nitzschia species

3.1.3.1 DNA extraction, amplification and sequencing.

For genetic analysis DNA was extracted from 10 ml culture subsamples of cells in 

exponential phase, using a phenol-chloroform extraction after Bolch et al. (1998).

The rrS l (internal transcribed spacer), 5.8S and ITS2 rDNA genes (hereafter referred to 

as ITS region) were amplified and sequenced from isolates of Scottish Pseudo-nitzschia
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spp. listed in Table 3.1. Total DNA was used as a template to amplify the ITS region in 

a 50 pi reaction containing 75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2S04, 0.01% [v/v] 

Tween 20, 2.5 mM MgCl2, 0.2 mM dNTP, 0.5 pM or 1.0 pM of the ITS or LSU primer 

pairs, respectively, 1.0 U Taq polymerase (ABgene, UK) and 25 ng target DNA. The 

forward primer ITS-A (5' - CCAAGCTTCTAGATCGTAACAAGGTHTCCGTAGGT- 

3’) and reverse primer ITS-B (5’ - CCTGCAGTCGACAKATGCTTAARTTCAGCRGG 

- 3') (Adachi et al. 1996) were used. Amplification was carried out using the following 

conditions: an initial dénaturation of 94°C for 2 min, followed by 30 cycles each 

containing 30 sec at 55°C, 2 min at 72°C and 10 sec at 94°C, finally 30 sec at 60°C and 

10 min at 72°C. PGR products were analysed by agarose gel electophoresis and purified 

prior to DNA sequencing with the Amicon® Microcon®-PCR centrifugal filter devices 

(Millipore Corporation, UK), following the manufacturers instructions.

A fragment of the large subunit (LSU) rDNA gene was amplified after the same 

procedure as the ITS region. This time the LSU-specific primers DIR-F (5' - 

ACCCGCTGAATTTAAGCATA- 3'; Scholin et al. (1994) and reverse primer D3B*-R 

(5' - ACTTCGGAGGGAACCAGCTAC - 3'; modified from Lenaers et al. (1989) were 

used, the annealing temperature was 60°C.

DNA sequencing was performed in both directions, with the PCR primers using “ABI 

Prism® Big Dye^^ Terminator Cycle Sequencing Ready Reaction Kit” (Applied 

Biosystems, UK), as recommended by the manufacturer. Analysis of the DNA sequence 

reactions was carried out by the Biological Sciences department of Durham University. 

DNA sequence electropherograms were visually inspected using Sequence Navigator^^ 

(Version 1.01, Applied Biosystems Inc., 1994), base-call errors were corrected 

manually, and a consensus sequence for each product derived by comparison of forward 

and reverse sequences.
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3.1.1.2 FASTA

The obtained rDNA sequences were used to delineate the Scottish Pseudo-nitzschia 

strains to species level, by comparison with sequences from the EMBL-PLANT 

database, using the program fasta3 (www.ebi.ac.uk/fasta33/nucleotide.htmll. Fasta3 

uses the FASTA (FAST-All) algorithm (Pearson & Lipman 1988; Pearson 1990) for 

pairwise sequence alignment, comparing protein or DNA sequences by alignment with 

protein or DNA sequences from a database. The observed pattern of word (ktupel) hits 

is used to identify potential matches before attempting the optimised search. FASTA 

produces optimal local alignment scores for the comparison of the query sequence to 

every sequence in the database. It assigns an expectation value (E) to each hit. The E- 

value is a parameter that describes the number of hits that can be expected just by 

chance when searching a database of a particular size. An E-value of 1 assigned to a 

match between two sequences means that one match can be expected to be found in the 

searched database simply by chance. As sequence length is taken into account, shorter 

sequences can result in E-values close to 1, because they are more likely to match with 

sequences from the searched database. The lower the E-value, the closer and more 

significant is the match between the two sequences. In this study the default settings of 

the programme for DNA nucleotide search (ktupel = 6, search both DNA strands) were 

used.

3.1.1.3 Alignment

A phylogeny of the Scottish Pseudo-nitzschia strains was inferred combining the ITS

and partial LSU genes. Cylindrotheca closterium (Ehrenberg) Lewin & Reimann (ITSl

and ITS2, 5.8S and partial LSU, GenBank AF289049) was used as an outgroup. Like

Pseudo-nitzschia spp., it belongs to the family Bacillariaceae and according to

Lundholm et al. (2002a) arises from the base of the clade grouping Pseudo-nitzschia
167
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species. After combining the ITS and partial LSU rDNA of the Scottish strains, they 

were aligned together with Cylindrotheca closterium using ClustalX (version 1.64B; 

Thompson et al. 1997). Adjustments to the alignment were made after visual inspection 

(see appendix 4 for full alignment). Redundant sequences were excluded from the 

analysis (using only one sequence of a set of identical sequences), leaving a data matrix 

(see appendix 4) with sequences of six Scottish Pseudo-nitzschia species plus the 

outgroup (C. closterium). The 5.8S gene sequence of Cylindrotheca closterium was 

used to identify the 5.8S gene within the Scottish Pseudo-nitzschia sequences and hence 

the end of the ITSl and the beginning of the ITS2 region.

3.1.1.4 Partition homogeneity test

Congruence of data sets was tested with the partition homogeneity test (Farris et al.

1995) in PAUP* (Swofford 2002, version 4.0b. 10). It tests the null hypothesis that data 

sets, which might have originated from two different genes or regions within genes (in 

this case ITS and LSU), underlie different evolutionary assumptions, for example, 

unequal rates of evolution. Most parsimonious trees are generated separately for the 

partitioned regions and the tree lengths resulting from each partition are added together 

to a total tree length. Random sampling of sites generates a randomised distribution of 

tree lengths from the combined original data set. If the added tree length lies in the 

middle region of the randomly regenerated tree length distribution, the partitioned 

regions provide similar topologies, indicating that the null hypothesis is rejected and 

data sets should be combined. If the test shows that the null hypothesis is significant (in 

case the tree length is outside the middle range, p < 0.05) it is accepted, suggesting that 

the data sets should not be combined.
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3.1.1.5 Maximum likelihood analysis

DNA evolution is expressed in changes of nucleotide bases between an ancestral and a 

recent sequence. The overall evolutionary changes that have occurred per site between 

those sequences are expressed as the divergence between them (e.g. Swofford et al.

1996). Maximum likelihood (ML) is one method of tree-reconstruction. First applied 

for gene frequency data by Cavalli-Sforza & Edwards (1967), Felsenstein (1973,1981) 

later developed an ML algorithm for amino acid and nucleotide sequence data. ML 

algorithms attempt to estimate the amount of evolutionary change required to explain 

the data according to an evolutionary model. The likelihood L of a phylogenetic tree is 

the probability of observing the data (e.g. the nucleotide sequences) under a given tree 

and a specified model of character state changes (e.g. changes between the nucleotides 

A,C,G,T). To find an appropriate model for the ML analysis of the sequences used in 

this study, the computer program Modeltest (version 3.06, Posada & Crandall 1998) 

was used.

3.1.1.6 Modeltest

The family of General Time Reversible (GTR) nested models encompasses 64 models

of DNA site substitution, of which the one that best fits the data has to be chosen prior

to the ML analysis. The program Modeltest (version 3.06, Posada & Crandall 1998) is

designed to compare different nested models of DNA substitution and uses likelihood

scores to establish the model of DNA evolution that best fits the data. To select a

nucleotide substitution model for the dataset, the program uses the hierarchical

likelihood ratio test (see Posada & Crandall 1998) to compare the fits of the nested

General Time Reversible family of nucleotide substitution models. It additionally

calculates the Akaike Information Criterion estimate (AIC, Akaike 1974) associated

with the likelihood scores. The AIC rewards models for good fit, but imposes a penalty
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for unnecessary parameters. Using those algorithms, Modeltest estimates a nucleotide 

substitution model for the dataset, which includes the substitution matrix for the 

nucleotides (Fig. 3.1) and the base frequency parameters. In addition to the models 

describing the rates of change from one nucleotide to another, the parameters used in 

modeling rate heterogeneity across sites such as the gamma shape parameter (ganuna 

distributed site-to-site rate variation) and the proportion of invariable sites (extent of 

static, unchanging sites in a dataset) are suggested for the further analysis.

A C G T
A
C
G
T

“ a b c 
a -  d e 
b d -  f  
c e f  -

Fig. 3.1 Nucleotide substitution matrix (a = A<->€, b =A<->G, c = A<->T, d = C<->G, 
e = C<->T, f = G<->T; a, c, d and f indicate transversions, b and e indicate transitions; 
in the GTR model all rates (a-f) are different: nst = 6).

3.1.1.7 Tree search in PAUP*

Trees including the Scottish Pseudo-nitzschia strains were searched in PAUP* 

(Swofford 2002, version 4.0b 10) under the likelihood criterion. Gaps were treated as 

missing data. Initially the nucleotide substitution model evaluated in Modeltest (version, 

Posada & Crandall 1998) was used in a ML analysis, using a heuristic search with 

random addition of sequences (10 replicates) and a branch swapping algorithm (tree- 

bisection reconnection). The exact parameters were estimated from consecutive 

searches and reoptimising parameters until the values of parameters converged. 

Bootstrap analysis to determine the robustness of nodes (Felsenstein 1985) was 

conducted with 2000 replicates under a heuristic search.

170



Chapter 3______________________________________________________________

3.1.1.8 Bayesian analysis

As a second approach of inferring a phylogeny of the Scottish Pseudo-nitzschia strains 

a Bayesian analysis using the computer programme MrBayes (version 3.0b4) was 

conducted. The programme applies the Bayesian approach, which samples trees 

according to their posterior probabilities, instead of searching for the single optimal tree 

(Huelsenbeck et al. 2001). In Bayesian analysis an evolutionary model is tested by 

posterior predictive simulation, which compares a test statistic with the posterior 

predictive distribution of that statistic generated under the assumption that the model is 

correct (Lewis 2001). The posterior probability is approximated by a Markov Chain 

Monte Carlo (MCMC, Gilks et al. 1996). The MCMC takes the form of a correlated 

random 'walk' through parameter space, which contains the sets of all possible trees and 

model parameters, and approximates any probability distribution by periodically 

sampling. In phylogenetic analysis each step in a Markov chain involves a random 

modification of the tree topology, a branch length or a parameter in the substitution 

model (e.g. nucleotide substitution rate ratio). If the posterior that is computed for a 

proposed step is larger than that of the current tree topology and parameter values, the 

proposed step is taken (Lewis 2001). From the MCMC run a consensus tree can be 

constructed with the posterior probabilities of the individual clades indicated on the 

tree. This is roughly equivalent to performing a maximum likelihood analysis with 

bootstrap resampling, but much faster (Larget & Simon 1999). The generations of the 

chain before it reaches a peak (a "hill" in parameter space, indicating trees with high 

posterior probabilities) are usually discarded by the "bumin" command. However, if the 

number of generations is high and the number of taxa is low the bum in does often 

make no difference in the consensus tree. For this study the analysis was conducted 

under a GTR model with gamma distribution (shape parameter = 0.32) and invariable 

sites (I = 0.3689) as evaluated by Modeltest (version 3.06, Posada and Crandall 1998)
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(see results for evaluated base frequencies). Four Markov chains were run for 10̂  

generations with a sampling frequency of 10̂ , this yielded in 10"̂  trees. Discarding none, 

the initial 100 or 1000 trees did not alter the topology or posterior probabilities of the 

consensus tree. The consensus tree was created by the 50% majority rule, using PAUP* 

(Swofford 2002, version 4.0b 10). The program also calculated branch lengths as a 

measure of evolutionary changes between taxa.

3.1.4 Domoic acid testing of cultures

Table 3.1 (results, section 3.3.1) gives an overview of which cultures were tested for 

domoic acid (DA) production. DA concentrations were determined in the stationary 

growth phase of cultures (after 16 to 27 days of growth), using a high performance 

liquid chromatography (HPLC) of the fluorenylmethoxycarbonyl derivative 

(Pocklington et al. 1990), with a detection limit of 15 pg • mL \  Total DA was measured 

in whole culture samples (cells plus medium) (Bates et al. 1989) that were first 

sonicated for 1 min to disrupt the cells, then filtered through a 0.2 pm disposable 

acrodisc (25 mm surfactant free cellulose acetate membrane, Nalgene) to remove cell 

debris and frozen at -20°C prior to analysis. Samples were then sent cooled on ice to S. 

Bates (Fisheries and Oceans, Canada) for DA analysis.

For 25 day old, stationary phase P. seriata (PLYlSt.l6B and PLYlSt.52B) and P. 

australis cultures (PLY 1 St. 19A and PLYlSt.54B), additionally extracellular DA (DA 

that was released by the cells, referred to as “medium DA”) was analysed: whole- 

culture samples were filtered under low vacuum onto 25 mm glass-fibre filters (type 

A/E, Pall Corporation) and the filtrate (cell-free medium) was frozen at -20° C prior to 

analysis. DA per cell was calculated by dividing total DA of the whole culture by the 

cell number.
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3.3 Results

3.3.1 Cultivated species

A total of 59 Pseudo-nitzschia strains were isolated from Scottish waters and 

maintained in culture. Forty-six of these were freshly isolated within this study, the 

remaining 13 had previously been isolated by C. Bolch but were maintained within this 

study. All were identified by their morphological characteristics and partial rDNA 

sequences. The cultured strains comprised seven species, 19 strains of P. australis, two 

strains of P. seriata, nine strains of P. fraudulenta, two strains of P. pungens, one strain 

of P. cf. subpacifica, one strain of P. calliantha and 25 strains of P. delicatissima. 

Twenty-six of the cultures were identified by TEM and 49 by their partial rDNA 

sequence, including ITS, 5.8S and partial 28S LSU region.

Table 3.1 gives an overview of all culture strains, their sampling location and date of 

isolation. It also indicates the result of DA analysis, and gives information about 

methods that were used for their identification.
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Table 3.1 Scottish Pseudo-nitzschia strains, with sampling location, date of isolation, results of 
domoic acid testing (+ = positive test, - = negative test, detection limit: 15 pg • mL ‘) and

Species Strmn Sampling Location Date of 
isolation

DA produc
tion

Identification
TEM ITS, 5.8S, 

LSU
P. australis PaustralisS DML Pontoon Aug. '99 + SEM +, +

Pmarina2.7 Dunstaffhage Marina 02.07.01 + + n.d.
Pmarina2.7A Dunstaffhage Marina 02.07.01 + + n.d.
Pmarina2.7B Dunstaffhage Marina 02.07.01 + + +, +
PLYlSt.l9A LYl 13.07.01 + + +, +
PLYlSt.20A LYl 20.07.01 + + +, +
PLYlSt.24D LYl 17.08.01 + + +, +
PLYlSt.27E LYl 07.09.01 + + +, +
PLYlSt.33A LYl 19.10.01 + n.d. +, +
PLYlSt.37A LYl 15.11.01 - n.d. +, +
PLYlSt.37B LYl 15.11.01 + +,+
PLYlSt. 54B LYl 14.06.02 + n.d. +, +
PLYlSt.54C LYl 14.06.02 + + +, +
PLYlSt.54D LYl 14.06.02 + + n.d., +
PLYlSt.56B LYl 28.06.02 + n.d. +. +
PLYlSt.68C LYl 20.09.02 + n.d. +, +
D257 6G D257, station 6G 30.09.01 - n.d. +, +
D2577GA D257, station 7G 30.09.01 - + +, +
D257 lOGA D257, station lOG 30.09.01 - + +, +

P. seriata PLYlSt.l6B LYl 22.06.01 + + +, +
PLYlSt.52B LYl 31.05.02 + + +, +

P. fraudulenta PLYlSt.ll A LYl 03.05.01 - +
PLYlSt.llC LYl 03.05.01 - + +. +
PLYlSLllD LYl 03.05.01 - + +, +
PLY1S1.12A LYl 17.05.01 - + +, +
PLYlSt.l2B LYl 17.05.01 n.d. + n.d.
PLYlSt.l2C LYl 17.05.01 n.d. + n.d.
PLYlSt.l5A LYl 15.06.01 - + +,+
PLYlSt.36A LYl 09.11.01 - + +, +
PLYlSt.85E LYl 04.04.03 n.d. + +» +

P. pungens Ppungens6 DML Pontoon Aug. '99 - + +, +
PLYlSt.33C LYl 19.10.01 n.d. + n.d.

P. cf. subpacifica D257F D257, station F 04.10.01 - + +, +
P. calliantha Porkney4 Orkney Aug. '99 n.d. + n.d.
P. cf. delicatissima Porkneyl Orkney Aug. '99 - + +, +

Porkney2 Orkney Aug. '99 n.d. n.d. +, +
Porkney3 Orkney Aug. '99 n.d. n.d. +, +
PorkneyS Orkney Aug. '99 n.d. n.d. +, +
Porkneyô Orkney Aug. '99 n.d. n.d. +, +
Porkney7 Orkney Aug. '99 - + +, +
Porkney8 Orkney Aug. '99 n.d. n.d. +, +
Porkney9 Orkney Aug. '99 n.d. n.d. +, +
PorkneylO Orkney Aug. '99 n.d. n.d. +, +
Porkneyll Orkney Aug. '99 - n.d. +, +
Pontoon 1-2 DML Pontoon Aug. '99 n.d. + +, +
PLYlSt.5 LYl 09.02.01 n.d. n.d. +, +
PLYlSt.42A LYl 04.02.02 - + +, +
PLYlSt.43C LYl 15.02.02 n.d. n.d. +,+
PLYlSt.43D LYl 15.02.02 n.d. + n.d.
PLYlSt.43F LYl 15.02.02 n.d. + n.d.
PLYlSt.45E LYl 18.03.02 n.d. + +, +
PLYlSt.46A LYl 28.03.02 n.d. + +, +
PLYlSt.46C LYl 28.03.02 n.d. +
PLYlSt.48A LYl 26.04.02 n.d. + +,+
PLYlSt.48B LYl 26.04.02 n.d. + n.d.
PLYlSt.77C LYl 06.12.02 n.d. n.d. +, +
PLYlSt.85A LYl 04.04.03 n.d. n.d. +, +
PLYlSt.85B LYl 04.04.03 n.d. n.d. +» +
PLYlSt.85Z LYl 04.04.03 n.d. n.d. +, n.d.
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3.3.2 Identification by morphological fine structure features

Measurements of the morphological fine structure of some of the cultured species are 

summarised in Table 3.2. For comparison. Tables 3.3 and 3.4 give the dimensions for 

Pseudo-nitzschia species as stated in published identification keys. For some species, 

differences in morphology between strains of the same species and ambiguities to 

identification keys were observed, this is discussed in detail below.

P. australis cultures. The morphological fine structures of frustules from cells in P. 

australis cultures Pmarina2.7A, PLYlSt.24D, PLYlSt.27E and PLYlSt.54D matched 

the descriptions found in published identification keys (see Tab. 3.2)

Some differences between the Scottish P. australis cultures and also to the descriptions 

in the keys were evident. Strain D25710G for example had more interstriae per 10 pm , 

slightly more poroids per 1 p m  and was narrower (4.6 p m ) than the other cultured 

strains. Cells in cultures PLYlSt.37A, 37B and 540 were slightly narrower and 

PLYlSt.37A and B had more poroids within 1 p m  than described in keys.

P. seriata cultures. The detailed TEM examination of the valve morphology of strains 

PLYlSt.l6B and PLYlSt.52B showed that most of their morphological features 

(number of fibulae and interstriae per 10 pm , poroids per 1 pm ) corresponded with 

published species descriptions of P. seriata f. seriata (Tab. 3.3). However, there were 

some important differences between these two strains and also with the published 

descriptions, as detailed below. The cell width of strain PLYlSt.l6B was 5.0-5.2 p m , 

whereas cells from strain PLYlSt.52B were 4.6-6.0 p m  wide. While strain PLYlSt.l6B 

had 14-20 fibulae and 14-20 interstriae in 10 pm , cells of strain PLYlSt.52B had 18-19 

fibulae and 16-20 interstriae in 10 pm . In both strains, the valves were slightly 

asymmetric and the cells lacked a central interspace. Unlike the described P. seriata f. 

seriata, which has two rows of poroids plus one to three extra rows, these strains had
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two rows of poroids plus rarely one third row per stria. Instead of a third row, there 

were sometimes just a few single poroids or no third row visible between the two rows 

of poroids.

P. pungens culture. Culture PLYlSt.33C matched the previously published descriptions 

of that species.

P. fraudulenta cultures. Measurements of morphological fine structure features of the 

cultured strains resembled those of the keys quite well. Strains PLYlSt.l2C and 36A 

had 1-2 more interstriae per 10 pm and cells of PLYlSt.l2C were narrower than stated 

in the keys (mean width of 4.3 pm instead of 4.5 -10 pm).

P. cf. subpacifica culture. Morphological features of cells belonging to strain D257F 

were ambiguous for species delineation. Cells had a similar number of fibulae in 10 pm 

(16-18) as P. subpacifica (15-20) from identification keys, but less interstriae per 10 pm 

(27-28 compared to 28-32), occasionally more rows of poroids (2-3 compared to 2) and 

less poroids per 1 pm (8-9 compared to 9-10). Their widths (3.9-4.5 pm) matched the 

width range reported for P. heimii (4-6 pM), although they had slightly more fibulae 

and interstriae per 10 pm and also more rows of poroids and poroids per 1 pm than that 

species. From the morphological analysis this strain would be delineated as either P. cf. 

subpacifica or P. cf. heimii.

P. delicatissima cultures. No culture except Porkneyl exactly matched the key 

descriptions for P. delicatissima. The main differences were in the number of poroids 

per 1 pm (cultures Pontoonl-2, PLYlSt.46A, 46C and 48B) and that they exceeded the 

width range of 1.1-2.0 pm for P. delicatissima as stated in keys by up to 0.5 pM 

(Pontoonl-2, PLYlSt.43D, 46C, 48A and 48B).
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3.3.3 Remaining cultures

A few cultures were identified together with N. Lundholm (then Botanical Institute, 

Department of Phycology, University Copenhagen) under the TEM without detailed 

measurements. Cells were recognised from their distinct morphological fine structure 

(for example such as the structured large poroids of P. fraudulenta). They included P. 

australis, P. pungens, P. fraudulenta and P. delicatissima (Tab. 3.5).

Table 3.5 Cultures identified by TEM together with N. Lundholm, without detailed 
measurements.

Species Culture
P. australis Pmarina2.7A

Pmarina2.7B
PLYlSt.l9
PLYlSt.20

P. pungens Ppungens6
P. fraudulenta PLYlSt.ll A

PLYISMIB
PLYlStllC
PLYlSt.l2A
PLYlSt.l2B

P. delicatissima PorkneyS
Porkney?

Figures 3.2 and 3.3 show examples of TEM micrographs of Scottish Pseudo-nitzschia 

strains belonging to the P. delicatissima and P. seriata groups. They were taken from 

cultured species and used for morphological identification.
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rig. 3.2 TEM micrographs of frustules of Scottish Pseudo-nitzschia strains (B from 
culture, A and C from field samples) belonging to the P. delicatissima group: (A) P. 
calliantha, (B) P. delicatissima, (C) P. pseudodelicatissima. Scale bars represent 1 pm 
if not stated otherwise.
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Fig. 3.3. TEM micrographs of frustules of Scottish Pseudo-nitzschia strains (all from 
cultures) belonging to the P, seriata group: (A) P. australis, (B) P. seriata, (C) P. 
fraudulenta, (D) P. pungens, (E) P. cf. subpacifica. Scale bars represent 1 pm if not 
stated otherwise.

3.3.4 Field sample identifications

Species that were identified by TEM from field samples (station LY1 and cruise D257) 

include P. australis, P. seriata f. seriata, P. pungens, P. cf. subpacifica, P. americana, 

P. cf. delicatissima (at least two morphotypes or species) and P. cf. 

pseudodelicatissima. For all species identifications, the morphological measurements do

not always exactly match those from the keys. Especially for cells here named P. cf.
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pseudodelicatissima no definite species names (e.g. P. pseudodelicatissima, P . 

cuspidata or P. caciantha) could be assigned (see Tab. 3.7).

The results from field samples showed that different Pseudo-nitzschia species (toxic 

and non-toxic) that belong to one group and could not be distinguished by light 

microscopy (LM), can co-occur. P. australis, P. seriata and P. pungens (all belonging 

to the P. seriata group) were, for example, found together in samples from IG (together 

with P. fraudulenta), 20  and LYlSt.70. P. australis (toxic) and P. fraudulenta (non

toxic), that are easy to distinguish by TEM, but difficult by LM, co-occurred in 

LYlSt.20. In LYlSt.70 all five species identified within this study belonging to the P. 

seriata group, were observed together, further indicating the co-occurrence of toxic and 

non-toxic Pseudo-nitzschia with very similar with LM indistinguishable, morphologies. 

TEM identification using morphological fine structure features was ambiguous for P. 

australis from field samples. Numbers of fibulae and interstriae per 10 pm, rows of 

poroids, poroids per 1 pm and width differed between cells assigned as P. australis 

within the samples. Some P. australis and P. seriata cells identified from field samples 

might have been mistaken for each other. The decision on whether a species foimd in a 

field sample was designated as P. australis or P. seriata in this study depended mainly 

on the number of rows of poroids (P. seriata had to have at least 2 + 1  rows) and the 

number of poroids in 1 pm (< 6 for P. seriata).
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Morphological fine structure features of cells identified as P. americana (Tab. 3.6) 

often did not exactly match the descriptions in published keys (Tab. 3.3), however P. 

americana cells can be well distinguished from other Pseudo-nitzschia species by their 

short length and round shape of the valve tips. It is not clear though if the cells found in 

Scottish waters belong to a different species within the P. americana complex 

(Lundholm et al. 2002b). However, from their fine structural measurements they were 

delineated to P. americana rather than to the species P. brasiliana or P. tinea, which 

have similar features (as e.g. the distinct round tips).

3.1.5 Sequences

Alignments of partial rDNA sequences showed that they were identical within each 

species. Even in those strains of P. delicatissima which showed variations in their 

morphology, ITS and partial LSU rDNA sequences were identical. Therefore one 

representative sequence of each species was used in a fasta3 search to find homologue 

sequences on the EMBL-PLANT database. Results (matching sequences/ strains, their 

accession numbers and expectation values) are presented in Table 3.8.

Table 3.8 Species identification using fasta3.
Sequence of
Scottish
strain

Gene Species Match Strain of 
matched 
species

EMBL-
PLANT
Accession
number

E-value

PLYlSt.54B ITS P. australis OEMl AY257842 le 10'̂ ^
LSU OMl AF417651 6.1e 10̂ ^̂

PLYlSt.52B ITS P. seriata Nissum3 AY257841 2.8e 10'̂ *
LSU Lynaes8 AF417653 4.6e 10'^^

Ppung6 ITS P. pungens P-24 AY257845 7.3e 10'̂ ^
LSU KBH2 AF417650 5.9e 10'^

PLYlSt.llC ITS P. fraudulenta Limensl AY257840 8.1e 10'®̂
LSU Limensl AF417647 6.9e 10̂ ^̂

D257F ITS P. cf. subpacifica Limens8 AY257859 2e 10^^
LSU Zhenbo7B AF417644 1.5e 10'^^

Porkneyl ITS P. delicatissima LaesoeS AY257849 3.9e 10^^
LSU NWFSC 002 AF440767 1.2e 10 °̂^
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The results agreed with the species identifications that were delineated by 

morphological methods for those strains with unambiguous morphological 

identifications. For culture strains PLYlSt.l6B, PLYlSt.52B and D257F morphological 

identifications were ambiguous. Sequences of strain PLYlSt.l6B and PLYlSt.52B 

were identical, the fasta 3 search was undertaken using the ITS and LSU sequences of 

PLYlSt.52B. The search resulted in high similarity of PLYlSt.52B sequences with 

those of other P. seriata clones (Nissum3 for ITS and LynaesS for LSU), identifying the 

Scottish strains unambiguously as P. seriata. Strain D257F was thought to belong to 

either P. cf. heimii or P. cf. subpacifica, based on morphological measurements. In the 

fasta3 search the lowest E-values and hence best match were found for sequences of P. 

cf. subpacifica (clones Limens 8 for ITS: E = 2e 10'̂ *, and Zhenbo7B for LSU: E = 1.5e 

10'̂ °̂ ), therefore, and assuming that the identification of the species in the database was 

accurate and correct, it was decided that culture strain D257F represented P. cf. 

subpacifica rather than P. cf. heimii.

3.1.5.1 Special case of P. seriata

Prior to this study P. australis was the only confirmed DA producer in Scottish waters. 

In this study P. seriata was isolated from Scottish waters, identified and positively 

tested for DA production. However, due to its ambiguous morphology and 

morphological similarity to P. australis, its ITS and LSU sequences were compared to 

those of P. australis to verify that it was indeed P. seriata.

From its morphology the Scottish P. seriata strain PLYlSt.l6B was initially mistaken

for P. australis. However, the ITS and partial LSU rDNA sequences of both P. seriata

strains PLYlSt.l6B (GenBank AY452523, AY452525, respectively) and PLYlSt.52B

(GenBank AY452524, AY452526, respectively) were identical to one another and also

to the ITS and partial LSU rDNA sequences of the Danish P. seriata f. seriata strains
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(GenBank AY257841, AF417653, AF417652). A total of 20 nucleotide differences 

across the ITS and partial LSU rDNA regions were observed between the Scottish P. 

seriata strains (PLYlSt.l6B and PLYlSt.52B) and P. australis strains (PLYlSt.l9A, 

GenBank AY452527, AY452529 and PLYlSt.54B, GenBank AY452528, AY452530, 

respectively) (Fig. 3.4). The only base difference between the P. seriata and P. australis 

partial LSU rDNA (total length of 838 base pairs) was one transition (position 189), 

which represents a molecular dissimilarity (number of base differences divided by 

sequence length) of less than 0.002. Within the ITSl region (275 bases), 10 base 

differences were found between P. seriata and P. australis: seven transitions, two 

transversions and one indel (insertion or deletion). This corresponds to a dissimilarity 

between the sequences of only 0.036. No difference was found between the sequences 

of the 5.8S rDNA gene (162 bases, not shown). The dissimilarity between P. seriata 

and P. australis sequences in the ITS 2 region (330 bases) was 0.027. They differed in 

nine bases: six transitions and three transversions. Taking into account the full ITSl, 

ITS2, 5.8S and LSU sequences (1605 bases), only 20 nucleotide differences were 

observed, which describes a finite but small sequence dissimilarity of 0.012 between P. 

seriata and P. australis. Figure 3.4 shows the regions of sequence with base differences 

between P. seriata and P. australis ITS and LSU rDNA (Scottish strains and GenBank 

strain).
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Fig. 3.4 ITS and partial LSU rDNA sequence alignments of Pseudo-nitzschia seriata f. 
seriata and P. australis. Danish strains: P.seriata_Nissum (GenBank AY257841, 
AF417652), P.seriata_Lynaes (GenBank AF417653) and Scottish strains: P.seriata 16B 
(PLYlSt.l6B, GenBank AY452523, AY452525), P.seriata52B (PLYlSt.52B, GenBank 
AY452524, AY452526), P.australisl9A (PLYlSt.l9A, GenBank AY452527, 
AY452529), P.australis54B (PLYlSt.54B, GenBank AY452528, AY452530). Only 
sequence sections that include differences (indicated by grey bars) between both species 
are shown.

3.1.5.2 Partition homogeneity test

The partition homogeneity test showed that ITS and LSU sequences of all Scottish 

Pseudo-nitzschia strains were congruent. The evolutionary assumptions drawn from 

both genes were not significantly different (p value = 0.895), hence for each species ITS 

and LSU sequences were combined.

3.1.5.3 Modeltest

For the combined dataset the General Time Reversible' model (GTR) plus invariable 

sites and gamma distribution was selected by the Akaike information criterion (AIC, 

Akaike 1974). The likelihood settings from the best-fit model were the following: base 

frequencies : A = 0.2512, C = 0.2044, G = 0.2651, T = 0.2794; substitution model rate
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matrix: a = 0.7853, b = 1.1278, c = 1.1608, d = 0.561, e = 2.6966, f  = 1.0; gamma 

distribution shape parameter = 0.32, proportion of invariable sites (I) = 0.3689.

3.1.5.4 Maximum likelihood and Bayesian analysis

Starting with the model selected by AIC (Akaike information criterion, Akaike 1974) in 

Modeltest, the ML model parameters were estimated via consecutive heuristic searches 

and re-optimised until their values stabilised. The following parameters were applied in 

the ML analysis: base frequencies: A = 0.25049, C = 0.20389, G = 0.26636, T = 

0.27927; substitution model rate matrix: a = 0.869219, b = 1.178685, c = 1.246156, d = 

0.635066, e = 2.688958, f = 1.0; gamma distribution shape parameter = 0.203093, 

proportion of invariable sites (I) = none. The log likelihood of the tree was 5783.69. The 

maximum likelihood 50% majority rule consensus tree of 2000 bootstrap replicates 

showed the same tree topology as the 50% majority consensus tree from 10001 trees 

generated in the Bayesian analysis, therefore they are represented together as a 

phylogram created in MrBayes (Fig. 3.5). It includes branch lengths as a measure of 

evolutionary changes between the sequences of the taxa. A mean of 19 changes for 

example between P. seriata and P. australis indicates their very close relation. This 

close relation is further expressed in the 98% bootstrap support and a posterior 

probability of 100 assigned to the P. seriata-P. australis clade. The P. seriata-P. 

australis clade clustered with P. pungens (bootstrap support of 96%, posterior 

probability of 100). All Scottish species belonging to the P. seriata group (width > 3 

pm: P. seriata, P. australis, P. pungens, P. fraudulenta and P. cf. subpacifica) built one 

clade (74% bootstrap support, posterior probability of 68), separating them from P. 

delicatissima, representing the P. delicatissima group (width < 3 pm).

190



Chapter 3

275
Cylindrotheca

closterium

98/100

96/100

80/91

74/68
52

54

47

43

D IPLY1SL52B_ _  P. ‘?̂ na/fl|pLYistl6B
H .Y lStl9A
P australis3  
P L Y lS t .2 0 A  
M .Y 1 S L 2 4 D  
P L Y lS t 2 7 E  
H .Y lS t .3 3 A  
P L Y lS t 3 7 A  
P L Y lS t 3 7 B  
H .Y lS t .5 4 B  
P L Y lS t 5 2 C  
P L Y 1 S l5 6 B  
P L Y lS t 6 8 C  
D 2 5 7  6 G  
D 2 5 7  7 G A  
D 2 5 7  lO G A

— P. australis 6

67

97

P. fraudulenta

■ P.

PLYlStlSA
P L Y l S t l l C
P L Y l S L l l D
P L Y IS 1 .1 2 A
P L Y 1 S 1 .3 6 A
P L Y lS t .8 5 E

P. delicatissima
39

119
Porkney9
P o rk n ey l
P ork n ey2
Poricney3
P ork n eyS
P o rk n ey 6
P o * n c y 7
P ork n ey g
P ork n ey lO
P o r ic n c y ll
P o n to o n  1 -2
P L Y lS t S
P L Y 1 S C 4 2 A
P L Y lS t 4 3 C
P L Y lS t 4 5 E
P L Y 1 S L 4 6 A
P L Y I S t 4 8 A
P L Y 1 S L 7 7 C
P L Y lS t 8 5 A
P L Y I S tS S B

P. cf. subpacifica^^^

50 changes

Fig. 3.5 50% majority rule consensus tree based on combined ITS and partial LSU 
rDNA sequences. The consensus tree was combined from 2000 bootstrap replicates in 
ML analysis and 10001 trees in MrBayes, both analyses led to the same tree topology. 
Bootstrap values (before slash) and probabilities (behind slash) are shown at the internal 
nodes. Branchlengths are indicated below each branch and posterior probabilities are 
shown in bold at the internal nodes. Redundant sequences of the cultured strains 
representing the species are indicated behind the species names. Strains in bold are the 
actual strains whose sequences were used for the analysis. Cylindrotheca closterium 
(AF289049) was used as an outgroup.
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3.1.6 Domoic acid results

Fourteen P. australis cultures (at time of analysis in stationary phase) were positively 

tested for DA production (Tab. 3.1), while tests of cultures PLYlSt.37A, 37B and 

D2576G, 7GA and lOGA were negative. As those five cultures showed very little 

growth at time of analysis, it may be that not enough material was tested to detect DA. 

However, as samples for cell counts were not taken prior to DA testing this cannot be 

confirmed. D2577GA was contaminated with another species when DA was tested and 

was later re-isolated. Apart from the 14 P. australis strains, the two P. seriata strains 

also produced toxin. None of the other tested Pseudo-nitzschia cultures contained DA. 

For detailed study of DA production of P. seriata culture PLYlSt.52B under phosphate 

and silicate limitation during a full growth cycle see chapter 5.

Table 3.9 Domoic acid content of Pseudo-nitzschia seriata and P. australis strains after 
25 days (stationary phase) in batch culture.

Strain,
species

DA (ng • mL *) DA (pg •cell'*) Cell number
Whole culture Medium Whole culture Medium (mL')xl(F

PLYlSt.l6B, 
P. seriata

41.5 31.8 0.16 0.12 266

PLYlSt.52B, 
P. seriata

28.9 9.9 0.23 0.08 127

PLYlSt.l9A, 
P. australis

26.5 20.5 0.15 0.12 172

PLYlSt.54B, 
P. australis

217.2 114.8 1.68 0.89 129

To compare the toxin production of P. australis and P. seriata, two P. australis 

(PLYlSt.l9A and PLYlSt.54B) and P. seriata strains (PLYlSt.l6B and PLYlSt.52B) 

were again tested for DA after 25 days in culture (stationary phase). Those strains were 

chosen because they were the only isolated Scottish P. seriata strains and the most 

healthy looking P. australis strains. All strains contained DA (Tab. 3.9). The P. 

australis strain PLYlSt.54B produced considerably more whole-culture DA (217.2 ng
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DA • mL'^) and medium DA (114.8 ng DA • mL'^) than did the other P. australis strain 

(PLYlSt.l9A), which was isolated a year later, or the P. seriata strains. P. seriata 

strains and P. australis strain PLYlSt.l9A all produced similar amounts of whole 

culture and medium DA • ceU'\

3.4 Discussion

Within this study Pseudo-nitzschia species were isolated, cultivated, identified and 

tested for domoic acid production. It hence presents the first detailed assessment of 

Pseudo-nitzschia species in Scottish waters, identifying two DA producers, P. australis 

and P. seriata, and the presence of the following other species: P. fraudulenta, P. 

pungens, P. cf. subpacifica, P. americana, P. delicatissima, P. calliantha and P. 

pseudodelicatissima. The species P. americana, P. calliantha and P. cf. subpacifica 

were for the first time reported from Scottish waters.

Pseudo-nitzschia seriata had previously been implicated in DA toxin production, but

never before in Scottish waters. Lundholm et al. (1994) documented the first instance of

DA production by three isolates of P. seriata from Danish waters (although no ASP

events have been recorded in that region). This is in contrast to an earlier study in which

an isolate from PEI, Canada, identified as P. seriata, was found to be non-toxic (Bates

et al. 1989). High levels of DA in the digestive glands of scallops from the Magdalen

Islands (Gulf of St. Lawrence, Canada) were associated with the presence of P. seriata,

which was shown to produce DA in culture (Couture et al. 2001). In the spring of 2002,

for the first time ever, most of the southern Gulf of St. Lawrence was closed due to DA

produced by P. seriata (Bates et al. 2002). In Scotland (Gallacher et al. 2001, Campbell

et al. 2001, 2003) and Ireland (Cusack et al. 2000), P. seriata has been observed within

the phytoplankton community at times when these shellfisheries were closed due to DA

contamination. However, cultures of P. seriata were not established from these events,
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preventing any toxicity testing and unambiguous species identification. Furthermore, as 

toxic P. australis was identified during these events, the spotlight was directed at this 

latter species. This study therefore presents the first identification of P. seriata f. seriata 

from UK waters as a DA producer and suggests its potential to act as a causative 

organism for ASP toxin in moUuscan shellfish from those waters.

3.4.1 Morphological identification of ambiguous species

3.4.1.1 P. seriata

Pseudo-nitzschia seriata has long been known to have a close morphological similarity 

to Pseudo-nitzschia australis. First described as Pseudonitzschia australis by Frenguelli 

(1939), P. australis was transferred to the genus Nitzschia, but because the name 

Nitzschia australis was already taken, it was proposed to be called N itzschia  

pseudoseriata (Hasle 1965) because of its strong resemblance to Nitzschia seriata 

(today known as Pseudo-nitzschia seriata). Indeed, their morphological similarity has 

resulted in the misidentification of P. australis as P. seriata in the past (Garrison et al. 

1992, Villac et al. 1993b, Fryxell et al. 1997).

The morphological fine structure of Nitzschia seriata (Cleve) (type locality: Tindlingen, 

Greenland), which is today known as Pseudo-nitzschia seriata (Cleve) Peragallo 

(Peragallo and Peragallo 1900), was described by Hasle (1965). Two rows of poroids 

per stria are evident, which are, in addition, joined in most cases by two, but sometimes 

one or three, more rows of poroids. For P. seriata f. seriata, Skov et al. (1999) describe 

three to five rows of poroids per stria, often grouped as two times two rows. In contrast, 

for Nitzschia seriata f. obtusa, today known as Pseudo-nitzschia seriata f. obtusa, Hasle 

(1965) observed only two rows of poroids per stria and obtuse valve ends.
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The phenotypic appearance of the two Scottish P. seriata strains (PLYlSt.l6B and 

PLYlSt.52B) was ambiguous when compared to other described P. seriata f. seriata 

strains, differing mainly by the observation of only two rows of poroids per stria, with 

occasionally a third row. Moreover, the number of fibulae and interstriae per 10 pm 

differed between the two strains.

Although lacking the obtuse valve ends characteristic of P. seriata f. obtusa (as listed in 

Skov et al. 1999), the morphological features described above could lead to the 

identification of these strains as either P. seriata f. obtusa, or (because of two rows of 

poroids) P. australis, rather than P. seriata f. seriata. Indeed, after strain PLYlSt.l6B 

was isolated into culture, it was initially thought that it may be P. australis because the 

frustules lacked a central interspace and had two rows of poroids.

The unusual morphology exhibited by those strains may be related to the fact that the 

cells had been in culture for ca. six months before they were examined by TEM. In 

culture, the cell length would have diminished due to cell division (e.g. Pan et al. 2001), 

but this would not necessarily have affected the fine structural features. Furthermore, 

the cells were not lobed or otherwise deformed as has previously been observed in some 

older Pseudo-nitzschia clones (e.g. Subba Rao & Wohlgeschaffen 1990; Pan et al. 

2001; S. Bates and J. Fehling, personal observations).

3.4.1.2 P. cf. subpacifica

In Europe, P. c.f. subpacifica has been isolated from Portuguese and Spanish waters

(Lundholm et al. 2002a). The strain established in this study is the first strain identified

from Scottish waters. Recently P. subpacifica has been detected in the Bay of Fundy

(Canada) (Kaczmarska et al. 2004). The presence of P. subpacifica in Gulf Stream

samples (Kaczmarska et al. 1986) led Kaczmarska et al. (2004) to the suggestion of a

northward expansion of the species via that current. A molecular analysis of P.
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subpacifica from the Bay of Fundy would determine if the Scottish and Canadian 

strains belong to the same species. If the Scottish P. cf. subpacifica is similar to P. 

subpacifica, the suggestion of its northward expansion would be confirmed.

P. subpacifica was first described as Nitzschia subpacifica by Hasle (1965). It has some 

similar morphological characters to P. heimii, such as striated bands (Hasle 1965; Hasle 

& Syvertsen 1996), but is in general described as wider and more delicate in structure. 

Although in this study P. cf. subpacifica was found to be narrower than P. subpacifica 

described in keys, some of its morphological features such as the number of fibulae and 

interstriae approximate the numbers given for P. subpacifica or P. heimii. Its 

identification just by morphological features is ambiguous and P. cf. subpacifica could 

be delineated as P. cf. heimii, or even as some non-described species. This is another 

example of ambiguous morphology in Pseudo-nitzschia and emphasises the need to 

combine molecular identification with classical morphological characters.

3.4.1.3 P. americana

P. americana, originally described as Nitzschia americana (Hasle 1964), is often found

as an epiphyte on other diatoms such as Chaetoceros species (Lundholm 2002b), this

was the case in this study too. It had previously been reported from tropical to temperate

waters all over the world, including the North Sea and Skagerrak. This study presents

the first record of P. americana from the North Atlantic, although its identification is so

far only based on morphological features, as it was not isolated and cultured (for

positions of sampling locations at which P. americana was observed, see chapter 2,

Table 2.2). It was not isolated, because it was not recognised in non-fixed field samples.

Furthermore, as it was mainly found sitting on Chaetoceros spp. cells, it would have

been difficult to separate it from those cells and grow it in a clonal culture without

Chaetoceros spp.. From its morphological fine structure, the cells examined in this
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study matched recently published descriptions of P. americana (Lundholm, 2002b). 

One difference noted was that P. americana was observed to occur in chains of up to 

three cells, in some samples, whereas the species is described as occurring only as 

single cells (Hasle 1964). Further investigation involving its cultivation and 

identification by molecular methods would be needed to confirm its species delineation. 

A Californian strain of P. americana tested negative for DA production (Villac et al. 

1993a) and hence this species might not be a concern for ASP in Scottish waters. 

However, as DA production may be strain specific, further study on Scottish P. 

americana is required.

3.4.1.4 P. delicatissima

The morphology of strains of P. delicatissima (Cleve) Heiden, first described as N. 

actydrophila (Hasle 1965), differed considerably. Most of the cultivated strains and 

cells from field samples were wider than described in published keys, some of them 

possessed less poroids than the type description. From their morphology it is likely that 

some strains belong to a new species close to P. delicatissima that is described in a 

paper by N. Lundholm which is not yet in press (N. Lundholm, personal 

communication). Morphological features might change in culture or with environmental 

conditions. However, the differences in morphology observed in cultured strains, were 

not shared in the molecular data, the partial rDNA sequences were identical. The 

example of P. delicatissima again shows the importance and advantage of identification 

by the molecular approach, morphological ambiguities that might lead to 

misidentification can be overcome by unambiguous species delineation applying 

molecular techniques. While it was shown that the cultured strains all belonged to one 

species, the lack of molecular evidence means it will remain unknown if the cells

identified from field samples were delineated correctly.
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3.4.1.5 P. calliantha and P. pseudodelicatissima

Before the description of P. calliantha as a new species (Lundholm et al. 2003), it was 

often identified as P. pseudodelicatissima. P. pseudodelicatissima, was first described 

as Nitzschia delicatula (Hasle 1965), until the species complex (also including P. 

cuspidata) was recently re-examined (Lundholm et al. 2003). The cultivation and 

identification of P. calliantha again represents the first occurrence of this species in 

Scottish waters. Unfortunately the culture died before it was tested for domoic acid 

production and before its DNA was extracted, but the distinct morphological fine 

structure clearly identified the cultured strain as P. calliantha. This species might be of 

ecological interest in Scottish waters, as some strains have been observed to produce 

DA: P. calliantha was responsible for high DA concentrations in blue mussels (Mytilus 

edulis) in the Bay of Fundy, Canada in 1988 (Martin et al. 1990). Another strain from 

Danish waters had also been positively tested for DA production (Lundholm et al. 

1997). However, other cultures of P. calliantha did not appear to produce the toxin 

(Lundholm et al. 1994; Lundholm et al. 2(X)3).

In field samples, various P. cf. pseudodelicatissima cells were observed and identified 

by TEM. In at least some of those cells (e.g. from D257M, D2577G, LYlSt.70) the 

valve structural features were ambiguous and did not exactly match the species 

descriptions for P. pseudodelicatissima, P. calliantha, P. caciantha or P. cuspidata, 

indicating that further undescribed species probably exist. More study is required to 

isolate, cultivate and identify some of those ambiguous strains with morphological and 

molecular methods. This could be of interest as that species complex includes some 

potential DA producers (Lundholm et al. 2003) that might contribute to ASP events in 

Scottish waters.
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3.4.2 Possible reasons for morphological differences in strains belonging to the 

same species

Difference in the number of fibulae and interstriae between strains (e.g. in P. seriata 

PLYlSt.l6B and PLYlSt.52) or width (e.g. P. delicatissima strains Porkneyl and 

PLYlSt.48B) might be explained in three ways. First, many of the strains were isolated 

from the same place (LYl) but in successive years. It is possible that different 

populations had been sampled, with slightly divergent morphological appearances. 

Second, the difference in age of the cultures may be important, adaptation to laboratory 

conditions could have an effect on the morphological valve fine structure. However, 

there is no other evidence to show that ageing in culture could result in a change in the 

number of fibulae and interstriae. Third, there is evidence that temperature can have an 

impact on some frustule structures. Similar to the findings of this study, Lundholm et al. 

(1997) noted a reduction in the number of rows of poroids in P. seriata from four to two 

(or three) as temperature was increased from 4° C to 15° C. Lewis et al. (1993) 

observed a difference in the number of rows of poroids in P. multiseries, when grown in 

batch culture at different temperatures. Cells grown at 5-15°C had three to four rows of 

poroids (as is common for P. multiseries), whereas cells grown at 25°C had only two to 

three rows. As diatom taxonomy is mainly based on valve morphology, the impact of 

temperature on Pseudo-nitzschia species morphology requires more study.

3.4.3 ITS and LSU sequences

3.4.3.1 P. seriata and P. australis

The high similarity in the ITS and LSU regions indicates that P. seriata and P. australis 

are closely related; this is also supported by their close morphological similarity. 

Discrimination between these two species is more problematic than for others from the
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genus Pseudo-nitzschia. For example, Manhart et al. (1995) aligned ITSl sequences of 

P. multiseries and P. pungens and found 57 point mutations and three indels; many 

more differences than the nine between the ITSl sequences of the Scottish P. seriata 

and P. australis. Using the ITS2 regions, Cangelosi et al. (1997) compared P. 

multiseries, P. pungens and P. australis. The P. multiseries sequence exhibited 17% and 

21% divergence from P. pungens and P. australis, respectively, again a much higher 

divergence than the 2.7% that was observed in the ITS2 region between P. seriata and 

P. australis.

Within Pseudo-nitzschia species, identification based only on morphology and partial 

LSU sequences can be ambiguous and may lead to misidentification. With only one 

base difference, the LSU region on its own can be insufficient to distinguish between P. 

seriata and P. australis. Afiex TEM examination of strain PLYlSt.l6B, it was 

erroneously concluded to be P. australis. The LSU region was then sequenced and 

compared to other P. australis sequences. The finding of only one base difference in the 

sequences was at first interpreted to be population-level variation. However, after 

sequencing the ITS region and making more detailed measurements on the TEM 

images, it was concluded that the species was not P. australis. By aligning the ITS and 

LSU regions of the Scottish strain with other P. seriata strains conducting a FASTA 

search, its identity was shown to be P. seriata f. seriata. In this case it proved essential 

to sequence more than one gene region.

3.4.3.2 P. cf. subpacifica and P. cf. heimii

As discussed above, using a morphological approach, culture D257F could have also

been identified as P. cf. heimii. Searching ITS and LSU sequences against the EMBL-

PLANT database, the highest match was found with P. cf. subpacifica. For P. cf. heimii

only one LSU sequence is published on databases (as P. cf. heimei, GenBank
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AF440777). Aligning the D257F LSU rDNA sequences with the sequences of P. cf. 

subpacifica (strain Zhenbo7BL, GenBank AF417644) and P. cf. heimii (GenBank 

AF440777; see appendix 5 for alignment) showed the number of differences between 

them, detailed in Table 3.10.

Table 3.10 Differences in partial LSU sequences between P. cf. subpacifica and P. cf. 
heimii *

P. cf. subpacifica P. cf. heimii D257F
P. cf. heimii 4 (2 ts, 2 tv) - 4 (1 ts, 3tv)
D257F 2(2ts) 4 (1 ts, 3tv) -

*ts = transition, tv = transversion;

Given the differences in sequences between the three strains it is possible that strain 

D257F is an intermediate form of P. cf. heimii and P. cf. subpacifica. This view was 

supported by comparing ITS sequences. The ITS sequences of D257F and P. cf. 

subpacifica (strain LimensS, AY257859; see appendix 5 for alignment), showed 10 

differences (9 ts, 1 indel) between the two sequences. Still, that strain was the highest 

match among all Pseudo-nitzschia strains listed in that database (an E-value of 2e 10*̂ *). 

However, 10 is quite a high number of differences, indicating that those two species 

variants might be indeed different species, leaving the delineation of strain D257F 

uncertain.

3.4.3.3 Intra-specific variation

LSU sequences did not show intra-specific divergence within P. australis, P. seriata, or 

P. fraudulenta. For P. delicatissima, the strains examined potentially represent a 

species-complex. This indicates that the LSU region of the rDNA operon is not 

sufficient to distinguish strains within species of Pseudo-nitzschia. However, some 

differences between ITS sequences from world-wide strains were found for example in
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P. pungens, P. fraudulenta and P. delicatissima, which might be useful as regional 

population markers.

The observed consistency between partial rDNA sequences of species is an advantage 

in using gene probes for monitoring toxigenic Pseudo-nitzschia species.

3.4.4 Phylogenetic analysis

In both, ML and Bayesian analyses P. seriata and P. australis were grouped together in 

a clade with high bootstrap (98) and posterior probability (100) values. Their close 

phylogenetic relationship was expected, due to their similar morphology, both are 

domoic acid producers and only one difference was found between their LSU rDNA 

sequences. In other studies, using either partial LSU rDNA (Lundholm et al. 2002a, b; 

Lundholm & Moestrup 2002) or the ITS region (Lundholm et al. 2003), these two 

species were also identified as sister taxa, confirming the result of this study. Similar to 

those other studies, of the taxa used, P. pungens was most closely grouped to the P. 

seriata - P. australis clade. P. seriata, P. australis and P. pungens all lack a central 

interspace and have 2 (in case of P. seriata 2+1) rows of poroids, justifying a close 

phylogenetic relationship between the three. This shows, that the valve morphology 

reliably indicated the taxonomic relationships. The next closest taxon was P. 

fraudulenta and then P. cf. subpacifica, relating all taxa belonging to the P. seriata 

group to each other. This result was different to studies that used either partial LSU 

rDNA or ITS rDNA, where P. cf. subpacifica was found separated from the P. seriata 

group cluster, in a group with P. delicatissima (Lundholm et al. 2002ab; Lundholm & 

Moestrup 2002; Lundholm et al. 2003). However, as P. cf. subpacifica strains differed, 

they might have been different species. In other studies ML, parsimony and distance 

methods were used and fewer bootstrap replicates were conducted.
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In combining ITS and LSU rDNA a better resolved phylogeny, distinguishing the P. 

seriata and P. delicatissima group was achieved. ML and Bayesian analysis resulted in 

the same tree topologies, both were supported by high bootstrap and posterior 

probability values, indicating a high confidence in the established phylogenetic 

relationships between the used taxa. The identical topology of trees obtained from both 

methods recommends the use of ML and Bayesian methods in future analysis, rather 

than distance and parsimony methods, although they might be costly in computational 

time.

A combination of SSU, ITS and LSU rDNA sequences to build a phylogeny including 

Scottish strains and Pseudo-nitzschia strains from round the world is currently in 

preparation. This might give more insight in the evolutionary relationships of Pseudo- 

nitzschia spp. in general and in particular the relation of the Scottish P. cf. subpacifica 

to the other taxa.

3.4.5 Domoic acid production

This study confirmed the toxicity of Scottish P. australis strains and hence the results of 

Campbell et al. (2001) who tested two P. australis cultures isolated from Scottish 

waters.

This is the first documentation of DA production by a Scottish isolate of P. seriata. The

first report of DA production by P. seriata was in Danish strains (Lundholm et al.

1994). It is difficult to compare the toxicity of the Scottish and Danish P. seriata strains

because of the rapid daily increase in DA concentration as the cultures age in stationary

phase. In our study, the DA content was 0.16 to 0.23 pg DA cell'  ̂ (for both strains) on

day 25 and at 15° C. This compares with 0.31 to 1.6 pg DA cell'* (for three strains) at

unspecified days during the stationary phase, but also at 15° C (Lundholm et al. 1994).

Temperature may be an important factor for DA production in P. seriata. The Danish
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cultures produced more DA at 4° C than at 15° C. Furthermore, the affect of 

photoperiod is unknown, but the Danish cultures grew under a 16:8 h L:D cycle, 

compared to our 12:12 h L:D cycle. Interestingly, two Canadian isolates of P. seriata 

produced the identical amount of total DA (0.16 pg • cell'*) as reported here for strain 

PLYlSt.l6B, but at 8° C, on day 17, and with a 10:14 h L:D cycle (Bates et al. 2002). 

At the end of the experiment (day 64), the cellular DA content had increased to 3.4 pg - 

cell*.

Even when grown under the same culture conditions, P. australis strain PLYlSt.54B 

exhibited greater toxin production at the same stage in culture than P. australis strain 

PLYlSt.l9A. The difference in toxicity might be explained by the fact that the latter 

was isolated a year after the former. Both strains may therefore have been collected 

from different planktonic populations; many plankton taxa are known to exist in 

temporally and spatially highly variable sub-populations (e.g. Bolch et al. 1998; Medlin 

et al. 1996; Rynearson & Armbrust 2000). Further genetic analyses of additional strains 

and genetic markers with a higher level of polymorphism than displayed by the ITS and 

LSU rDNA regions are needed to test this hypothesis for Pseudo-nitzschia spp. 

However, the results of this study support the finding that Pseudo-nitzschia strains of 

the same species can vary in their toxin production, as observed for P. seriata 

(Lundholm et al. 1994), P. australis (Villac et al. 1993a, b), P. multiseries (Bates et al. 

1989, Villareal et al. 1994), P. multistriata (Rhodes et al. 2000), and P. pungens, P. 

delicatissima and P. fraudulenta (Rhodes et al. 1998).

The discovery of DA production by P. seriata in Scottish waters indicates that P. 

australis is not the only toxic species of concern in Western Europe. The latter species 

was thought to be the causative organism of the 1999 -  2002 closures of king scallop 

harvesting across offshore regions of northern and western Scotland (Campbell et al. 

2003). However, because of their similar appearance and morphology, it is likely that P.
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seriata was also present but often unnoticed. Strains of P. fraudulenta, P. pungens and 

P. delicatissima isolated from Scottish waters did not produce DA, nor did the P. cf. 

subpacifica strain from the open Atlantic (D257 F, 57°30'N, 12°15'W). Pseudo- 

nitzschia multiseries has previously been observed in eastern Scottish waters in low 

numbers (Gallacher et al. 2001), but cultures were not established so they could not be 

tested for DA.

3.4.6 Implications and conclusions

This study indicates that at least two Pseudo-nitzschia species (P. seriata and P. 

australis) can be responsible for ASP toxicity in Scottish waters. A third potentially 

toxic species, P. calliantha, was first observed in these waters, but not tested. Further 

isolation, identification and toxicity testing of the resident phytoplankton conununity is 

needed to determine if other species may also contribute to DA production in this 

region.

This study also demonstrated the importance of combining morphological and genetic 

approaches for identifying closely related Pseudo-nitzschia species. Identification can 

be ambiguous in phytoplankton monitoring programmes where harmful species are 

counted with the light microscope. Significant economic and health consequences can 

result, should there be confusion between toxic and benign species. The advancement of 

such monitoring programmes requires the development and implementation of 

molecular probes capable of differentiating among similar species that may display 

variable, or no toxicity. The ITS data might be sufficient in most cases for probe 

development. For example, ITSl data contain a region of 20 base pairs (at position 126- 

148), that has 6 differing nucleotides between the closely related species P. australis 

and P. seriata. This region should be sufficiently different to provide a template for a 

probe distinguishing between the two.

205



Chapter 4______________________________________________________________

4 Chapter 4; Laboratory experimental studies

4.1 Introduction

4.1.1 Studies on DA production in Pseudo-nitzschia species

Considerable effort has been expended on studying the growth and DA production of P. 

multiseries. In particular, detailed laboratory experiments on isolates under a range of 

defined conditions have shown that toxin production is most prevalent in inorganic 

nutrient limited stationary phase (e.g. Bates et al. 1989; Pan et al. 1991; Bates et al. 

1991; Douglas & Bates 1992; Douglas et al. 1993; Lewis et al. 1993; Pan et al. 1993; 

Smith et al. 1993; Bates et al. 1995; Pan et al. 1996a, b, c, d; Zhiming & Subba Rao 

1998; Bates 2000).

Field observations and laboratory studies led to the suggestion that environmental stress 

such as nutrient limitation influences DA production in Pseudo-nitzschia species (e.g. 

Scholin et al. 2000). In eastern Canada, during a P. multiseries bloom in the field, the 

maximum cellular DA concentration was found about one week after the maximum of 

P. multiseries cells in the water column (Smith et al. 1990a). In this case cells might 

have been exposed to nutrient limitation, resulting in the cessation of growth and in 

enhanced DA production.

The particular nutrient that limits cell yield is thought to be of importance to toxin

production (as stated in section 1.8). Nitrogen limitation is thought not to induce toxin

production (Bates et al. 1991). However, Si and P have been shown to enhance DA

production in P. multiseries, when they became limited in the growth medium (section

4.1.2). Detailed analysis of those studies showed that DA production by P. multiseries

occurs mainly in Si limited stationary phase. When Si limited cultures were re-supplied

with the limiting nutrient, DA production was suspended, but resumed when Si in the

medium became low (Pan et al. 1996b, c). For P, Pan et al. 1996a associated high DA
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production in steady-state continuous and batch cultures with high cellular N:P ratios, 

and hence P limitation or at least P stress on the cells.

Of all Pseudo-nitzschia species isolated from western Scottish waters as part of this 

study (chapter 3), only P. australis and P. seriata produced DA. As noted in chapter 1, 

section 1.8.1, two studies (Garrison et al. 1992; Cusack et al. 2002) have investigated 

toxin production by P. australis. However, results were ambiguous and the experiments 

were not conducted with a defined limited nutrient.

Only one study has been conducted with P. seriata, indicating elevated DA production 

under low temperature (Lundholm et al. 1994) (see chapter 1, section 1.8.3).

These studies therefore provide some, but inconclusive, support for the hypothesis that 

Pseudo-nitzschia species (at least P. multiseries and P. australis) have different 

physiological mechanisms governing DA production. Furthermore, while the temporal 

variation in toxin production is potentially related to nutrient stress, it may also be strain 

specific (section 1.4) and additionally may be modulated by other factors such as 

temperature or photoperiod. This has obvious implications for monitoring Pseudo- 

nitzschia blooms and predicting their toxicity.

Field observations at the monitoring site LYl (chapter 2) suggested that the distribution 

of toxic and non-toxic Pseudo-nitzschia species might be influenced by seasonal, 

environmental factors such as nutrient availability and photoperiod. As P. seriata, 

which can be confused with P. australis, was isolated and identified from Scottish 

waters, it was necessary to test its toxicity. Furthermore, the experiments were 

undertaken with defined P and Si limitation as had previously been conducted for P. 

multiseries (e.g. Bates et al. 1991; Pan et al. 1996a, b, c).

Other factors that are not easily monitored in the field, such as interactions with bacteria 

might also play a role in the toxin production and seasonal occurrence of Pseudo-
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nîtzschia species. Hence, this study goes on to investigate the effects of some basic 

interactions between the diatoms and bacteria, on growth dynamics of P. seriata.

The following hypotheses were tested in laboratory experiments:

• A) The toxin production and growth dynamics of P. seriata is influenced by the 

yield limitation of silicate or phosphate.

• B) P. seriata shows differences in growth, when grown on NH4 or NO3 based 

media.

• C) P. delicatissima and P. seriata have different light length preferences.

• D) The presence of bacteria enhances growth of P. seriata.

4.1.2 Experiment A: Growth and toxin production of P. seriata under Si- and P 

limitation

In this study the effects of inorganic P or Si limitation on a Scottish P. seriata isolate 

were investigated. Experiments were conducted in controlled laboratory batch cultures 

under both inorganic Si and P limitation allowing the investigation of nutrient stress on 

cell numbers and both carbon (C) and N biomass growth and yield, chi a concentrations 

and both intracellular and extracellular DA production.

For frustule formation of diatoms Si is essential (e.g. Paasche 1973), but it also plays an 

important role in the cell-cycle. Cells take up Si during a specific stage of the cell cycle 

(Brzezinski 1992), in P. multiseries during the light period, presumably at the end of the 

G1 phase (Bates 1998). Si limitation impedes the progress of the cell-cycle division by 

interfering with the synthesis of DNA (Brzezinski et al. 1990). Si might affect the 

regulation of gene expression in diatoms, as its limitation may indirectly inhibit DNA 

polymerase and may therefore arrest cells at a particular phase in the cell division cycle 

that is conductive to DA production (Pan et al. 1998; Bates 1998 and references 

therein).
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Silicate is the limiting nutrient in the commonly used F/2 growth medium (Guillard 

1975), being in relatively low supply compared to the other nutrients. In batch cultures 

of diatoms (Subba Rao et al. 1988b; Bates et al. 1991; Pan et al. 1991) the stationary 

growth phase is often initiated by silicate limitation and with it DA production starts, as 

was shown for P. multiseries (Bates 1998 and references therein). Lower initial Si 

concentrations in the medium resulted in higher cellular DA levels in stationary phase 

(Bates et al. 1991). Furthermore, as shown by Pan et al. (1996b), the amount of DA 

production seems to be inversely correlated with the Si concentration in the culture.

In coastal waters the Si concentration is either decreasing or relatively constant, while N 

is potentially increasing. Hence, as the N:Si ratio is normally 1:1 for optimal 

phytoplankton growth, this would lead to Si limitation (Gilpin et al. 2004).

In batch and continuous culture experiments P. multiseries has been shown to produce 

DA under P limitation (Bates et al. 1991; Pan et al. 1996a). Pan et al. (1996a) associated 

high DA production in batch and steady-state continuous cultures with high cellular N:P 

ratios, and hence P limitation or at least P stress on the cells. In the marine environment 

P is only occasionally a limiting nutrient in coastal waters. It is not known by what 

'mechanism' other than placing cells under physiological stress, P limitation can effect 

DA production.

4.1.3 Experiment B: P, seriata growth on different N sources

Nitrate (NO 3  ) and ammonium (NH/) are the main nitrogen (N) sources for primary

production, they occur in the world oceans in concentrations commonly less than 40

pM, sometimes higher concentrations are observed due to local eutrophication (Sommer

1998). In times of high primary productivity (e.g. during a phytoplankton bloom), the

NO3 and N H / concentration in the water can decrease below the detection limit. At

LYl between May and September, when Pseudo-nitzschia spp. abundance was high
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(chapter 2), NOg concentrations were low, between 0.3 pM and detection limit. 

However, N H / concentrations were elevated with a maximum concentration of 1.5 pM 

at times when Pseudo-nitzschia blooms occurred (chapter 2). It is known that 

ammonium (as NH/) is preferred to NO3 by some algae as a N source (e.g. Dugdale & 

Goering 1967). This preference for N H / uptake is attributed to its more reduced state 

(Levasseur et al. 1993) and the implication of a higher energy cost for growth on NO3 

as it must be reduced prior to use (Syrett 1981).

Smith et al. (1990a) observed that blooms of P. multiseries in the field are closely 

associated with NO3 pulses. Hence, NO3 and other inorganic N sources probably play 

an important role in controlling growth and DA production in Pseudo-nitzschia in the 

field and laboratory. To better understand its cell physiology, it is important to 

investigate which nitrogenous nutrient conditions favour toxic Pseudo-nitzschia growth 

and DA production (Bates et al. 1993). Previous experiments have been undertaken on 

P. multiseries (Bates et al. 1993, as described in chapter 1). Although in Scottish waters 

P. seriata and P. australis seem to be the main toxin producing species (chapter 3), little 

is known about their N source preferences. As the P. seriata strain PLYlSt.l6B was 

isolated at a time when the NO3 concentration in the water was zero, its ability to grow 

on N H / as a N source was tested by conducting an experiment, comparing growth rates 

in media based on NO3, N H / and a mix of both.

4.1.4 Experiment C: Pseudo-nitzschia growth under different L:D cycles

The phytoplankton community composition is influenced by light (Hobson & McQuoid

1997). Light influences the phytoplankton in particular due to seasonal variation in

irradiance and day length, depending on the latitude. The daily lightidark (L;D) cycle is

one of the strongest and most predictable of all environmental parameters affecting

phytoplankton. It is thought to affect the content of algal pigments, growth rate and dark
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respiration rate (Gilstad et al. 1993). However, the growth response to day length seems 

to be species dependent (Brand & Guillard 1981), and depending on the environmental 

conditions they are exposed to, phytoplankton may have evolved adaptations to the 

daily fluctuation of light. While oceanic phytoplankton may mainly be affected by daily 

and seasonal changes in irradiance levels and light availability, the light regime for 

coastal species can also change due to mixing caused by tidal and bottom topography 

induced turbulences and is therefore less stable. Light specific adaptations are for 

example found in some oceanic phytoplankton, of which some species require a L:D 

cycle for asexual reproduction, while many coastal species were found to divide more 

rapidly when exposed to long photoperiods or to continuous light (Brand & Guillard 

1981).

L:D cycles are also known to influence sexual reproduction, for example affecting the 

auxosporulation and auxospore length, in some pennate diatoms (see Hiltz et al. 2000 

and references therein). Many pennate diatoms require a particular light cycle, and in 

some species continuous light can inhibit sexual reproduction (e.g. Nitzschia  

lanceolata). In a study on sexual reproduction in P. multiseries, a L:D cycle of 10:14 h, 

corresponding in nature to the day length of autumn, was shown to yield the highest 

number of initial cells per female gamete (Hiltz et al. 2000).

The L:D cycle impacts DA production by influencing the cell cycle, with increasing DA 

production during the light phase for P. multiseries (Bates et al. 1991). This is related to 

the cell division cycle. During light periods cells are in the G1 phase of the cell cycle, a 

phase of active Si uptake. This then promotes DNA synthesis in the G2 phase. The DA 

production seems to be highest in the G1 phase. It is assumed that, in Si limited 

conditions, cells in stationary phase, are arrested in their G1 phase, unable to proceed to 

the G2 phase (Chisholm & Brand 1981; Brzezinski 1992). As cells continue to
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photosynthesise, the excess energy that cannot be used for DNA synthesis, may be used 

for DA production (see Bates et al. 1991).

Studies on the influence of light on growth and/or DA production of Pseudo-nitzschia 

species have mainly been conducted under 12:12 h L:D cycles or continuous light with 

changing light intensities (e.g. Miller & Kamykowski 1986a, b; Pan et al. 1991; Lewis 

et al. 1993; Pan et al. 1996a, b, c, d). Laboratory studies investigating the effect of 

varying duration of the L:D cycles on growth in Pseudo-nitzschia species have not 

previously been conducted.

While light cycles clearly influence DA production in P. multiseries, irradiance levels 

do not seem to affect it much. When P. multiseries was grown at different temperatures 

and two different photonflux densities (80 and 180 pmol photons • m'  ̂• s'^) (Lewis et al. 

1993), no significant differences in toxin production were measured, except from 

cultures grown at the highest irradiance and temperature, that produced higher DA 

concentrations. However, in that case it was impossible to distinguish between the 

impacts on DA production of each single factor.

When a strain of P. australis was grown under a very low (12 pmol photons • m'^ • s' )̂ 

and a moderate (115 pmol photons • m'  ̂• s'^) irradiance at different light cycles (16:8 

and 12:12 h L:D, respectively), DA was not produced for 40 days and then only in trace 

amounts under the low irradiance/long-light treatment (Cusack et al. 2002). In the other 

light conditions DA production started during late exponential phase and reached 

maximal 26 pg DA • cell'* during stationary phase. However, that study did not resolve 

if the irradiance, light cycle or both had the main impact on DA production.

From the phytoplankton monitoring programme (chapter 2) it was obvious that toxic 

and non-toxic Pseudo-nitzschia species occurred in Scottish waters during different 

seasons of the year. One of the main factors determining the seasons in Scottish waters 

is the duration of light availability. The field observations from the monitoring site LYl
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(chapter 2) suggested a preference of P. delicatissima for spring conditions while P. 

seriata showed highest cell densities during the summer months. While changes in the 

light irradiance were not measured during the phytoplankton monitoring and are not 

known for the local Scottish waters, day length is known for the location where the 

Pseudo-nitzschia cultures were isolated. In February 2002, when P. delicatissima strain 

PLYlSt.42A was isolated, the day length at approximately the latitude of LYl (56°N) 

was 9 h. While in June 2001, at times of isolation of P. seriata strain PLYlSt.l6B, 

daylight was approximately 18 h. To investigate the effect of day length on the two 

Pseudo-nitzschia species, a growth study was conducted. P. delicatissima and P. seriata 

were grown in laboratory batch cultures under spring and summer simulating L:D 

cycles, a constant temperature and irradiance.

As the P. delicatissima strain (PLYlSt.42A) was not toxic (chapter 3), DA 

concentrations were measured only in P. seriata cultures.

4.1.5 Experiment D: P. seriata - bacteria interactions

Bacteria-algal interactions can be highly variable in natural plankton communities. It is

known that bacteria and phytoplankton interact in several ways (as referenced in

Grossart 1999), with bacteria having been found to live attached to diatoms (e.g. Bell et

al. 1974; Cole 1982; Rosowski 1992). One of the advantages for the bacteria in being

closely associated with a diatom cell is that the algae surface might provide nutrients

that are absent or deficient in the surrounding fluid (Sutherland 1983). The protoplast of

the diatom might secrete an array of substances influencing the activity of the bacteria

in positive and/or negative ways (see Rosowski 1992). In this kind of symbiosis bacteria

utilise phytoplankton exudates while the algae benefit from bacterial nutrient

remineralisation, vitamins or growth factors. However, bacteria may compete with the

algae for nutrients, and under certain environmental conditions they can inhibit algal
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growth (Grossart 1999). Bacteria can be comensalic, by benefiting from the algae 

without affecting them, or live parasitically on phytoplankton and lead to their cell lysis 

and death. In general, bacterial-microalgal interactions can be highly variable.

As reported in the general introduction (chapter 1), most experiments on Pseudo- 

nitzschia have been undertaken with xenic cultures, as were experiments A-C in this 

chapter. While it has been shown that bacteria may enhance DA production in toxic 

Pseudo-nitzschia species (Bates et al. 1995), the effect of bacteria on growth of single 

Pseudo-nitzschia cells had not been studied previously.

To test the hypothesis that P. seriata associated bacteria affect the growth of the 

diatoms, growth of an initially single cell in each petri dish was monitored in presence 

and absence of bacteria and/or bacterial exudates and some bacterial strains associated 

with P. seriata were isolated and identified.

4.2 Material and Methods

4.2.1 General methods

4.2.1.1 Culture strains used for laboratory experiments

All experiments used P. seriata strain PLY lSt.l6B. The L:D experiment was 

additionally conducted on P. delicatissima strain PLYlSt.42A. Both xenic, clonal 

cultures were initially isolated from surface waters (0-20 m), collected using 20 pm 

mesh plankton net samples from LYl (chapter 2). Strain PLYlSt.l6B was isolated on 

22 June 2001 and PLYlSt.42A on 4 February 2002.

Cultures were isolated and maintained as described in chapter 3 and identified with 

morphological and molecular methods.
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4.2.1.2 Cell counts

Cells counts were conducted with a 1 ml Sedgewick-Rafter counting chamber using a 

Zeiss Axiovert SI00 microscope on 100 x magnification. Maximum cell number or 

chamber area counted are detailed in the individual results sections. Growth rates were 

calculated by determining the maximum coefficient (r )̂ achievable when fitting straight 

lines to semi-logarithmic plots of cell density. In experiment A, growth rates were 

calculated using C equivalent biomass. A general linear model (GLM) was used for 

statistical comparison of growth rates between different treatments.

4.2.1.3 Nutrient concentrations

Samples for the determination of inorganic nutrient concentrations (silicate, phosphate 

nitrate in experiment A and additionally ammonium, in experiments B and C), were 

collected by filtration through A/E glass fibre filters and stored frozen at -20°C prior to 

analysis. Two pseudo replicates were analysed with a LACHAT Quick Chem 8000 

autoanalyser by T. Brand (SAMS), using flow injection after standard autoanalyser 

methods.

4.2.1.4 Domoic acid analysis

Domoic acid concentrations were determined (experiments A and C) using a high 

performance liquid chromatography (HPLC) of the fluorenylmethoxycarbonyl 

derivative by S. Bates and C. Léger (Fisheries and Oceans Canada) (Pocklington et al. 

1990). Total DA was measured in whole culture samples (cells plus medium) (Bates et 

al. 1989). Samples were first sonicated for 1 min to disrupt the cells, filtered through a 

0.2 pm disposable acrodisc (25 mm surfactant-free cellulose acetate membrane, 

Nalgene) to remove cell debris and frozen at -20°C prior to analysis. For extracellular
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DA (DA that was released by the cells), cell-free medium samples (from the filtrate 

obtained from inorganic nutrient samples) were frozen at -20° C prior to analysis. 

Cellular DA concentrations were computed from the total cell number and the 

difference in DA concentration between the whole culture and the cell-free medium 

(Bates 1998; Kotaki et al. 2000). Total produced DA per cell was calculated by dividing 

the DA content of the whole culture sample by the cell density.

4.2.2 Experiment A: Growth and domoic acid production of P. seriata under Si 

and P - limitation

P. seriata was grown in duplicate 10 litre polycarbonate carboys containing autoclaved, 

filtered (GF/F Whatman) seawater continuously aerated with 0.2 pm filtered air, at 

15°C under a light intensity of 120 pmol • m'  ̂• s'  ̂ (12:12 h L:D cycle). The seawater 

was enriched with F/2 nutrients (Guillard 1975), modified to achieve two different 

initial phosphate (P) and silicate (Si) concentrations, such that the cells would 

experience P- or Si-yield limitation, respectively (Tab. 4.2, section 4.3.1.1). Nitrate, 

vitamins and trace elements were present in excess, at F/2 concentrations. To minimise 

toxin carryover into the experiment, cells used for the inoculum were taken from early 

exponential-phase stock cultures (e.g. Douglas & Bates, 1992), grown in F/2 medium 

plus 107 pM Si (Guillard 1975).

Carboys were sampled for 21 days. Following gentle shaking to disperse the cells, 

aliquots were collected by siphon, daily for the first 15 days and thereafter every second 

day. At the end of the experiment, each carboy still contained at least half of the initial 

volume of medium. All results are reported as the mean of duplicate carboys.

For cell counts, whole-culture samples were fixed with glutaraldehyde (2.5% v/v final 

concentration) and counted in at least triplicate (100-1500 diatom cells per count).
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Cells for chi a analysis were filtered under low vacuum onto 25 mm glass-fibre filters 

(type A/E, Pall Corporation) and stored frozen at -20°C. Once thawed, pigments were 

extracted in the dark at 4°C overnight into 8 mL of 90% acetone. Filters were sonicated 

and after centrifugation chi a was measured with a Turner TD-700 fluorometer.

Cells for particulate C and N determinations were collected under low vacuum onto pre

ashed 13 mm A/E glass-fibre filters (Pall Gelman Laboratory) and stored frozen at -20° 

C. Once thawed, they were air dried at 60°C for 4 h and analysed (by K. Davidson) 

using a 20-20 ANCA GSL mass spectrometer (PDZ Europa), calibrated with isoleucine. 

Inorganic nutrient and domoic acid concentrations were determined as described in 

sections 4.2.1.3 and 4.2.1.4.

4.2.3 Experiment B: P. seriata growth on different N sources

P. seriata strain PLY1ST.16B, isolated and maintained as described above (section 

4.2.1.1), was used as the stock culture. At inoculum 20 ml of the stock culture were 

added to three types (Treatments A, B and C) of modified in terms of N, silicate- 

enriched F/2 medium (Guillard, 1975), two replicate flasks of 250 ml were used for 

each treatment. The three treatments were based on media composed of different 

nitrogen sources (Tab. 4.1). The cultures were grown for 15 days, 2 ml samples for cell 

counts were taken on day zero (day of the inoculum) and days two, five, eight, twelve 

and 15 and fixed with Lugol's Iodine, 1% final concentration. For cell counts of each 

replicate at least 100 cells or ten fields were counted per sample.

Table 4.1 Initial NO3 and N H / concentrations in Treatments A, B and C.

Treatment NO3- [pM] N H / [pM]
A 100 -

B - 100
C 50 50
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4.2.4 Experiment C: Pseudo-nitzschia growth under different L:D cycles

4.2.4.1 Experimental cultures

This experiment used both P. seriata and P. delicatissima. To precondition the cells to 

the experimental conditions, 17 days prior to the start of the experiment, batch culture 

replicates of P. seriata and P. delicatissima (one replicate of each species) were 

transferred to 2 incubators that were set to a temperature of 10°C, approximately 100 

pmol • m'^ • s'* light and L:D cycles of 18:6 h (treatment hereafter called L, for "long 

light") and 9:15 h (treatment hereafter called S, for "short light"), representing spring 

and summer day lengths. The temperature of 10°C was chosen as a compromise 

between surface temperatures that occurred at times of isolation of P. delicatissima 

(PLYlSt.42A) and P. seriata (PLYlSt.l6B) (7.5°C and 10.8°C, respectively). To 

inoculate the experiment with exponential phase culture, the replicate cultures from 

both incubators were subsampled 5 days prior to inoculation to become the inoculi 

cultures for the experimental cultures {P. delicatissima L, P. delicatissima S, P. seriata 

L and P. seriata S).

4.2.4.2 Experiment inoculation

To achieve similar initial cell numbers, preconditioned medium was used to dilute the 

inoculum cultures of both species. The preconditioned medium consisted of the either 

long or short light cycle adapted inoculum culture, filtered through a 0.2 pm acrodisc to 

exclude algae and bacteria. For inoculation the cells were then added in 50 ml volumes 

to Erlenmeyer flasks containing 500 ml F/2 4-Si medium (Guillard, 1975) (see Table 

4.3, section 4.3.3.1). Two replicate flasks were studied for each species in each of the 

two L:D cycles (8 flasks total).
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4.2.4.3 Cell counts.

For cell counts, 3 ml subsamples were taken aseptically from each replicate flask every 

day from day 0 to 20 and then every second day until day 30. Cells were preserved with 

Lugol's Iodine solution (~ 1% final concentration) and counted in duplicate. Some 

samples had to be diluted (1/4, 1/2, 1/10 or 1/20) with sterile medium prior to the 

counts. At least 50 fields or 300 cells were counted per replicate. Additionally to the 

counts, cells were sized at the end of the experiment. The length and widths of 10 cells 

from each species was measured to approximate the volume based on a rectangular box 

(V= length • width^). From those volume measurements carbon per cell was determined 

for both species applying the following formula for diatoms: pg C • cell = 0.288 • 

volume® *” (Menden-Deuer & Lessard, 2000).

4.2.4.4 Nutrients

As the replicate experiments received identical nutrients as inoculum and the 

experiment did not seek to study nutrient utilisation as such, time course measurements 

of inorganic nutrient concentrations were not made. Rather, samples for inorganic 

nutrient analysis were taken on days 19 and 30. Only concentrations of inorganic 

nitrate, phosphate, silicate and ammonium were determined.

4.2.4.5 Domoic acid

On day 30 the P. seriata cultures were tested for DA production.

4.2.5 Experiment D: P. seriata - bacteria interactions

Single Pseudo-nitzschia seriata cells were isolated using a micropipette from culture

strain PLYlStl6B. After washing them in sterile medium, a single cell in a small
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volume of medium (~ 5 pL) was placed into fifteen 5.5 cm diameter petri-dishes 

containing 10 ml sterile silicate enriched F/2 medium (Guillard 1975).

The first set of five petri-dishes (Treatment 1) functioned as the control, no bacteria or 

culture filtrate were added. The next five petri-dishes were supplemented with 850 pi of 

culture PLYlSt.l6B, filtered through a 0.2 pm acrodisc (Treatment 2), excluding algal 

cells and bacteria, but containing bacterial and algal exudates. To exclude additional 

Pseudo-nitzschia cells, but to add associated bacteria, 650 pi of 3 pm filtrate of the 

same culture were added to the next five petri-dishes (Treatment 3). The dishes were 

incubated at 15°C, a light photon flux rate of ca. 100 pmol • m'  ̂• s” and a 12:12 h L:D 

cycle.

Over twelve days (on days 0, 1, 3, 4, 6, 8, 10, 12) the algae in the petri-dishes were 

enumerated by observation under an inverted Zeiss Axiovert SlOO microscope and 100 

X magnification. Division rates were calculated when exponential growth was observed 

(between days four and ten; four and twelve in two cases) for each petri-dish in which 

algal growth was observed.

After twelve days bacteria from petri-dishes, in which bacteria were observed and/or in 

which algal cells had successfully divided, were grown for two weeks on marine Agar. 

Single colonies were then isolated and grown for a further three weeks. They were then 

passed through purity, transferred into liquid broth and grown in a 25°C incubator 

(Gallenkamp cooled orbital incubator) at 180 rev • min” for six days. Samples were 

frozen in liquid nitrogen and stored at -80°C prior to further analysis.

Bacterial genomic DNA was extracted from defrosted, re-grown bacteria using a 

method based on cetyltrimethylammonium bromide purification (CTAB) (Ausubel et al.

1999). The small subunit rDNA (SSU rDNA) gene from chromosomal DNA was 

amplified in a polymerase chain reaction (PCR) using the primer pair 27F 

(AGAGTTTGATCMTGGCTCAG) and 1492R (ACGGCTACCTTGTTACGACTT)
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(Weisburg et al. 1991). PCR was carried out on a MJ Research PTC200 DNA Engine 

thermocycler and used 1 U of Taq polymerase (ABgene, UK) in a 50 pi reaction 

containing a final concentration of 1.8 mM Mg^\ 20 mM NH4SO4, 75 mM Tris-HCl 

(pH 8.8) and 0.01% Tween 20. Cycling parameters were as follows: 94“C for 2 min, 26 

cycles of 55°C for 30 s, 72°C for 2.5 min, and 94“C for 10 s, followed by 72“C for 10 

min. The PCR products were purified through Centricon-PCR Ultrafilters (Millipore, 

UK) according to the manufacturers instructions and sequenced in the forward direction 

using the 27F primer and ABI-PRISM “Big-Dye” terminator chemistry (Applied 

Biosystems, USA) according to the standard protocols. Sequence reactions were 

electrophoresed on an ABI 377 DNA sequencer (Applied Biosystems), and resulting 

sequences aligned and manually checked for consistent base-calling, using Sequence 

Navigator (Version 1.0.1, Applied Biosystems, USA). Three bacterial strains were 

isolated and their SSU was sequenced. Their SSU sequences were compared with the 

empro database in a FASTA (Pearson 1990) search using fasta3 for strain identification.

4.3 Results

4.3.1 Experiment A: Si- and P limitation

4.3.1.1 Inorganic nutrients

Inorganic nutrient concentrations in the medium on day zero are presented in Table 4.2.

As N is required for DA production by Pseudo-nitzschia (Bates 1998), dissolved

inorganic nitrogen (DIN) was added in excess to all cultures to prevent N-limitation of

growth rate or biomass yield. DIN concentrations always remained > 630 pM

throughout the experiments (data not shown), resulting in N:P and N:Si ratios at least an

order of magnitude greater than those which would result in N-yield limitation

(Redfield 1963). The dissolved inorganic phosphate (DIP) and dissolved silicate (DSi)
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concentrations at inoculation (day zero) gave DIPiDSi ratios of 1:37 and 1:7, hence 

generating conditions that would be expected to result in P- and Si-yield limitation, 

respectively. This was confirmed by the pattern of uptake of DIP and DSi, as described 

below.

In P-limited cultures, the DIP concentration on day zero was ~ 3 pM (Fig. 4.1 A), and 

decreased to a threshold concentration of -  1 pM on day five. The DSi concentration 

(Fig. 4. IB) decreased to ~ 62 pM on day six; the cessation in decrease of DSi coincided 

with the exhaustion (threshold concentration) of DIP. In Si-limited cultures, the initial 

DSi concentration decreased to exhaustion on day nine. The initial DIP concentration of 

~ 15 pM decreased to a threshold of ~5 pM on day nine, coinciding with the exhaustion 

of DSi.

Table 4.2 Measured nutrient concentrations in treatments A and B on day zero 
(immediately after inoculation), values are means of duplicate carboys.

Treatment DSi [pM] DIP [pM] DIN [pM]

A: P limitation 103.0 2.8 759.9

B: Si limitation 103.5 14.5 973.3

4.3.1.2 Cell numbers

Cell densities at inoculation were -  2 x 10* cells • mL” in all cultures (Fig. 4.1C). The 

duration of the exponential phase was estimated by determining the maximum 

coefficient of determination (r )̂ achievable when fitting straight lines to semi- 

logarithmic plots of cell density. Exponential growth was evident from days one to five 

for all cultures, with mean specific growth rates of 0.55 d” and 0.58 d” for P-limited 

and Si-limited cultures, respectively. The cessation of exponential cell division in P- 

limited cultures coincided with the reduction of DIP to its low threshold concentration 

on day five, when a mean cell density of 2.24 x 10"̂  cells • mL” was achieved.
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Fig. 4.1 Dissolved inorganic P (A) and Si (B) concentrations and cell number (C) in P. 
seriata batch cultures. P-limited cultures (squares); Si-limited cultures (diamonds). All 
results are means of duplicate carboys. Error bars represent the standard error.

A short stationary phase then followed, until day eight, after which there was a slow 

increase in cell density up to 3.04 x 10"̂  cells • mL'* on day 15, and then a decline until
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the end of the experiment. The exponential phase was characterised by cells full of 

cytoplasm. Subsequent to nutrient exhaustion, many cells showed the typical features of 

nutrient-stressed diatoms, such as larger vacuole areas (e.g. Davidson et al. 2002). 

Those cells completely devoid of cytoplasm, and hence present as empty fmstules, were 

considered dead and not included in the counts.

In Si-limited cultures, the rapid period of exponential cell division ceased on day five, 

even though the DSi concentration still remained high (> 95 pM). A period of slower 

exponential cell division (0.24 d )̂ then followed, until day eight. A maximum cell 

density of 6.79 x 10"̂  cells • mL'  ̂was then achieved on day nine, coincident with the 

exhaustion of DSi (Fig. 4.1C). No classical stationary phase was observed, except for 

possibly between days eight and nine; cell density thereafter rapidly declined. From day 

17 onward, cells ceased to decline and some “fresh viable cells” were observed in the 

cultures. These cells were easily distinguished from the more numerous “dead” cells 

under the microscope, being full of cell plasma and lacking the large vacuole areas, 

which were evident in all other nutrient-stressed cells.

4.3.1.3 Cellular carbon and nitrogen

Particulate C showed growth dynamics qualitatively similar to that of cell numbers for 

all cultures (data not shown). However, the stationary phase indicated by cell numbers 

in P-limited cultures between days five and eight was not observed for C • mL'*; instead, 

particulate C gradually increased. Spearman Rank correlation analysis confirmed the 

generally good correspondence between the dynamics of cell • mL'* and C • mL * 

throughout the experiment and in both sets of conditions (r = 0.898, p = 0.000 for P- 

limited cultures, and r = 0.554, p = 0.019 for Si-limited cultures). However, an 

important difference was evident from plots of C • cell * (Fig. 4.2A), which decreased in 

both conditions during fast exponential growth (days one to five), indicating lower
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maximum cell-specific growth rates compared to the C-specific values, until the 

limiting nutrient was exhausted. Variation in C • cell‘d was also particularly marked in 

Si-limited cultures, especially after day 13, which reflects renewed positive net C 

fixation in those cells that remained viable.

Fig. 4.2 C per cell (A) and C:N ratio (B) in P. seriata batch cultures. P-limited cultures 
(squares); Si-limited cultures (diamonds). All results are means of duplicate carboys. 
Error bars represent the standard error.

Cellular N exhibited generally similar dynamics to those of C (data not shown). 

However, in the post-exponential phase the C:N ratios gradually decreased and levelled 

off in Si-limited cultures, whereas they increased prior to levelling off in P-limited 

cultures (Fig. 4.2B).
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4.3.1.4 Chlorophyll a

Chi a ■ mL'  ̂ correlated well with cell numbers (r = 0.865, p = 0.000 for P-limited 

cultures and r = 0.950, p = 0.000 for Si-limited cultures). Chi a • mL^ was also 

correlated with C • mL'  ̂ (r = 0.588, p = 0.013 for P-limited cultures and r = 0.711, p = 

0.003 for Si-limited cultures). However, in contrast to C • cell‘d in both conditions, chi a 

• ceir‘ increased during the exponential phase (Fig. 4.3A).

Fig. 4.3 Chi a per cell (A) and chi a:C ratio (B) in P. seriata batch cultures. P-limited 
cultures (squares); Si-limited cultures (diamonds). All results are means of duplicate 
carboys. Error bars represent the standard error.

Then, upon DIP reaching its threshold on day five in P-limited cultures, it decreased 

until the end of the experiment. In Si-limited cultures, chi a • cell‘d decreased during
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days five to nine, coincident with the period of slower exponential cell division. This 

was followed by a short increase and then, from days ten to day 13, chi a steeply 

declined in parallel with the decline in cell numbers.

Finally, chi a • cell'* increased rapidly until the end of the experiment, coincident with 

the appearance of some viable cells, reaching a higher cellular chi a level than during 

the exponential phase. A similar pattern was evident for the chi a:C ratio (Fig. 4.3B), 

although the smaller relative increase in chi a\C compared to chi a • cell'  ̂ near the end 

of the experiment for Si-limited cultures indicated a better coupling between chi a and 

C at this time.

4.3.1.5 Domoic acid

In P-limited cultures, a low concentration of DA (2 ng DA • mL‘̂ ) was present in the 

whole culture (cells plus medium) on day zero (Fig. 4.4A), although no DA was 

detected in the medium. During the exponential phase, whole culture DA initially 

increased slowly to 7.8 ng DA • mL'  ̂on day four, and then more rapidly to 28.4 ng DA 

• mL'  ̂by day five. Thereafter, it increased approximately linearly during days five to 

ten, when DIP became reduced to its threshold concentration. The concentration of DA 

then further increased to a maximum of 108 ng DA • mL'  ̂on day 19, Extracellular DA 

also increased from day four onwards, reaching a maximum of 68 ng DA • mL'^ on day 

21 (Fig. 4B). Total produced DA • cell'  ̂ (Fig. 4.4C) increased markedly near the end of 

the exponential phase (day five), until the end of the stationary phase, reaching 2.9 pg 

DA • cell‘d on day eight. This was followed by a plateau, corresponding to a gradual 

increase in cell numbers. It then further increased, reaching maximum of 5.9 pg DA • 

ceir^ on day 19, before decreasing slightly on day 21.
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Fig. 4.4 Domoic acid concentration in the whole culture (A), medium (B) and total 
produced domoic acid per cell (C), expressed as whole culture domoic acid divided by 
cell number, in P. seriata batch cultures. P-limited cultures (squares); Si-limited 
cultures (diamonds). All results are means of duplicate carboys. Error bars represent the 
standard error.

In Si-limited cultures, no DA was detected on day zero (Fig. 4.4A). However, by day

two, there was ~ 3 ng DA • mL % which steadily increased to 16.5 ng DA • mL^ on day
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five, at the end of the fast exponential cell division phase. As in P-limited cultures, no 

extracellular DA was detected until near the end of the exponential phase (day four) 

(Fig. 4.4B), when cell growth began to slow. The linear increase in whole-culture DA 

concentration continued until day 13, when it reached 67.6 ng DA • mL * (Fig 4A). 

Thereafter, it rapidly increased, reaching 280 ng DA • mL * on day 19, prior to a slight 

decline in concentration on the last day. This DA was both intra- and extracellular. 

Hence, whereas P-limited cells did not release DA into the medium prior to DIP being 

reduced to a threshold, considerable amounts of DA (up to 190 ng • mL'*, or 84% of the 

whole culture DA value) were detected in the medium in Si-limited cells by day 21 

(Fig. 4.4B). Total DA per cell showed a similar pattern (Fig. 4.4C), with slowly 

increasing values during the exponential phase (to 0.6 pg • cell * on day five) and 

markedly increasing values from day 13, onward (to 14.7 pg • cell * on day 19).

Between days five to ten, whole-culture and total cellular produced DA were slightly 

greater under P-limiting conditions. However, thereafter more DA was produced under 

Si-limiting than P-limiting conditions, whether expressed per mL (Fig. 4.4A), per cell 

(Fig. 4.4C) or per unit carbon (not shown).

4.3.2 Experiment B: P. seriata growth on different N sources

Growth of P. seriata was evident in all treatments. A two days lag phase was observed

in the N H / treatments before exponential growth commenced, this was not evident in

the other treatments. In NO/- and NOg'-NH^-mixed treatments, cells divided

exponentially until day eight, while the N H / culture entered the stationary growth

phase on day twelve. Highest cell yield were 3.9 x 10̂  cells • mL * in NO3 (day twelve),

3.4 X 10̂  cells mL * in N H / (day fifteen) and 4.0 x 10̂  cells • mL * in NO^ -NH^^-mix

cultures (day twelve). The corresponding growth rates were 0.287 (NOj'-based, r^=

0.98, days 0-8), 0.238 (NH/-based, r^=0.99, days 2-8) and 0.280 (NOj'/NH/ -based,
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r^=0.99, days 0-8). No significant differences were found between the exponential phase 

growth rates observed in the different treatments (GLM, p > 0.05). Semi-logarithmic 

plots (Fig. 4.5) of cell density illustrate the similarity of both, the magnitude and 

duration of growth phases in all treatments. This is further illustrated in Fig. 4.5B by 

removing the lag phase of the NH^  ̂based cultures and plotting the growth curve again 

with this two days shift.

3

6 -

150 5 10 155 100
d a y d a y

Fig. 4.5 Cell density of P. seriata in LN cell numbers. A: NO  ̂ -treatment (squares), 
N H / -treatment (diamonds), NO  ̂-NH/ mix treatment (triangles). B: same symbols for 
treatments as in (A), for N H / -treatment (diamonds, broken line) cell density is plotted 
with a two days shift.

4.3.3 Experiment C: Pseudo-nitzschia growth under different L:D cycles

4.3.3.1 Inoculation of experiment cultures

Cell densities and volumes used for the inoculation are presented in Table 4.3. Apart 

from the short light P. seriata culture, all other cultures had to be diluted with 

preconditioned medium prior to inoculation, to achieve similar cell densities in cultures 

at the start of the experiment.
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Table 4.3: Cell numbers in inoculum cultures and volumes of cultures and 
preconditioned medium (0.2 pm filtered inoculum culture) added to inoculate the 
replicate cultures. S= 9:15 h L:D cycle; L= 18:6 h L:D cycle.

Treatment 
Light duration

Species cells (x 10  ̂ml'^) 
in inoculum 
culture

vol. of 
inoculum 
culture [ml]

vol. of
preconditioned 
medium [ml]

S P. delicatissima 427 2 48
L P. delicatissima 808 1 49
S P. seriata 19.7 50 -

L P. seriata 37.6 25 25

4.3.3.2 Cell numbers

Inoculum cell density in all cultures was -  1.2 to 1.6 x 10̂  cells • mL \  Cultures 

exhibited the classical "logistic" growth with an exponential and stationary growth 

phase. A lag phase was not apparent (Fig. 4.6). In both cases the short light treatment 

exhibited a longer exponential phase ceasing on days 12 (P. delicatissima) and 9 (P. 

seriatd). Under long light conditions exponential phases lasted for 7 days.

15.0

S 12.5-

8

3
10 .0-

7.5
100 3020

day

Fig. 4.6 Cell density of P. delicatissima (open squares: short light, diamonds: long light 
conditions) and P. seriata (open triangles: short light, closed triangles: long light 
conditions).
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The highest cell yield with a maximum cell density of 1.6 x 10̂  cells • mL'  ̂ and an 

equivalent biomass of 25.5 pg C • mL'^ was found in P. delicatissima, grown under 

short light after 28 days of growth (Tab. 4.4). P. seriata gained higher maximal cell 

numbers and biomass in long rather than short light. However, maximal yields in P. 

seriata (cell numbers and biomass) were substantially lower than in any treatment of P. 

delicatissima.

4.3.3.3 Maximal growth rates

During exponential growth, both species had higher division rates when grown under 

long light, than when exposed to short light, with a maximal rate of 0.89 div • d * for P. 

delicatissima L (Tab. 4.4). The growth rate of P. delicatissima L was about twice as 

high as that of P. delicatissima S (0.89 cf. 0.49 div • d'^). P. delicatissima S, and P. 

seriata L, had similar maximal growth rates (around 0.5 div • d'^). The growth rates 

differed significantly between species and treatments in all cases (GLM p < 0.05).

Table 4.4 Max. cell numbers, max. biomass, and max. growth rates in P. delicatissima 
and P. seriata grown under short (S) and long (L) light conditions.

Treatment Species Day max. cell 
density [cells 

•mL']

max. biomass 
[pg C • ml '].

max. 
growth rate 
[div • d ']

S P. delicatissima 28 1.6 x 10® 25.5 0.49
L P. delicatissima 14 1.1 X 10® 18.5 0.89
S P. seriata 22 7.1 X 10̂ 8.1 0.36
L P. seriata 17 10.4 X # 12.0 0.51

4.3.3.4 Nutrient concentrations

Based on known stock concentrations inoculum nutrient concentrations should have 

been 883 pM N, 36.6 pM P and 107 pM Si.

Inorganic macronutrient concentrations (ammonium, phosphate, and silicate) in the 

growth medium from day 19 and 30 are presented as average concentrations of both
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replicates for each culture (Fig. 4.7 and Fig. 4.8). For measured concentrations that were 

below detection limit in one of the two replicate cultures, only the result above 

detection limit is given.

20

15-

I
10 -

5 -

day 19

short light long light
mm.

short light long light

Fig. 4.7 Ammonium (black), phosphate (white) and silicate (grey) concentrations in P. 
delicatissima short and long light treatments on days 19 and 30.

200.

150-

lioo-I
50-

day 19

short light long light short light long light

Fig. 4.8 Ammonium (black), phosphate (white) and silicate (grey) concentrations in P. 
seriata short and long light treatments on days 19 and 30.

4.3.3.5 Ammonium

For both species the concentration of ammonium increased from day 19 to day 30 in L 

and S treatments. Concentrations were higher in long light compared to short light 

treatments. For both light periods highest concentrations were found in P. seriata 

cultures.
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4.3.3.6 Phosphate.

In S treatments, for both species, the inorganic phosphate concentration (P) decreased 

between day 19 and 30, while it increased in L treatments. While the decrease in P 

(from day 19 to day 30) was small for P. seriata, it was more marked for P. 

delicatissima. The increase in P between day 19 and 30 in treatments L was greater in 

P. seriata than in P. delicatissima cultures.

4.3.3.7 Silicate

On days 19 and 30 silicate (Si) was depleted in P. delicatissima cultures in both 

treatments, with Si concentrations in treatment S lower than in treatment L.

In P. seriata cultures Si concentrations were substantially higher than in P. 

delicatissima cultures. Here concentrations decreased from day 19 to 30 with higher 

concentrations in treatment S than in L. F/2 medium by Guillard (1975) enriched with 

silicate usually contains 107 pM. A concentration of about 200 pM in one P. seriata 

culture S (replicate B, day 19) indicates that initial Si concentrations in the medium 

must have been higher than this in all cultures, as the medium for all replicates was 

prepared in one container. Calculations based on the Redfield ratio (Redfield et al. 

1963) of C:N:P = 106:16:1, assuming N:Si aroimd 1:1, indicate that to achieve the 

observed carbon yield of P. delicatissima S on day 19 (1614 pM C), cells must have 

taken up about 244 pM Si. Furthermore, the yield of 565 pM C in P. seriata S on day 

19 would have required 85 pM Si. On that day, 174 pM Si were detected in the 

medium, which leads to the conclusion that initial Si concentrations was approximately 

260 pM (85 pM + 174 pM = 259 pM).
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4.3.3.8 Nitrate

Inorganic nitrogen (N) was abundant in all cultures (> 490 pM N). In P. delicatissima 

cultures, N concentrations were lower than in P. seriata cultures. Between days 19 and 

30 the amount of N taken up by P. delicatissima was greater than in P. seriata cultures. 

While more N was utilised between day 19 and 30 in P. delicatissima treatment L (~ 

145 pM N) than in treatment S (~ 132 pM N), in P. seriata, cultures of treatment S 

more N (~ 55 pM N) was used than in treatment L (~ 14 pM N) during the same period 

of time.

4.3.3.9 DA concentration in P. seriata cultures

In both treatments, cells grown under long light conditions produced more DA than 

those grown under a short light cycle (Fig. 4.9).

short light long light

Fig. 4.9 DA content of P. seriata short and long light treatments in whole culture 
(black), medium (white) and cell fraction (grey) samples on day 30.

In P. seriata cultures treatment S, whole culture samples and culture medium contained 

about 13.6 ng DA • ml ' after 30 days growth, which indicates that most of the DA from 

the cells was released into the culture medium in the late stationary phase of the growth 

cycle. Whole culture DA per cell was greater (2.36 pg DA • cell ') in S, than in
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treatment L (1.36 pg DA • cell ') on day 30. The high calculated DA concentration per 

cell in S is also a result of very low cell numbers on day 30. Significantly (+/- standard 

error level) higher DA concentrations in whole culture samples (21 ng DA • ml ') than 

in the medium (16 ng DA • ml ') were found in treatment L, which indicated that DA 

was still produced by that culture in late stationary phase.

4.3.4 Experiment D: P. seriata - bacteria interactions

4.3.4.1 Algal growth in different treatments

Numbers of algal cells in dishes of the three treatments are presented in Table 4.5.

In Treatment 1, to which no filtrate was added (control), only one of the five replicates 

exhibited positive net growth. Diatom cells appeared to lack cell content after four (dish 

2) and six days (dishes 1,3, 5). In dishes 2 and 3 the single cells were not observed after 

day four and eight, respectively. In dish 4 P. seriata had divided once by day three and 

thereafter exponential growth was observed with a mean rate of 0.68 div d ' between 

days four and twelve (Fig. 4.10).

In Treatment 2 (0.2 pm filtrate added) no algal growth was observed. The single diatom 

cells in dishes 2, 3, 4 and 5 were not foimd after days four (dish 2) and three (dish 3, 4 

and 5) and the cell in dish one appeared to be empty after day two. However, bacterial 

growth was observed in dishes 3 and 4 from day four.

In contrast to the other treatments, net positive division was evident in most of the 

dishes of Treatment 3 (3 pm filtrate added). Division of the initial single P. seriata cell 

occurred in all dishes except dish 3, where the cell was not found after day four. In the 

other dishes exponential growth started after day two (dishes 2 and 4), three (dish 5) and 

four (dish 1) (Fig. 4.10). On day twelve the bottoms of dishes 1, 2 and 5 were covered
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by cells and numbers could only be estimated. A maximal mean growth rate of 0.99 div 

• d'̂  between days four and ten was observed in dish 5.

2.5-

day day

Fig. 4.10 (A) LN of cell numbers of P. seriata in dish 4, Treatment 1 (no added 
bacteria); (B) LN of cell numbers from Treatment 3 (3 pm filtrate added): dishes 1 
(squares), 2 (diamonds), 4 (filled triangles) and 5 (empty triangles). Broken lines: 
estimated cell numbers on day 12.
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4.3.4.2 Comparison of treatments

In general algal growth was positively influenced by addition of bacteria. Results of the 

GLM indicated that there was no significant (p > 0.05) difference between algal growth 

rates in dishes where division of P. seriata was evident (dish 4, Treatment 1 and dishes

1,2,4 and 5, Treatment 3).

4.3.4.3 Identification of bacteria

Although no filtrate or bacteria were added to dishes of Treatment 1, bacterial and algal 

growth were evident in dish 4. Similarly bacterial growth was found in dishes 3 and 4 of 

Treatment 2, although no bacteria had deliberately been added. Bacteria were not 

enumerated, but some were isolated and identified. Bacteria named strains JF027, JF031 

and JF033 were identified from dishes with algal growth (Treatments 1 and 3), while 

JF031 was additionally found in dish 3, Treatment 2.

The highest match from the FASTA search (E = 1 e ®'*) showed strain JF027 to be 

similar to an unidentified Alpha-Proteobacteria, family Rhodohacteraceae. The bright 

red colour of this organism might indicate that it could be a type of a phototrophic 

Roseobacter-\\ks. bacterium.

Strain JF031 is thought to belong to the Gamma-Proteobacteria, order Vibrionales, 

family Vibrionaceae, genus Vibrio. The most similar sequences were from Vibrio sp. 

LMG 200 (AJ316192, E = 1.6 e"^) and Vibrio sp. R-1556 (AJ316203, E = 3 e^). 

Bacteria representing strain JF033 seem to belong to the Gamma-Proteobacteria, order 

Pseudomonadales, family Pseudomonadaceae, genus Pseudomonas. The highest hit 

was an unknown marine gamma proteobacterium N0R5 (AY007676, E = 1.6 e'^̂ ), but 

as with the other strains, there were no significant type strain hits.
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4.4 Discussion

In Scottish waters Pseudo-nitzschia seriata is most prevalent in summer months when 

water temperatures reach at least 14°C (chapter 2, Fehling et al. 2004b). Hence, an 

experimental temperature of 15°C was chosen for all experiments (except experiment C, 

for the reasons detailed in section 4.2.4) to provide suitable conditions for growth and 

potential toxin production. The results indicate that P. seriata is capable of producing 

the neurotoxin DA at this temperature.

4.4.1 Experiment A: Si- and P-Iimitation

4.4.1.1 Cell growth dynamics

The cell growth dynamics of P. seriata under either P- or Si-yield-limiting conditions 

(Fig. 4.1C) generally follow a logistic model (section 4.3.3.2). However, some 

significant differences were evident in each case, as discussed below.

In both conditions, cell growth commenced after a one-day lag phase. The short 

duration of this lag phase is a result of using early exponential phase cells as the 

inoculum (to prevent DA carry over from stock to experiment; Douglas & Bates 1992; 

Garrison et al. 1992). Exponential growth then commenced, as one would expect in 

nutrient-sufficient conditions. Statistical comparison of fitted lines using a General 

Linear Model (GLM) indicated that the specific rate of cell division was not 

significantly different in the two sets of conditions (p > 0.05) from day one to five. 

After day five, a difference was evident in the growth response of P. seriata to the two 

nutrient conditions. When DIP was the yield-limiting nutrient, exponential growth 

expressed as either cell number or C biomass was only evident prior to DIP becoming 

exhausted to a threshold level (of ~ 0.8 pM; Fig. 4.1 A). The subsequent, short 

approximately linear growth phase, after a short stationary phase, is unusual for batch
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culture growth. These changes in cell number were unrelated to any measurable change 

in extracellular DIP concentration, which had already decreased to its threshold.

In contrast, under Si-limiting conditions, the first (faster) exponential phase was 

followed by a second (slower) exponential phase, which occurred prior to DSi 

exhaustion. This slowing in growth rate is not unusual in batch cultures, and can be 

related to some cells stopping growth, while others are still dividing. Nevertheless, this 

response was not easily related to inorganic nutrient stress; silicate concentrations still 

exceeded 50 pM at the beginning of this phase (Fig. 4. IB). However, the onset of the 

second exponential phase coincided with a stabilisation of the C:N ratio (Fig 4.2), and 

may therefore simply be indicative of a better metabolic balance within the cells.

No stationary phase was observed under the Si-limiting condition. Rather, cell numbers 

declined immediately and rapidly upon DSi exhaustion (Fig. 4.1C). In diatoms. Si 

uptake and the cell cycle are coupled, as Si is essential for valve formation and DNA 

replication (Martin-Jézéquel et al. 2000). Because diatoms cannot sequester and store 

DSi, it is necessary for the cells to acquire Si just before its deposition in the frustule. 

Hence, cell division ceased almost immediately once DSi became exhausted. Apart 

from the observed stabilisation in the cell counts (Fig. 4.1C), DSi exhaustion also led 

rapidly to cell death (also observed by Davidson et al. 2002) and the decrease in cell 

numbers of viable plasma-filled cells.

An unusual feature of the Si-limited cultures, not evident under P-limitation, was the 

slight increase in cell numbers after day 15 (Fig. 4.1C), following a precipitous decline 

in cell density. Microscopic observation indicated the presence of some potentially 

viable cells, full of cell plasma, amongst the empty cells normally expected in late 

stationary phase. This observation corresponds to a rapid increase in both C and chi a 

per cell (Figs. 4.2A, 4.3A). This active metabolism in late stationary phase Si-limited 

cultures suggests that a DSi supply was available. The dissolution of empty P. seriata
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fmstules likely provided the DSi, which was rapidly taken up by the new cells and 

therefore not detected in the medium. Like P. multiseries (Sommer 1994), P. seriata 

may therefore be a good competitor at low Si:N ratios. Furthermore, the immediate 

cessation in cell division after day ten suggests that P. seriata was particularly stressed 

by Si limitation; blooms under these conditions are likely to be short lived, but highly 

toxic. The DA produced during late stationary phase likely originated from the Si- 

stressed cells, rather than from the potentially viable cells that began to grow at that 

time.

4.4.1.2 Chlorophyll as an index of Pseudo-nitzschia biomass

Chlorophyll is a commonly used index of biomass for many phytoplankton monitoring 

programmes, as the measurements can be made relatively quickly and cheaply and, if 

necessary, by means of remote sensing. One might therefore suggest chi as an index of 

potentially harmful Pseudo-nitzschia biomass, at least in areas and at times of the year 

when it is expected to dominate a phytoplankton bloom. However, a number of authors 

(Davidson et al. 1991, Geider et al. 1998) have noted the variability of chi a:C ratios 

and hence have cautioned against the indiscriminate use of chi a when quantitative 

estimates of phytoplankton C biomass are required. This is confirmed by the 

approximately three-fold variation of the chi a:C ratio observed during the growth cycle 

under both nutrient conditions (Fig. 4.3B). The rapid decrease in chi a • cell'^ and chi 

a:C (Fig. 4.3) in Si-limited conditions during the decline in cell numbers between days 

ten to 13 indicates a rapid breakdown of chi a under nutrient-stressed conditions, when 

toxin production might be expected.
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4.4.1.3 Magnitude of toxin production

Pseudo-nitzschia seriata produced DA under both nutrient conditions, although more 

was produced when DSi, rather than DIP, was limiting during the stationary phase (Fig. 

4.4). This is the first study that directly compares P and Si limitation with respect to DA 

production in one experiment. Comparisons of DA production are difficult to make in 

different studies, where various growth conditions and sampling times were used (cf. 

Cusack et al. 2002). Pan et al. (1996a) found a maximum of ~ 4.5 pg DA • cell’* in P- 

limited batch cultures of P. multiseries, compared to our maximum of ~ 6 pg DA • cell * 

for P. seriata. In a separate batch culture experiment. Pan et al. (1996b) found 

substantially smaller amounts of cellular DA (maximum of 0.3 pg DA • cell’*) in P. 

multiseries. However, (Pan et al. 1996c) found a maximum of 11.9 pg DA • cell * in Si- 

depleted continuous cultures of P. multiseries. The maximum in the present study (14.6 

pg DA • cell’*) was similar to that of Danish P. seriata strains (~ 13.7 pg • cell’*, at 4°C; 

Lundholm et al. 1994).

Relatively few reports are available for the kinetics of DA production by Pseudo- 

nitzschia species in batch culture. For P. multiseries, toxin production is low or below 

detection during the exponential phase of growth (Subba Rao et al. 1990, Bates et al. 

1991). The situation for other species is less well understood. Garrison et al. (1992) 

suggested that P. australis produced relatively high amounts of DA during the 

exponential phase. However, Cusack et al. (2002), working on a different strain of the 

same species, were unable to confirm this result. In further contrast, for P. cf. 

pseudodelicatissima. Pan et al. (2001) observed net DA production in batch cultures 

only during the exponential phase, not in stationary phase (see section 1.8.1).

Results for P. seriata in the present study, in combination with those of Lundholm et al. 

(1994), confirm that finite but low amounts of toxin (< 1.3 pg DA • cell’*) are produced 

during the exponential phase. This low magnitude of DA production suggests that this
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species is not an environmental hazard under conditions of nutrient sufficiency, but only 

subsequent to the onset of nutrient (P or Si) limitation.

Under both nutrient conditions, most DA was produced post-exponential phase, as is 

common for P. multiseries (Bates 1998) and as reported for one study of P. australis 

(Cusack et al. 2002). Once the cultures began to experience nutrient limitation, 

differences in toxin production patterns under the two nutrient conditions reflected the 

growth dynamics. More DA was produced in P-limited than in Si-limited cultures 

during the period immediately after the exponential phase (days five to 12; Fig. 4.4A). 

Particulate C continued to increase during this period in the P-limited cultures, 

indicating continued photosynthesis. In late stationary phase (after day 13), more DA 

was produced in the Si-limited cultures, on a per cell basis (Fig. 4.4C) and also per unit 

biomass, expressed as particulate carbon (not shown). During that time, there was a 

large increase in total produced DA • cell * (Fig. 4.4C) and in total DA • C * (not shown), 

which coincided and correlated with similarly large increases in both C • cell * (Fig. 

4.2A; r = 0.943, p = 0.035) and chi a • cell * (Fig. 3A; r = 0.886, p = 0.048). The 

observed patterns of toxin production are consistent with the energy hypothesis of Pan 

et al. (1998) that, following single nutrient-yield limitation by either P or Si, cells may 

still photosynthesise but the energy normally used for cell growth is now channelled 

towards DA biosynthesis.

Bates et al. (1991) pointed out that chi a, responsible for energy harvesting and transfer 

in photosynthesis, is essential for DA production. Pan et al. (1998) also observed that 

DA production in P. multiseries stopped after the cellular chi a concentration had 

dropped to a critical level (< 0.05 pg • cell'*) during late stationary phase. Bates et al. 

(2001) further documented that both DA production and cellular chi a declined when P. 

multiseries was grown with low concentrations of iron. Thus, the increase in cellular chi 

a observed at the end of the experiment in Si-limited cultures would facilitate the
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potential for greater capture of energy for photosynthetic C assimilation, evidenced in 

our cultures as an increase in C • cell *. However, in the present study the possibility 

cannot be excluded, that a degree of self-shading, of either the individual cells or the 

population, may have acted to cause a net decrease in photosynthetic capacity. The 

relative lack of DSi in stationary phase prevented substantial cell division, such that any 

excess energy could potentially be diverted to DA production (cf. Pan et al. 1998). 

Results for both nutrient conditions indicate that P. seriata releases DA into the 

medium, as does P. multiseries (Bates et al. 1991); no data are available for P. australis. 

Similar to Bates et al. (1991) and Pan et al. (1996a, b), in the present study no 

significant amounts of DA were found in the medium during the exponential phase. 

During the post-exponential phase, more DA was released by Si-limited than by P- 

limited cells (Fig. 4.4B), even when the DA in the medium was calculated as a 

percentage of the whole-culture DA (e.g. on day 10, 23% of the total DA was released 

in the P-limited cultures and 67% in the Si-limited cultures). The reasons why more DA 

was released in the Si-limited cultures remain unclear. In the case of P-limited cultures, 

the reduced supply of DIP may impair the formation of the lipid bilayer, consisting 

mainly of phospholipid, thereby allowing the DA to leak more easily through the cell 

membrane and into the medium (Pan et al. 1996a). In addition, the approximately 

constant DA concentration evident during the decline of cell numbers indicates that 

severe P limitation may suppress the production of DA in P. seriata.

4.4.1.4 Intracellular properties

Comparison of the mean C- and cell-number-specific growth rates during days one to

five indicates no significant difference between nutrient conditions (GLM, p > 0.05).

However, within each nutrient condition these growth rates were significantly different

from each other (GLM, p < 0.05), although the specific rate of net C fixation was lower
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than the cell-specific value, resulting in the observed marked decrease in C • cell * (Fig. 

4.2A). This indicates that P. seriata did not achieve true balanced growth during that 

period. This was confirmed, in both conditions, by a similar reduction in the ratios of 

C:N (Fig. 4.2B) and chi a:C (Fig. 4.3B) during exponential growth. The results suggest 

that P. seriata is able to regulate its C demand to achieve optimal nutrient 

stoichiometry, while still dividing at an optimal or near-optimal rate.

The P- and Si-stressed cells continued to fix C during the post-exponential phase, as 

demonstrated by the increase in C • cell *. This was most marked under Si-limiting 

conditions, when C biomass increased throughout the remainder of the experiment, 

reaching a value approximately twice that at inoculation. Such an increase in C • cell * in 

nutrient-starved diatoms is not uncommon and may result from continued accumulation 

of carbohydrate or lipid storage products (Myklestad 1974; Gilpin et al. 2004). The low 

and constant C:N ratio in Si-limited cultures coincided with a three-fold increase in C • 

cell *, indicating balanced uptake of C and N by those cells that remained viable during 

the late-stationary phase.

Meso-zooplankton can be vectors for the trophic transfer of DA in marine food webs 

(Bargu et al. 2002). Furthermore, it has been shown both through experiment and 

modelling (John & Davidson 2001; Jones et al. 2002) that the intracellular nutrient 

imbalance (e.g. in the C:N ratio) of nutrient-stressed phytoplankton cells may make 

them non-optimal prey items for micro- or meso-zooplankton predators. This can result 

either in prey rejection or significant voiding of ingested material. Comparison of 

grazing on toxic and non-toxic P. multiseries cells provides no evidence that toxicity, 

alone, deters zooplankton predators (Lincoln et al. 2001). Therefore, the intracellular 

nutrient imbalance in toxic cells stressed by P or Si limitation may not reduce the 

nutritional quality of toxic cells to the point that grazers reject them. The C- and N-rich,
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but C:N balanced, cells that characterise the Si-limited cultures may thus promote 

particularly efficient toxin transfer to higher trophic levels.

4.4.1.5 Implications for ASP prediction

Currently, a reactive strategy is used to prevent ASP outbreaks, through the monitoring

of toxin levels in shellfish tissue. The fishery is closed when tissue toxin levels exceed

the permitted threshold. Such an approach, however, does not allow for advanced

planning to safeguard commercial shellfish farming or fishing. An alternative approach

is to develop a proactive system for predicting Pseudo-nitzschia growth and DA

production, and hence of ASP events, prior to their occurrence. This may be

accomplished by using mathematical models capable of simulating the appearance and

toxicity of Pseudo-nitzschia species, based on environmental conditions.

Simple models such as those of Monod (1942) that relate biomass to extracellular

nutrient concentration are unlikely to be successful, as these predict an immediate

cessation of cell division or net biomass synthesis upon exhaustion of the yield-limiting

nutrient. This criterion is obviously failed by P. seriata under P-limiting conditions.

More realistic “cell quota” models relate growth rate to the concentration of intracellular

nutrient per unit biomass (Droop 1968; Caperon 1968). However, their ability to

simulate cell numbers as well as biomass (a necessary criterion for modem food web

models) relies on the observation of constant C biomass per cell (Droop 1979), a

criterion which was not observed for P. seriata under either P or Si limitation.

Therefore to simulate Pseudo-nitzschia growth and toxicity, it is necessary to derive

models that are mechanistic in nature (Geider et al. 1998; Davidson & Gurney 1999;

John & Flynn 2002), i.e. the models must be based on biological evidence, rather than

relying on empirical relationships. Only then will they be able to simulate Pseudo-

nitzschia species in a dynamic environment and across a spectmm of environmental
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conditions. Such an approach, however, requires considerable further experimentation 

to determine the necessary biochemical relationships and parameter values.

4.4.2 Experiment B: P, seriata growth on different N sources

The results suggest that P. seriata might have a preference for NO3 compared to N H / 

uptake. The preference is expressed in the two days lag phase that was evident when 

cells were grown on N H / (100 pM) as the sole N source. Furthermore, the NH/-grown 

cultures expressed a lower growth rate than those cultures that were grown on NO3, 

however their growth rates were not significantly different (GLM, p > 0.05). Such a lag 

and difference in growth rate has been suggested (Dortch 1990) to be indicative of a 

nutrient preference. In her review about the interactions of ammonium and nitrate 

uptake in phytoplankton, although phytoplahkton usually exhibited a preference for 

N H /, Dortch (1990) noted that in some algae, growth on NO/ has been found to be 

often as good or better than that of NĤ "̂ . Supporting the results of this experiment, 

studies on Nitzschia spp., which could potentially have included Pseudo-nitzschia 

species, showed a preference for NO3' compared to N H / uptake, expressed in the ratio 

of PmaxNOg :pmax > 1 , where p̂ ax is the maximum growth rate (Eppley et al. 

1971).

It cannot be discounted that, as cells in stock cultures were grown on NO 3 , the observed 

lag was related to an adaptation period. However, this phenomenon cannot easily 

explain the lower observed growth rate.

The concentration of NĤ "̂  used in the mixed medium (50 pM), did not have a toxic

effect on P. seriata. Similarly, when growing P. multiseries in media based on different

N H / concentrations. Bates et al. (1993b) found that in treatments with initial N

concentration of less than 110 pM, growth rate and DA production yield were

equivalent between treatments. N H / only appeared to be toxic to P. multiseries at
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initial concentrations higher than 110 pM. For Nitzschia seriata (which was presumably 

P. seriata or P. australis) N H / toxicity was observed at a concentration of 1(X) pM, 

which resulted in inhibition of growth (Guillard 1963). Similarly, Hillebrand & Sommer 

(1996) found that N H / when supplied in concentrations > 200 pM did not support 

growth in P. multiseries, which was interpreted as a combined effect of inhibition of 

NO3 uptake and N H / toxicity.

No difference in growth rate was evident (GLM, p > 0.05), when grown on media that 

were solely NO3 based or contained the mix of NO3 and NH/.

Another study on microalgae (Lourenço et al. (2002) showed the tolerance of many 

microalgae to use different N sources, although preferences seemed to be strongly 

species-specific.

In conclusion, this laboratory experiment showed that P. seriata can grow on 

ammonium as a nitrogen source, at least at initial concentrations of 100 pM. However, a 

repetition of this experiment is required to verify a potential inhibition of growth at high 

NĤ "̂  concentration, as there was no significant difference in the observed growth rates, 

to determine if preconditioning would lead to a different result and to assess if the 

concentration of N H / (100 pM) had a toxic effect on P. seriata.

4.4.3 Experiment C: Pseudo-nitzschia growth under different L:D cycles

4.4.3.1 Diel periodicity

The division rate of P. delicatissima was ~ 0.5 div • day'*, when grown under 9 h light 

(short light), and ~ 1 div • day'*, when the duration of the light phase was doubled (long 

light). This may be explained in two ways. Firstly, the growth response to the short light 

might indicate rate limitation by light. Nine hours light at an intensity of 100 pmol • m'  ̂

• s'* might not have provided sufficient photochemical energy for faster cell division.
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Secondly, it might indicate that cell division, and hence the cell cycle, in P. 

delicatissima may be coupled with the L:D cycle. However, for Pseudo-nitzschia spp. it 

is not known how the light period may effect the cell cycle.

While this study might suggest diel periodicity in P. delicatissima, this was not 

observed for P. seriata. An elongated light phase enhanced cell division in both species, 

but in P. seriata it was did not seem to be directly related to the light period. For P. 

seriata other factors, one of them potentially light limitation (in form of a short 

duration), had a suppressing effect on the growth rate.

Brand et al. (1981) suggested that coastal phytoplahkton might be adapted to utilise 

light for unpredictably long time periods. Phytoplankton in coastal regions may 

experience light fluctuations on time scales much less than a day due to vertical mixing 

(tidal currents, effects of bottom topography in shallow water), while oceanic species 

experience a light regime dominated by the dayinight cycle. Results from Discovery 

cruise D257 (see chapter 2) indicated that in early autumn Pseudo-nitzschia belonging 

to the P. delicatissima group occurred in high numbers in open ocean waters, while 

species belonging to the P. seriata group where more abundant on coastal waters at that 

time of the year. This might suggest that P. delicatissima might have preferences for 

oceanic conditions, and be more adapted to a stable L:D cycle than coastal P. seriata.

4.4.3.2 Growth rates

Reports of growth rates of Pseudo-nitzschia species are scarce. When P. delicatissima

isolated from the Barents Sea was grown at -0.5°C, 70 pmol • m'^ • s'* and 10 h light, the

growth rate was 0.13 div • d *. It increased to 0.44 div • d'*, when the light phase was

extended to 19 h (Gilstad & Sakshaug 1990). Growth rates in P. delicatissima in this

study were higher (0.49 in S and 0.89 div • d * in L), which can probably be explained

by the higher temperature (10°C) the cultures were exposed to.
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In a study on P. seriata, isolated from the bottom 5 cm of landfast sea ice near Resolute, 

Northwest Territories, Canada, a strain was grown at 10°C and 25 pmol photons m’̂  • s' 

*, presumably under continuous light (no L:D cycle was specified) (Smith et al. 1994). 

Although the light intensity was just 25% of the intensity used in this study, the growth 

rate of 0.57 div • d'* compares well with the growth rate of P. seriata grown under the 

18:6 L:D cycle (0.51 div • d'*). The longer light phase (e.g. continuous light) might have 

compensated for the lower light intensity. Compared to growth rates of the same P. 

seriata strain grown at 15°C and a 12:12 h L:D cycle (exponential phases in experiment 

A, P - and Si-limitation, section 4.3.1.2), the rates were about the same (long light: 0.51 

div • d'*; P-limitation: 0.55 div • d'*; Si-limitation: 0.58 div • d'*).

4.4.3.3 Biomass

Interestingly, P. delicatissima grown under short light conditions showed the highest 

biomass yield (25.5 pg C • ml'*) of all experimental cultures, including P. seriata. This 

result suggests an adaptation to short light phases, and may be a mechanism which 

allows P. delicatissima to occur in high abundance in Scottish waters in early spring, 

when the light phase is relatively short. In contrast, P. seriata may not be adapted to 

short light phases, the biomass yield being higher when grown under long light 

conditions.

4.4.3.4 Nutrients

As carbon fixation is coupled to photosynthesis, while respiratory carbon losses occur 

continually, diatoms accumulate cell carbon and nitrogen during daylight. Si uptake is 

not dependent on light, Brzezinski et al. (1990) were observing that Si per cell increased 

prior to division as the cell deposited new frustules. They concluded that diatoms do not
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store sufficient Si for new valve formation and must accumulate most of the requisite 

amount immediately before cell division. When facing Si depletion, a general feature of 

all diatoms that deposit siliceous fmstules is to reach a silicon-dependent arrest point in 

the cell cycle (Brzezinski et al. 1990). This phenomenon was observed in experiment A 

under Si-limitation, where cell division ceased immediately once DSi was exhausted. 

When measured after 19 days in this study. Si was depleted in the medium of P. 

delicatissima, but not in P. seriata. This might be due to the higher cell yield in P. 

delicatissima, but could also suggest higher Si uptake rates in P. delicatissima than in P. 

seriata, which can not just be explained by higher growth rates in P. delicatissima. It is 

possible that P. delicatissima requires more Si per cell than P. seriata. Field 

observations show that in spring Si concentrations in the water are higher than in 

summer (chapter 2). Hence, it might be assumed that P. seriata could be adapted to take 

up lower Si concentrations than P. delicatissima, while P. delicatissima might be able to 

take up Si more quickly and in greater amounts. Experiment A showed the appearance 

of new viable cells in late stationary phase in the Si-limited treatment, and it was 

assumed that those cells might have taken up low amounts of re-dissolved Si from 

fmstules of dead cells.

Increasing P concentrations between day 19 and 30 in both species grown under long 

light may indicate the release of P due to lysis of dying cells. While P. delicatissima, 

grown under short light, continued growth, as indicated by decreasing P concentrations 

in the medium, cells in the other treatments had ceased division. The elevation of NH4 

in all cultures supports the suggestion that as cells ceased division and at least some of 

the cells started to lyse and die. As some diatoms would preferably take up N H / to 

NO) due to its lower energetic costs, as long as it is present in low concentrations, the 

ammonium concentration would decrease as a consequence. Here the ammonium
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concentration increased in all cultures, which might indicate that cells had stopped 

nitrogenous uptake.

4.4.3.5 Domoic acid production in P. seriata

The DA results suggest that the total amount of DA in a culture might be enhanced 

under a long L:D cycle, while cellular levels might be higher in cultures grown under 

short light phases. The total amount of DA per cell (whole culture DA divided by cell 

number) in L (1.36 pg DA • cell'*) was similar to DA in a Danish P. seriata strain grown 

under a 16:8 L:D cycle at 15°C (strain 1877A: 0.99-1.6 pg DA • cell *), although it was 

not specified after how many days of culture growth DA was tested in 1877A 

(Lundholm et al. 1994). The per cell DA concentration in treatment S on day 31 (2.36 

DA • cell *) is higher than concentrations measured for Danish strain 1877C, when 

grown under a 16:8 L:D cycle and at 4°C (after 30 days ~ 0.5 DA • cell'*, from Fig. 5 in 

Lundholm et al. 1994). However, compared to DA concentrations of the same strain 

under P- and Si-limitation (experiment A) the amounts of DA per cell are relatively 

low, suggesting that nutrient rather than light limitation is the most important factor 

influencing DA production in P. seriata.

Similar concentrations of DA in whole culture samples and medium in treatment S

suggested that on day 30 cells had released all their DA, or while still producing DA,

were releasing it at the same time. Bacteria can enhance cell lysis of diatoms (e.g.

Kogure et al. 1982) and might have had an impact. As bacteria were neither enumerated

nor identified, this cannot be proved. Increased P and NH4 concentrations in the

medium support the theory of cell leakage in the late stationary phase cultures.

Bates & Richards (1996) showed for P. multiseries that cells divided in the light phase.

A short light phase would therefore give the cells less time for division, subsequently

cell numbers per culture would be lower and so would total DA per mL of culture,
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assuming the DA production rates per cell are equal in long and short light. However, as 

Bates & Richard (1996) observed, DA production was lowered during the light phase in 

P. multiseries, indicating that DA was produced during the dark phase. Should the same 

apply for P. seriata, an extended dark phase might elevate the DA concentration in the 

cells. To be certain that the length of L:D cycles affect DA production, an experiment 

measuring DA during the full time-course would be required.

4.4.4 Experiment D: P, seriata - bacteria interactions

Results of the experiment with P. seriata with and without added bacteria, suggested 

that in general bacteria associated with P. seriata have a growth enhancing effect on the 

diatoms in terms of survival and division. However, one strain of the isolated bacteria 

associated with the algae appeared to have a negative effect on P. seriata growth.

4.4.4.1 Bacteria associated with P. seriata

When cells were isolated into the petri-dishes they were washed in sterile culture 

medium beforehand and care was taken that only single cells in very small volumes of 

medium (~ 5 pL) were transferred. However, washing the algal cells prior to transfer 

may not have removed all attached bacteria from the diatom cell, and may have led to 

the appearance of bacteria in some control experiments. Nevertheless, sufficient 

replicates remained uncontaminated for conclusions to be drawn (4.4.5).

One of the bacteria strains, that was potentially attached to algal cells, belonged to the 

Rhodobacteriaceae, which are included into the purple nonsulfur bacteria. They are 

anoxygenic phototrophs that grow phototrophically, obtaining carbon from organic 

sources. Rhodobacteriaceae can be highly physiologically diverse and may play a 

significant ecological role (Madigan et al. 2003). Their effect on P. seriata is not
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known. However, as they were only isolated from dishes with diatom growth, their 

presence might be beneficial for P. seriata.

Bacteria belonging to the genus Vibrio were found in all treatments and in high (visible) 

density in the dishes without algal growth. This genus contains facultatively areobic 

rods and curved rods that possess a fermentative metabolism (Madigan et al. 2003). As 

the other strains, they might be able to attach to the diatom cells. As Vibrio was the only 

genus observed in dishes without algal growth, it is likely that their effect on the algal 

cells is not beneficial, potentially providing substances inhibitory to P. seriata growth. 

The bacterial genus Pseudomonas includes straight or slightly curved 

chemoorganotrophic and anaerobic rods. Pseudomonads are known to grow 

chemoorganotrophically at neutral pH and mesophilic temperatures. Some 

Pseudomonads can use a wide range of organic compounds as carbon and energy 

sources, although they generally lack the necessary enzymes to break down polymers 

into their component monomers. Pseudomonads are ecologically important in soil and 

water where they are possibly responsible for the degradation of soluble compounds 

derived from the breakdown of plant materials in oxic habitats (Madigan et al. 2003). In 

this study they seemed to be associated with P. seriata cells and might have enhanced 

their growth through a symbiontic relationship. It can be hypothesised that the bacteria 

utilise organic compounds produced by the algae and in return provide them with 

degraded compounds that have a beneficial effect on diatom growth. As with the other 

results in this section, this hypothesis requires further testing.

Bibel et al. (1983) found evidence that bacteria that arrive first at a substrate may 

exclude later arrivers. It is possible that bacteria belonging to the Vibrio group were 

initially attached to algal cells in Treatment 2 and were occupying the surface of the 

cells without leaving space for other bacteria. However, they were also found in one
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dish of Treatment 1 together with Pseudomonads and Rhodobacteriaceae, potentially 

indicating that all three strains had been attached to the algal cell.

Kogure et al. (1982) found bacteria of the genus Vibrio and Pseudomonas attached to 

phytoplankton cells in culture. The number of epiphytic Vibrio bacteria gradually 

decreased within four days, while Pseudomonas numbers on the algal cells increased. 

Similarly, in this study isolated Vibrio bacteria from dishes of Treatment 2 occurred in 

high numbers on the bottom of the dish in the medium after a few days. While bacteria 

belonging to the Pseudomonads were not visible on the bottom of the dishes, but might 

have occurred attached to the algae. As both bacteria genera appeared in Treatment 1 

(no deliberately added bacteria), they were possibly mainly attached to the diatoms. 

Kogure et al. (1982) suggest that, depending on the type of bacteria, once bacteria have 

colonised an algal cell, they can destroy it within several days. This might have been the 

case in some of the petri-dishes (e.g. dishes 2 and 3 in Treatment 1, dishes 2, 3, 4, 5, in 

Treatment 2 and dish 3 in Treatment 3; see Tab. 4.5) and could explain why the initial 

single cells were not found after some days. Bacteria of the genus Vibrio might have 

this effect on P. seriata, as they were present in all dishes in which cells were not found 

after a few days. However, further experiments are needed to test that hypothesis. 

Furthermore, as all the bacterial strains associated with the algal cells might not have 

been isolated, the results and the experiment should therefore be regarded as 

preliminary until more complete characterisation of the bacterial fauna is possible.

4.4.5 Conclusions

All laboratory experiments were derived from field observations at the monitoring site

LYl. Low inorganic nutrient concentrations of DIP and DSi and NO3 in the water

column during the summer months, when toxic P. australis and P. seriata occurred in

highest densities (during summers 2001, 2002 and 2003, see chapter 2). This led to
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studies of P. seriata growth and toxin production dynamics during conditions 

simulating temperate summer (experiments A and B). The results of experiment A 

showed that patterns of cell growth and metabolism differed depending on the yield 

limiting nutrient. Only trace amounts of DA were produced and released during 

exponential phase, representing the earlier stages of a bloom in the field. Significant 

toxin production occurred during post exponential enhanced growth phases in P and Si- 

limited conditions, and hence prior to DSi exhaustion in Si limited cultures. Total 

produced DA per cell and per unit biomass was highest in the Si-limited cultures during 

late stationary phase. At that time, new viable cells with increased cell metabolism were 

evident. Comparison of the magnitude of toxin production in the two nutrient regimes 

indicates a greater threat of P. ^enato-generated ASP events under Si- rather than P- 

nutrient limitation.

In the field P and Si were both exhausted in Scottish waters during the summer month. 

Blooms of potentially toxic Pseudo-nitzschia can be preceded by other diatoms which 

would decrease the Si and P concentrations in the water. As shown in experiment A, P. 

seriata seems to have a good ability to take up DSi even when it is present in only low 

concentrations. This ability would facilitate a prolonged duration of a P. seriata bloom 

and increase the toxicity of the algae the more the cells would be stressed by Si- 

limitation. When the toxigenic bloom of P. multiseries occurred in PEI in December 

1987, Si concentrations were low (0.67 |iM) at the peak of the bloom (Subba Rao et al. 

1988). Highest toxin concentrations were detected ten days later (Smith et al. 1990a; 

Silvert & Subba Rao 1992), at that time DSi must have been exhausted.

Field observations also showed low NO3 concentrations in Scottish waters at times 

when potentially toxic Pseudo-nitzschia densities were highest. As experiment B 

showed, P. seriata is capable of utilising N H / in concentrations of at least 100 pM, 

hence it is likely that in summer, when nitrate concentrations are low, Pseudo-nitzschia
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species take up NH4 as a N source. However, implications on potential increases in P. 

seriata toxin production due to ammonium need further study.

Regarding day length, experiment C confirmed the hypothesis derived from field 

observations, that P. delicatissima and P. seriata are adapted to spring and summer light 

conditions. Both species showed highest biomass yields under the light length that they 

are exposed to in the field at times of they natural peak densities.

The influence of temperature on P. seriata can be compared between all experiments, it 

seemed to have an effect on DA production. The growth study on Danish P. seriata 

cultures showed that their DA production was enhanced at 4°C compared to 15°C 

(Lundholm et al. 1994). Those results are comparable with measurements for the 

Scottish P. seriata (this study). DA concentrations in cultures grown at 15°C (0.16-0.23 

pg DA • ceir^ on day 25) and a 12:12 L:D cycle (see chapter 3, Fehling et al. 2004a) 

were lower than those in cultures of the same strain grown at 10°C under a long and a 

short L:D cycle (1.35-2.36 pg DA • cell'\ day 30) (this study), although higher 

concentrations were found under similar light and temperature conditions during P and 

Si-limitation (experiment A, day 19, maximal 5.9 and 14.7 pg DA • ceH'\ respectively), 

indicating that nutrient limitation might influence DA production stronger than 

temperature or the L:D cycle. The difference in non-nutrient-limited cultures might 

have been an effect of temperature, or could simply be explained by the different stage 

of the growth phase of cultures at the time when samples for DA analysis were taken. 

To investigate the effect of the L:D cycle, the same strain could additionally be grown 

at 10°C under a 12:12 h L:D cycle.

Bacteria are likely to have a strong impact on Pseudo-nitzschia in the field. Within this 

study only three strains that are potentially associated with P. seriata were identified 

and experiment D can only be seen as a pilot study. However, an extensive study of 

Pseudo-nitzschia associated bacteria would be interesting, as it is likely that they are
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playing an essential role in Pseudo-nitzschia bloom dynamics and their toxin 

production.
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5 Chapter 5; Summary and general conclusions

5.1 Background

In 1999, an area of 49,000 km^ was closed to the shellfish harvesting industry in 

Western Scottish waters, due to domoic acid accumulation in shellfish (Campbell et al. 

2003). The toxin has appeared in shellfish every year since, and has led to more 

harvesting closures. Before this study the only confirmed toxin producer in these waters 

was P. australis. Other potentially toxic species had been observed in a few samples 

(Gallacher et al. 2001), but no cells were isolated or reliably identified. Hence, there 

was a need to clarify which Pseudo-nitzschia species contributed to ASP in Scottish 

waters, to investigate their ecology, toxin production and growth dynamics.

5.2 This study

The study consisted of three parts, including

• field investigations (chapter 2)

• cultivation/identification of Pseudo-nitzschia species (chapter 3)

• laboratory experiments (chapter 4).

5.2.1 Major results

The study was based around a phytoplankton monitoring programme at station LYl 

(chapter 2). Samples were taken fortnightly from November until March and weekly 

during the rest of the year for a period of 33 months. This provided information about 

seasonality of phytoplankton taxa, including Pseudo-nitzschia species. Environmental 

factors that influenced the phytoplankton composition were monitored and patterns of 

phytoplankton blooms in Scottish waters were evaluated. The field study gave insight
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into the diversity of Pseudo-nitzschia species and furthermore provided material for 

culturing Pseudo-nitzschia species. The cultures were used to analyse the toxin 

production of different strains, to identify strains with classical morphologic and genetic 

methods and to conduct laboratory experiments investigating Pseudo-nitzschia 

physiology. The major results are detailed below:

Temporal distribution

• From the temporal monitoring it emerged that the presence of Pseudo-nitzschia 

species in the phytoplankton assemblage followed the same seasonal pattern in 

2001, 2002 and 2003.

• In each year, P. delicatissima was a dominant part of the spring bloom, but also 

showed elevated cell densities during the summer. Diatoms belonging to the P. 

seriata group were most abundant from June to October. Electron microscopy of 

field samples showed that blooms of the P. seriata group always consisted of 

several species, including P. australis, P. seriata, P. fraudulenta, P. pungens and P. 

cf. subpacifica. Periods of high cell densities, that could have led to DA 

accumulation in shellfish, lasted from 1 week to 8 weeks. A phytoplankton 

monitoring with a lower frequency than weekly would have missed some blooms or 

maximal cell densities.

• Many other phytoplankters were observed to follow a seasonal pattern and the 

timing of their occurrence was very similar in each year. For example Skeletonema 

costatum occurred every year in spring and was observed together with diatoms of 

the P. delicatissima group, while Chaetoceros species were highly abundant in late 

spring and early summer. Every summer red clouds consisting of the ciliate 

Mesodinium rubrum were observed in the water column. Those blooms coincided
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with high cell densities of diatoms belonging to the P. seriata group and seemed to 

irritate the local farmed salmon.

• Nutrient concentrations in the summer were low and it is possible that some 

macronutrients, such as DIP and DSi were limiting phytoplankton growth. 

However, several phytoplankton taxa, amongst them diatoms of the P. seriata 

group, occurred in high cell densities at that time, suggesting a nutrient supply that 

was immediately taken up by the algae and hence not measured. While nitrate 

concentrations were low, ammonium concentrations were elevated and hence 

potentially available as an alternative nitrogen source for phytoplankton.

• Species P. cf. subpacifica and P cf. delicatissima were observed in the samples. 

Their morphology, and in case of P. cf. subpacifica their rDNA sequences, did not 

match type descriptions in the keys or databases. Hence they might be intermediate 

forms (e.g. between P. subpacifica and P. heimii) or new species.

Spatial distribution

• Studying the spatial distribution of Pseudo-nitzschia spp. and other phytoplankton 

along the Ellett Line in early autumn showed that the taxa were associated with 

distinct water masses: the Scottish coastal current and Atlantic water.

• At that time of the year diatoms belonging to the P. seriata group, including the 

toxic species P. seriata and P. australis, were still highly abundant in coastal 

waters, but not in the open ocean.

• In contrast, species belonging to the P. delicatissima group dominated the 

phytoplankton assemblage at the open ocean stations.

• Statistical analysis of the spatial study showed that salinity (as an indicator of the 

water mass) was the only significant factor influencing the spatial phytoplankton 

distribution.
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Toxin monitoring in culture

• From the temporal and spatial study 59 Pseudo-nitzschia cultures were established 

and identified with classical morphologic and genetic methods. Seven species were 

identified form the cultures, including P. australis, P. calliantha, P. delicatissima, 

P. fraudulenta, P. pungens, P. seriata and P. subpacifica. From field samples P. 

americana, P. pseudodelicatissima and P. cf. delicatissima were identified.

• P. calliantha, P. cf. subpacifica and P. americana were for the first time reported 

from Scottish waters.

• Of the cultured species only P. australis and P. seriata produced domoic acid. 

These results confirmed P. australis as a toxin producer and showed that P. seriata 

was a second toxic diatom species in Scottish waters. As it was found in high 

numbers together with P. australis, it is likely to contribute to ASP in Scottish 

waters.

• Other species that had previously been named as potential toxin producers in 

Scottish waters (Gallacher et al. 2001), such as P. delicatissima, P. fraudulenta and 

P. pungens were shown to be non-toxic in these waters.

Phylogeny

• Phylogenetic relationships between the Scottish species showed the close 

relationship between the toxin producers P. australis and P. seriata, and confirmed 

relationships between species with similar morphological features (e.g. possession 

of a central interspace).

• Sequencing the ITS region showed its potential as a template for molecular probes 

to distinguish between closely related species such as P. australis and P. seriata. 

However, to distinguish between strains belonging to one species, genes with higher 

variability in their nucleotide sequences have to be used. Being able to distinguish
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between strains might help to understand differences in the toxicity of strains, as for 

example observed in the two P. australis strains (PLYlSt.54B and PLYlSt.l9A).

Laboratory studies

• The laboratory experiment on P. seriata investigating its growth and toxin 

production dynamics under phosphate and silicate limitation was the first of its kind 

with that species.

• The results showed that this species follows the same toxin production pattern as P. 

multiseries, with toxin production starting in late exponential phase, after the 

limiting nutrient had become exhausted.

• Toxicity of P. seriata was enhanced in DSi limited cultures compared to DIP 

limited cultures.

• Silicate limitation would enhance the toxin production of a P. seriata bloom, and 

due to the ability of this species to take up silicate in low concentrations, the bloom 

would persist for a long time.

• P. seriata readily utilised NH4 as a nitrogen source. During summer in the field, 

when NO3 was exhausted, the algae might have utilised NH4 that was available and 

would also have extended the duration of a toxic diatom bloom.

• Enhanced biomass yield was found for P. delicatissima under short light conditions, 

while P. seriata reached highest biomass yields under long light conditions. This 

confirmed field observations, which showed that P. delicatissima species were most 

abundant in early spring, when day length in these latitudes was short. In contrast, 

diatoms belonging to the P. seriata group bloomed during summer, when day length 

was maximal.
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• Toxin production in P. seriata was elevated under long light conditions, which 

might be a consequence of enhanced availability of energy. This excess energy, 

might have potentially been channelled into more toxin production.

5.3 Recommendations for future work

• A continuation of the phytoplankton monitoring at LYl would eventually provide 

insights in long term changes in physical factors and phytoplankton ecology. This 

was indicated by the comparison with 25 year old temperature data from the same 

station, which showed significantly lower temperatures in past winters.

• The availability of a plankton time series in conjunction with this physical dataset 

will allow study, potentially involving modeling, of spring bloom development and 

species succession.

• In regard to Pseudo-nitzschia species it would be useful to isolate fresh cultures for 

further laboratory experiments investigating toxin production under other nutrient 

(e.g. comparison of DA production in NO3 and NH4 based media), light (DA 

production of P. seriata under different irradiances) and temperature conditions.

• Further investigation is needed to identify changes in the toxin production of strains 

after being kept in culture for years.

• For P. australis and P. seriata study of effects of temperature on the morphology of 

cells and their toxin production would be interesting. There are indications of a 

reduction in the number of rows of poroids in P. seriata when grown in higher 

temperatures. However, this has not been investigated for P. australis. Furthermore, 

the temperature and the duration of exposure to that temperature at which changes in 

the fine structure are observed are unknown.

265



Chapter 5______________________________________________________________

• To complete the picture of toxin production of Pseudo-nitzschia species in western 

Scottish waters, other potentially toxic species, such as P. calliantha and P. 

pseudodelicatissima should be isolated, cultured and tested for DA production.

• Interaction between Pseudo-nitzschia species and bacteria are evident (e.g. Bates et 

al. 2004). Experiment D (chapter 4) demonstrated the enhanced growth of P. seriata 

in presence of bacteria. However, further investigations are needed to elucidate the 

exact implications of interactions between the algae and their associated bacteria.

5.4 General conclusions

This study has shown that at least two domoic acid producing Pseudo-nitzschia species 

(P. australis and P. seriata) regularly occur in a repeatable pattern in Scottish waters, in 

numbers exceeding 10̂  cells • L % the threshold density thought to cause ASP. Blooms 

persisting from one to several week are likely to be the cause of DA contamination of 

shellfish. A phytoplankton monitoring programme in a high temporal resolution, 

together with shellfish testing is hence required in Western Scottish waters to detect 

ASP.

While light microscopy can separate diatoms belonging to the P. delicatissima group

from those belonging to the P. seriata group, it is necessary to identify the species

within these groups, as both contain toxic species, or in case of the P. delicatissima

group potentially toxic species. The main difference between Pseudo-nitzschia species

of the P. delicatissima group and the P. seriata group was, that the former occurred in

highest cell densities in spring and the latter in summer. However, it is suggested that

each species within each group has its own ecological preferences. Some species

belonging to the P. delicatissima group might be occurring in summer rather than in

spring. The preferences of each species in the P. seriata group are not clear. This study

suggested that blooms of the P. seriata group were multispecies blooms. While the
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experiments focussed on P. seriata, it is not known if the other species exhibit similar 

ecological preferences. This study showed the importance of cultivation of Pseudo- 

nitzschia species for toxin testing, together with reliable identification of species by 

TEM and genetic methods. This is necessary to sufficiently assess which species can be 

a threat to marine wildlife and humans.
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Appendix 1

Appendix 1: Phytoplankton counts atLYl

Species abundance [cells • L^] at LYl stations. For each species cell densities are 
presented in one graph over the sampled period (Nov 2000 to July 2003) and as single, 
overlaid plots for the years 2001, 2002 and 2003.
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Dinoflagellates other than Dinophysis or Ceratium
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Silicoflagellate
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Appendix 2

Appendix 2: Phytoplankton counts along the Spelve-Creran transect

Species abundance [cells • L^] along the Spelve-Creran transect in July (circles) August 
(closed triangles) and September (open triangles) 2002.
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35000
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30000 -

25000 -

u  20000 -

Ü 15000 -
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Dinoflagellates other than Dinophysis
> 20 p,m30000 -

25000 -

,20000 -

Û 15000 -

10000 -
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700 LY3 LY2 LYl C2 C3 C5 
station

< 20 |im
10000 -
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D
« 6000 - 
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r'̂  1000 -
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25000
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20000 -
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station
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Dinophysis
D. acuminata80 -

60 -

40 -

20 -

C2 C3 C5700 LY3 LY2
station

D. acuta120 -

100 -

u  80 -

I
U 60 -

40 -

20 -

C5700 LY3 LY2 C2 C3

norvegica
150 -

100 -

i
50 -

C2 C3 C5700 LY3 LY2

Silicoflagellate
10000

Dictyocha speculum

7500 -

5000

2500 -

C2 C3 C5700 LY3 LY2

Ciliate
Mesodinium rubrum18 • 10^-

12 • 10 -

9» 10

6-10 -

0
C5700 LY3 LY2 C2 C3

station Jul
Aug
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Appendix 3: Phytoplankton counts along the Ellett Line

Species abundance [cells • L^] at Ellett Line stations during cruise D257 in autumn 
2001. Mean of cell densities in samples of the top 100 m water column are plotted.

Pseudo-nitzschia
P. delicatissima group

4000 -

3000 -
"h

?̂  2000 -

1000 -

F M lOG 9G 7G 6G 4G 20 IG

20000 P. seriata group

15000 -

=310000 -

5000 -

F M lOG 9G 7G 6G 4G 2G IG
station station

P. americana

2000 -

7 1500 -

1000 -

500 -

F M lOG 9G 7G 6G 4G 2G IG 
station

20-10-

ĵ 5* 10-

F M lOG 9G 7G 6G 4G 2G IG

8000
Asterionellopsis glacialis
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« 4000 -

2000 -

F M lOG 9G 7p 6G 4G 2G IG
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20 • 10
< 10 pm

15» 10-

F M lOG 9G 7G 6G 4G 2G IG
station station
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150
Corethron sp.

100 -

i
50 -

F M lOG 9G 7G 6G 4G 2G IG

1250
Cylindrotheca closterium

1000 -

750 -

I
500 -

250 -

F M lOG 9G 7G 6G 4G 2G IG
station station

600
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500 -

400 -
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6G 4G 2G IGF M lOG 9G
station

500 Ditylum brightwellii

400 -
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100 -

F M lOG 9G 7G 6G 4G 2G IG 
station

6000
Eucampia zodiacus
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Ô3000 -
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F M lOG 9G 7G 6G 4G 2G IGstation

1500
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500 -
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Guinardia striata
200 -

150 -

U  100 -

50 -

F M lOG 9G 7G 6G 4G 2G IG

6.10
Lauderia borealis

4* lo r-

1* 10

F M lOG 9G 7G 6G 4G 2G IG
station station

5000
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I
2000 -
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u

station
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40 -
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S> 9 ?  I I I I P P—*
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Paralia sulcata

250 -

200 -

100 -

50 -

F M lOG 9G 6G 4G 2G IG
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75 -

25 -

F M lOG 9G 7G 6G 4G 2G IG 
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1000
Rhiszosolenia setigera

750 -

I  500 -u

250 -

F M lOG 9G 7G 6G 4G 2G IG 
station

1500
Rhiszosolenia styliformis

1000 -

I
500 -

F M lOG 9G 7G . 6G 4G 2G IG
station

Skeletonema costatum

50 -

40 -

i
20 -

10 -

F M lOG 9G 7G 6G 4G 2G IG
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20 -

5 -
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1000 -
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500 -

8000
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i4000 -

2000 -

F M lOG 9G 7G 6G 4G 2G IG 
station

M lOG 9G 7G 6G 4G 2G IG 
station

XXIII



Appendix 3

Dinoflagellates
3500

> 2 0  | im

3000 -

2500 -

«2000  -

1500 -

1000 -
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F M lOG 9G 7G 6G 4G 2G IG

12500
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250
Ceratiumfurca

200 -

150 -

^ 100 -

50 -

F M lOG 9G 7G 6G 4G 2G IG
station

200
Ceratium fusus

150 -

u

i 100 -

50 -
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Dictyochophyceae
200

Dictyocha speculum

150 -

« 100 -

50 -

F M lOG 9G 7G 6G 4G 2G IG

Ebria tripartita

30 -

:  20-
s

10 -
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Appendix 4: Alignment of Pseudo-nitzschia sequences (including the 

outgroup Cylindrotheca closterium) for phylogenetic analysis

Species Abbreviation represented by sequence of 
strain

Cylindrotheca closterium cyl AF289049
P. seriata ser PLYlSt.52B
P. australis aust PLYlSt.l9A
P. fraudulenta fraud PLYlSt.l5A
P. delicatissima deli P orkney9
P. cf. subpacifica subpac D257F
P. pungens pung Ppung6

M a tr ix :

c y l
s e r
a u s t
f r a u d
d e l i
su b p ac
pung

c y l
s e r
a u s t
f r a u d
d e l i
su b p ac
pung

c y l
s e r
a u s t
f r a u d
d e l i
su b p ac
pung

c y l
s e r
a u s t
f r a u d
d e l i
su b p ac
pung

c y l
s e r
a u s t
f r a u d
d e l i
su b p ac
pung

10
I

20 30 40 50 60

 TAACAAGGTTCCGTAGTGAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCT
------------------------------------ GAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCA
------------------------------------ GAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCA
------------------------------------ GAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCA
------------------------------------ GAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCA
------------------------------------ GAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCT
AACAAGGTTCCGGTAAGGGTGAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCA

70 80 90 100 110 120
I I I I I I

-TCTTTATTGTGAA ATGTTGG--------------TTGTTTC------------ T-----CTCGGGAGA
GTCTTCATTGTGAATCTGATTTCAGAGGC GGCTT------------------GCTTTTAAAGC
GTCTTCATTGTGAATCTGATTTCAGAGGC GGCTT------------------GCTTTTAAAGC
GTCTTCATTGTGAATTTGATTTGCGTGGCACTCTGGCTTCGGCCCGTTTGCCTCAAAAGT
GTCTTCATTGTGAATCTGATTTCAGAGGCAGCCTCGCT------------ GTT-----CTCTGTCGT
GTCTTCATTGTGAATCTGATTTCGTTGACAGTC CTTCAGTGGGCTGTACTTCGTCGT
GTCTTCATTGTGAATCTGATTGCACCGG----------------------------------------------- TCTAGT

130 140 150 160 170 180
I I I I I I

CAACC-------------------------------GTGCTATTCTA-------- GCAAC-CACTCAG-----AGT-----
--------------------------------------TCTCCGTCGCTGTCGTCA---------AACTATTTTCAGTGAT
--------------------------------------TCTCCGTCTCTGTCGTCA---------AACTTTTTT-AGTGAT
CAACTTGTATACAGGTGGCCTTGTCCCCCCCTGCGCACAGTAT— ACCTGTGTTCGGCGC
CAACTTTAAC--------------CCTGGTGCTATCCAGCCCGTGCAAT— ACCTTGTGTTTGTGT
CAACATTATTGGGATATGC— TGTCATTGCCCACTGTGGTGATGGTGGTTGTCCCGTGAT
AT-------------------------------- TTTTACTAAACTGCTGCCGTCA— AACTTAAACTTGCAAC

190 200 210 220 230 240
I I I I I I

ACTCTTGTA— GTATTCTGTTTT---------------------ACC------- AAATTGACC-AGT--------
ATGCTATTT-ACTAGTGT-ATCA------------------CAACCCCCCATTCTTAACGATTGGTAA
GCGCTAGCT-ACTAGCGT-ATTA------------------CAACCCCCCATTCTTAACGATTGGTAA
GCGACATCGCACCAGTGGCATTAAGTGAAATGTCCACACCCCATCTTTTACGATCGGTAA
GGGTTGGTT— GGTGTCCACTTT--------------------- ACCCCCCATATTCTAT-ATGGA-AA
CTGCCATATCAGCCTTGTGCTGTAGCGGATCGCAAACCCCCCATTCTATAT GGTAA
GCGTTGATT— AATTCCG-CGTT----------------------- GCTGCCATTCTTTACGATTGGTAA

250 260 270 280 290 300
I I I I I I

CTTGATAATAC-------TGATCTAAAGCAAAGAG— TGCTGCC-------------------- TGAAC----
CTGGAAAGAACCAAATGACCTAAAGCTAAAA TGCAGTGGTCTGGTG— TTGCGC-----
CTGGAAAGAACCAAATGACCTAAAGCTAAAA TGCAGTGGTCTGGTG— TTGCGC-----
CTTGATAGAACCAAATGACCTAAAGCTTAAAG— TGCAGTGGTCCGGCA-ACTGAGC-----
CTGGAAAGAACCAAATGACCTAAAGCT-AAAG— TGCAGTTGGTCTGGT-GTTGCGC-----
CCGGAAAGAACCAAATGACCTAAAGTA-AAATG-TGCAGATGGTCTGGT-GTTGTGC-----
CTGGAAAGAACCAAATGACCTAAAGTAGAAATGATGCAGTGTTTCGGAGCGCTGAGCGGG

XXVII
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310 320 330 340 350 360

c y l
s e r
a u s t
f r a u d
d e l i
su b p a c
p u n g

c y l
s e r
a u s t
f r a u d
d e l i
su b p a c
pung

c y l
s e r
a u s t
f r a u d
d e l i
su b p a c
pung

 CTAG--------------- TGTTTGG------------------------------------GCCCTCGA— AAATAT—
 CTCG---------------- TGCCAACA---- CC------------------------ GCCCTGTACATTATATC-
 CTCG---------------- TGCCAACA---- CC-------------------------GCCCTGTACATTATACC-
 CTTG--------------- TGCCAGGAG— CC------------------------ GCCCTGTACATAAAACC-
 CTTG---------------- TGCCAACA---- CC-------------------------GCCCTGTACAC-AAACC-
 TTAG---------------- TGCCAACA---- CCG-----------------------ATCCTGTACACAAAACC-
CGTCTTAAGTATTAGATGCATACCAAACCGACTCTATTGCTGGCACTGCACATTACACCC 

370 380 390 400 410 420
I I I I I I

-AATCTAGTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAGAACGCAGC 
-AATTCATTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAGAACGCAGC 
AATTCA-TTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAGAACGCAGC 
TAATGACTTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAGAACGCAGC 
TAATGACTTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAGAACGCAGC 
TAATGACTTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAGAACGCAGC 
TAATACATTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAGAACGCAGC 

430 440 450 460 470 480
I I I I I I

GAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCATTAAGATTTTGAACGCAC 
GAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCATTAAGATTTTGAACGCAC 
GAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCATTAAGATTTTGAACGCAC 
GAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCATTAAGATTTTGAACGCAC 
GAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCATTAAGATTTTGAACGCAC 
GAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCATTAAAATTTTGAACGCAC 
GAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCATCAAGATTTTGAACGCAC 

490 500 510 520 530 540

c y l  ATTGCGCTTTCGGGATTTTCCCGGTAGCATGCTTGTTTGAGTGTCTGTGAACCCCACTCA 
s e r  ATTGCGCTTTCGGGATTTTCCCGGTAGCATGCTTGTCTGAGTGTCTGTGGATCCCACTCA 
a u s t  ATTGCGCTTTCGGGATTTTCCCGGTAGCATGCTTGTCTGAGTGTCTGTGGATCCCACTCA 
f r a u d  ATTGCGCTTTCGGGATTTTCCCGGTAGCATGCTTGTCTGAGTGTCTGTGGATCCCACTCA 
d e l i  ATTGCGCTTTCGGGATTTTCCCGGTAGCATGCTTGTCTGAGTGTCTGTGGATCCCACTCA 
su b p a c  ATTGCGCTTTCGGGATTTTCCCGGGAGCATGCTTGTCTGAGTGTCTGTGGATCCCACTCA 
pung  ATTGCGCTTTCGGG-TATTCCCGGTAGCATGCTTGTCTGAGTGTCTGTGGATCCCACTCA 

550 560 570 580 590 600
I I I I I I

c y l  GCGTTGATGTATTTCAACAGCT-GGATTTGTGTGAGTGTCTATCTTTTGGATGGACTCTT
s e r  GCGCTGGTTTA----------------------GGCCGGTCGCTGGTTGTTTTGGCCTTGACAGCTACTA
a u s t  GCGCTGGTTTA----------------------GGCCAGTCGCTGGTTGTTTTGGCCTTGACAGCTACTA
f r a u d  GCGCTGGTCTACT CTGTAGGCCCAGTTGCTGGTTGCTATGGCTCTGACCGCT-CTA
d e l i  GCACTGGTCTATT CTGTA-GGCTAGTCGCTGGTTGCTTTGGCCTTGACTGCCTCTG
su b p a c  GCGCTGGTCTGCCCTTTGGGT-GGATTGGTAGCTGGTTACTTTGGCTTTGATGGATTCTG
pung  GCGCTGGCTTC--------------------GCGCTGGCTGCTGGTC-TTTTGGCCGTGACTGAA-CTT

610 620 630 640 650 660

c y l
s e r
a u s t
f r a u d
d e l i
su b p ac
pung

c y l
s e r
a u s t
f r a u d
d e l i
su b p a c
p u n g

A CGAAATGTTCGTAGACGTTTGCTGA-GCAA GCATTGTTTCTAGTTTTC-CAC
GTAGCTGTCTCTGCTTAAGTTCTACGGTATCGTAC-GTGCATAGAT-TTAGTTACCTCAA 
GTAGCTGTCTCTGCTTAAGTTCTACGGTATCGTAC-GTGCATAGAT-TTAGAGACCTCAA 
GTAGCGGTCTCTGCTTAAATTCTACAACATTGTACCGTGCATAGAT-CTAGAAAAGTC—
G CTGTCTCTGCTTAAATTCTACAACA-CGTAC-GTGCATAGAT-CTAGAAACGTCTC
T CCTTCTTTGCTTAAATTCTACATACATGTAC-GCGAATAGAT-CTAGAGGAGTC—
GTT-TAGTCTCGGCTTAAGTTTTACGTCA-AGTAC-GTGCATAGAT-CTAGAAAGCTCTG 

670 680 690 700 710 720
I I I I I I

ACAGTGT-TTTG TGTCGAGAGCCGAACATATCGTCTATCTCCGGTAACAC-TTTACG
CCTGTCT-TGTC AAGACGGCGTTGACACTCTTGTCTATCTCTGGTAGCTTGTATTTA
CCTGTCT-TGTC AAGACGGCGTTGACATTCTTGTCTATCTCTGGTAGCTTGTATTCA
-TTGTGT-TGTCTGAATGACGGCGTTGACGCTCTTGTCTATCTCTGGTAGCTTGTATGAA
AGCCCGT-TCTA ACTACGGCGTTGACATTCTCATCTATCTCTGGTAGCTTTTGT-----
-TTGTGTCTGTCCTAAGGACGGCATTGGCAATCTCATCTATCTCTGGTAGAGTTAAT-----
CCCGTCT-AGTTAAAAACACGGCGCTGACACTCTTGTCTATCTCTGGTAGGTTTATTCAA

xxvm
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730 740 750 760 770 780

cyl
ser
aust
fraud
deli
subpac
pung

cyl
ser
aust
fraud
deli
subpac
pung

cyl
ser
aust
fraud
deli
subpac
pung

cyl
ser
aust
fraud
deli
subpac
pung

cyl
ser
aust
fraud
deli
subpac
pung

 TGTCGAGTGAGTTTTAGCGCGTAGTTTAGTTTTTGAT GCTTTTAACACGGTA
TTACAAATATCTGGAGTTTGT------------ TAAGATTGTCATGTTCAGCTGTTTGA-AACTT
TTACAAATATCTGGAGTTTGT------------ TAAGATTGTCATGTTCAGCTGTTTGA-AACTT
AATGCATTCTCTGGAGTTTAAC---------- TAGGGGTGTC-TATT-AGCTGTCTGCCAAACT
-------------- CTCTGGAGTTCAA-------------- TTGAGTTTGTTATC-AGCTGTTGGAAGGACT
------------ TCTCTGGAGTTTGA-------------- ACGAGTTTTGCCTTTAGCTGTTTTGAGTTCA
------------------CTGGAGTTTGC-------------TAGGAGTCGTCTGT— AGCTGTTTTGAAACTA

790 800 810 820 830 840
I I I I I I

AATTAGACTC— AGTGTTT-TCTGGGCA AATATCGCGTGTATTAATTTACACGTGAT
TTCGATTGAGTGTCACTAGATCTAGCTAGCTATACTTTCCTGTATTAG CTAGCTAT
TTCGATTGAGCGTCACTAGATCTAGCTAGCTATACTTTCTAGTACTAG CTAGCTAT
ATCGAGTTTT— TCTCTGGGTCTGGCCA-CGCAGCTGTGTAAAAGCAGTCTGCTGGCTAT
ACTGAGTCTG— ACACTA----------------------- AGTCTAGCTTGCAGTTTTCTGCTCGCTAT
ACCAAAGCTT— TTTTTAG------------------- T-GAAGGGCCAGTAGCAGT— AATGCCTAC
ATGGAATGAGCGGTTTTAGATCT----------------AACTAGCTGGAAACAGT-------TAGTTAT

850 860 870 880 890 900
I I I I I I

 ATAATTCATTCCGGATCTCA-AATCAAGC-AAGAAGACCC-GCCGAATTTAAGCATA
 CCAA-------TTCCGGATCTCA-GATCAAGC-AAGAGGACCC-GCTGAACTTAAGCATA
 CCAA-------TTCCGGATCTCA-GATCAAGC-AAGAGGACCC-GCTGAACTTAAGCAT-
T— CCAA TTCCGGATCTCAAGATCAAGCCAAGAGGACCCCGCTGAACTTAAGCATT
 CTAA-------TTCCGGATCTCA-GATCAAGC-AAGATGACCC-GCTGAACTTAAGCATA
TGACCAACTAATTCCGGAT--------------------------------------------------------------------------
 ACAA-------TTCCGGATCTCA-GATCAAGC-AAGAGGACCCGCTTGAACTTAAGCAT-

910 920 930
I

940 950
I

960

TAATTAAGCGGAGGAAAAGAAACTAACCAGGATTCCCTCAGTAAGGGCGACTGAAGCGGG
TAATTAAGCGGAGGAAAAGAAACTAACTAGGATTCCCTCAGTAACGGCGAGTGAAGCGGG
----------------------- GAAAAGAAACTAACTAGGATTCCCTCAGTAACGGCGAGTGAAGCGGG
T------------------------------------ACTAACTAGGATTCCCTCAGTAACGGCGAGTGAAGCGGG
T------------------------------------ACTAACTAGGATTCCCTCAGTAACGGCGAGTGAAGCGGG
-------------------------AAAAGAAACTAACTAGGATTCCCCCAGTAACGGCGAGTGAAGCGGG
--------------------------------------ACTAACTAGGATTCCCTCAGTAACGGCGAGTGAAGCGGG

990970 980
I

1000 1010 1020
I

AAGTGCTCAGGATGTGAATCTGCGC TAT-GCGCCGAATTGTGGTCTGTAGACTGTGA
ACTAGCTCAGGATGTGAATCTGCGCTTTTATGGCGCCGAATTGTGGTCTGTAGACTTTGA
ACTAGCTCAGGATGTGAATCTGCGCTTTTATGGCGCCGAATTGTGGTCTGTAGACTTTGA
ACTAGCTCAGGATGTGAATCTGCGCTTTTATGGCGCCGAATTGTGGTCTGTAGACTTTGA
ACTAGCTCAGGATGTGAATCTGCGCTTTTATGGCGCCGAATTGTGGTCTATAGACTTTGA
ACTAGCTCAGGATGTAAATCTGCACTTT-ATGGTGCCGAATTGTGGTCTGAAGACCTTGA
ACTAGCTCAGGATGTGAATCTGCGCTTTTATGGCGCCGAATTGTGGTCTGTAGACTTTGA

1030 1040 1050 1060 1070 1080

cyl
ser
aust
fraud
deli
subpac
pung

cyl
ser
aust
fraud
deli
subpac
pung

CATTATTGGCCGGGCCAAGTCCCTTGGAAAAGGGCAGCAGAGAGGGTGAGACTCCCGTCC
CATTATCTGCCGGGCCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGAGACTCCCGTCC
CATTATCTGCCGGGCCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGAGACTCCCGTCC
CGTTATCTGCCGGGCCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGAAACTCCCGTCC
CGTTATCTGCCGGGCCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGAGACTCCCGTCC
TGTTATCTGCCGGGCCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGAGACTCCCGTCC
CATTATTTGCCGGGCCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGACACTCCCGTCC

11101090 1100 1120
I

1130 1140
I

GCCTGGCCGAGTGAGTCGCTAGTCAACGAGTCGAGTTGTTTGGGATTGCAGCTCTAAGTG
GCCTGGTAGAGTGAGTCATTTGTCAACGAGTCGAGTTGTTTGGGATTGCAGCTCTAATTT
GCCTGGTGGAGTGAGTCATTTGTCAACGAGTCGAGTTGTTTGGGATTGCAGCTCTAATTT
GCCTGGTAGAATGAGTC-TTTGTCAACGAGTCGAGTTGTTTGGGATTGCAGCTCTAATTT
GCCTGGTAGAATGAGTC-TTTGTCAACGAGTCGAGTTGTTTGGGATTGCAGCTCTAATTT
GTCTGGTAGAATGAATCAGGTGTCAACGAGTCGAGTTGTTTGGGATTGCAGCTCTAATTT
GCCTGGTAAAGTGAGTCATTTGTCAACGAGTCGAGTTGTTTGGGATTGCAGCTCTAATTT
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1150 1160 1170 1180 1190 1200

c y l  GGTGGTAAATTCCATCTAAAGCTAAATATTGGTGGGAGACCGATAGCGTACAAGTACCGT 
s e r  GGTGGTAAATTCCATCTAAAGCTAAATATTGGTGGGAGACCGATAGCGTACAAGTACCGT 
a u s t  GGTGGTAAATTCCATCTAAAGCTAAATATTGGTGGGAGACCGATAGCGTACAAGTACCGT 
f r a u d  GGTGGTAAATTCCATCTAAAGCTAAATATTGGTGGGAGACCGATAGCGTACAAGTACCGT 
d e l i  GGTGGTAAATTCCATCTAAAGCTAAATATTGGTGGGAGACCGATAGCGTACAAGTACCGT 
su b p ac  GGTGGTAAATTCCATCTAAAGCTAAATATTGGTGGGAGACCGATAGCGTACAAGTACCGT 
pung  GGTGGTAAATTCCATCTAAAGCTAAATATTGGTGGGAGACCGATAGCGTACAAGTACCGT

1210 1220 1230 1240 1250 1260
I I I I I I

c y l  GAGGGAAAGATGCAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAATTGCTGAAAG 
s e r  GAGGGAAAGATGCAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAC 
a u s t  GAGGGAAAGATGCAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAC 
f r a u d  GAGGGAAAGATGCAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAATTGCTGAAAC 
d e l i  GAGGGAAAGATGCAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAATTGCTGAAAC 
su b p ac  GAGGGAAAGATGCAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAATTGCTGAAAC 
pung GAGGGAAAGATGCAAAGAACTTTGAAAAGAGAGTTAAAGAGTACCTGAAACTGCTGAAAC

1270 1280 1290 1300 1310 1320
I I I I I I

c y l  GGAAGCGAAGGAAACCAGTGTTGAATGTGTCATACTTCTTGATCCGCTTGCGGATTGGGC 
s e r  GGAAGCGAAGGAAACCAGTGTTTGTTGGTTCATATTTCCCCGGCCACTTGTGGTTTGGGC 
a u s t  GGAAGCGAAGGAAACCAGTGTTTGTTGGTTCATATTTCCCCGGCCACTTGTGGTTTGGGC 
f r a u d  GGAAGCGAAGGAAACCAGTGTTTGTTGGTTCATATTTCCCTGGCCACTTGTGGTTTGGGC 
d e l i  GGAAGCGAAGGAAACCAGTGTTTGTTGGTTCATATTTCCCTGGCCACTTGTGGTTTGGGC 
su b p ac  GGAAGCGAAGGAAACCAGTGTTTGTATGTTCATATTTCCCTTGCCACTTGTGGTGTGGGC 
pung GGAAGCGAAGGAAACCAGTGTTTGTTTGTTCATATTTCCCTGGCCACTTGTGGTCTGGGC

1330 1340 1350 1360 1370 1380
I I I I I I

c y l  GCTGTGTCATGTTTTGGGTTGTCCTTGGTTGGTCGCGATGGAAGAGCGCTAAAGGAGTTG 
s e r  GCTGTGAGCTTGCGTGAGTTTGGGTTGGTTGAATCCTTTGGAAGAGCGCAGTCAGAGTTG 
a u s t  GCTGTGAGCTTGCGTGAGTTTGGGTTGGTTGAATCCTTTGGAAGAGCGCAGTCAGAGTTG 
f r a u d  GCTGTGAGCTTGCGTGGGTTTGGGTTGGTTGATCCCTTTGGAAGAGCGCAGTCAGAGTTG 
d e l i  GCTGTGAGCTTGCGTGGGTTTGCTTTGGTTGATCCCTTTGGAAGAGCGCAGACAGAGTTG 
su b p ac  GCTGTGGATATGCGTGGGTTTGATTTGGTTGATCCCTTTGGAAGAGCGCAGTCAGAGTTG 
pung GCTGTGGACTTGCGTGAGTTTGGGTTGGTTGATCCCTTTGGAAGAGCGCAGTCAGAGTTG

1390 1400 1410 1420 1430 1440
I I I I I I

c y l  ACTTTGGTTGCTAGCATTGCTTCTGACTGAGGAGGACGAAATGGTTTTCTTTACCCCGTC 
s e r  ATGTCTGTTGCTAGCACTGGATTTGACTGATGCAGACGAAATGGTTTTCTTTACCCCGTC 
a u s t  ATGTCTGTTGCTAGCACTGGATTTGACTGATGCAGACGAAATGGTTTTCTTTACCCCGTC 
f r a u d  ATGTCTGTTGCTAGCACTGGGTTTGACTGATGCAGACGAAATGGTTTTCTTTACCCCGTC 
d e l i  ATGTCTGTTGCTAGCACTGGGTTTGACTAATGCAGACGAAATGGTTTTCTTTACCCCGTC 
su b p ac  ATGTCTGTTGCTAGCACTGGGTTTGACTCAATCAGACGAAATGGTTTTCTTTACCCCGTC 
pung ATGTCTGTTGCTAGCACTGGGTTTGACTGATGCAGACGAAATGGTTTTCTTTACCCCGTC

1450 1460 1470 1480 1490 1500
I I I I I I

c y l  TTGAAACACGGACCAAGGAGTCTAACATATGTGCGAGTATAGGAGTGTCAAACTCCCATG 
s e r  TTGAAACACGGACCAAGGAGTCTAACATATGTGCGAGTACAGGGGTGTCAAACCCCGGTG 
a u s t  TTGAAACACGGACCAAGGAGTCTAACATATGTGCGAGTACAGGGGTGTCAAACCCCGGTG 
f r a u d  TTGAAACACGGACCAAGGAGTCTAACATATGTGCGAGTACAGGGGTGTCAAACCCCGGTG 
d e l i  TTGAAACACGGACCAAGGAGTCTAACATATGTGCGAGTACAGGGGTGTCAAACCCCGGTG 
su b p ac  TTGAAACACGGACCAAGGAGTCTAACATATGTGCGAGTACAGGGGTGTCAAACCCCGGTG 
pung TTGAAACACGGACCAAGGAGTCTAACATATGTGCGAGTACAGGGGTGTCAAACCCCCGTG

1510 1520 1530 1540 1550 1560
I I I I I I

c y l  CGCAATGAAAGTGACAGTGGTTGGAC-CTTTGGGCACAATCCGCCGGCCTCAATCCTTCG 
s e r  CGTAATGAAAGTGACAGTGGTTGGA— ATTTTG-CACAATCCGCCGGCCTCAATCCTTCG 
a u s t  CGTAATGAAAGTGACAGTGGTTGGA— ATTTTG-CACAATCCGCCGGCCTCAATCCTTCG 
f r a u d  CGTAATGAAAGTGACAGTGGTTGGAT-ATTTTG-CACAATCCGCCGGCCTCAATCCTTCG 
d e l i  CGTAATGAAAGTAACAGTGGTTGGAT-ATTTTG-CACAATCCGCCGGCCTCAATCCTTCG 
su b p ac  CGTAATGAAAGTGACAGTGGTTGGACAATTTTTGCACAATCCGCCGGCCTCAATCCTTCG 
pung CGCAATGAAAGTGACAGTGGTTGGAA-TTTTTG-CACAATCCGCCGGCCTCAATCCCTCG

XXX
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1570 1580
I

1590 1600 1610
I

1620

c y l  GGAGAACGGTCTGAGTGTGAGCATACATGTTGGGACCCGAAAGATGGTGAACTATGCCTG
s e r  GGAGAACGGTCTGAGTGTGAGCATACATGTTGGGACCCGAAAGATGGTGAACTATGCCTG
a u s t  GGAGAACGGTCTGAGTGTGAGCATACATGTTGGGACCCGAAAGATGGTGAACTATGCCTG 
f r a u d  GGAGAACGGTCTGAGTGTGAGCATACATGTTGGGACCCGAAAGATGGTGAACTATGCCTG 
d e l i  GGAGAACGGTCTGAGTGTGAGCATACATGTTGGGACCCGAAAGATGGTGAACTATGCCTG 
su b p ac  GGAGAACGGTCTGAGTGTGAGCACACATGTTGGGACCCGAAAGATGGTGAACTATGCCTG 
pung GGAGAACGGTCTGAGTGTGAGCATACATGTTGGGACCCGAAAGATGGTGAACTATGCCTG

1630 1640 1650 1660 1670 1680

c y l
s e r
a u s t
f r a u d
d e l i
su b p ac
pung

c y l
s e r
a u s t
f r a u d
d e l i
su b p ac
pung

AATAGGGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATC
AATAGGGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATC
AATAGGGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATC
AATAGGGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATC
AATAGGGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAACGATTCTGACGTGCAAATC
AATAGGGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATC
AATAGGGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGCAAATC

1690 1700 1710 1720 1730 1740
I I I I I I

GATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACC-ATCTAGTAGCTGGTTCC 
GATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACC-ATCTAGTAGCTGGGTCC
GATCGTCAAATTTGGGTATAGGGGCGAAAG------------------------------------------------------
GATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCCATCTAGTAGCTGGGTTC
GATCGTCAAATTTGGGTATAGGGGC---------------------------------------------------------------
GATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCCATCTAGTAGCTGG------
GATCGTCAAATTTGGGTATAGGGGCGAAAGACTAATCGAACCC------------------------------

1742

c y l  C-
s e r  C-
a u s t
f r a u d  CC 
l i e
su b p ac  — 
pung

XXXI



Appendix 5____________________________________________________________

Appendix 5: FASTA alignments of P, subpacifica (AY257859), P. 

heimei (AF440777) and P. cf. subpacifica (D257F)

LSU
P. subpacifica (AY257859, clone Limens 8) = P.sub 
P. heimei (AF440777, clone Zhenbo7BL) = P.hei 
andD257F = D257F 
- = gap; * = match;. = mismatch

P . s u b -------------------------- GAATTTAAGCATATAATTAAGCGGAGGAAAAGAAACT
P . h e i  GCCCTTACCCGCTGAATTTAAGCATATAATTAAGCGGAGGAAAAGAAACT
D 2 5 7 F --------------------------------------------------------------------------------- AAAAGAAACT

* * * * * * * * * *

P . s u b  AACTAGGATTCCCCCAGTAACGGCGAGTGAAGCGGGACTAGCTCAGGATG 
P . h e i  AACTAGGATTCCCCCAGTAACGGCGAGTGAAGCGGGACTAGCTCAGGATG 
D 257F AACTAGGATTCCCCCAGTAACGGCGAGTGAAGCGGGACTAGCTCAGGATG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  TAAATCTGCACTTTATGGTGCCGAATTGTGGTCTGAAGACCTTGATGTTA 
P . h e i  TAAATCTGCACTTTATGGTGCCGAATTGTGGTCTGAAGACCTTGATGTTA 
D 257F TAAATCTGCACTTTATGGTGCCGAATTGTGGTCTGAAGACCTTGATGTTA 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  TCTGCCGGACCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGAGACTCC 
P . h e i  TCTGCCGGGCCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGAGACTCC 
D 257F TCTGCCGGGCCAAGTTCCTTGGAAAAGGACAGCTGAGAGGGTGAGACTCC 

* * * * * * * *   ̂* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  CGTCCGTCTGGTAGAATGAGTCAGGTGTCAACGAGTCGAGTTGTTTGGGA 
P . h e i  CGTCCGTCTGGTAGAATGAGTCAGGTGTCAACGAGTCGAGTTGTTTGGGA 
D 257F CGTCCGTCTGGTAGAATGAATCAGGTGTCAACGAGTCGAGTTGTTTGGGA 

* * * * * * * * * * * * * * * * * * *   ̂* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  TTGCAGCTCTAATTTGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGG 
P . h e i  TTGCAGCTCTAATTTGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGG 
D 257F TTGCAGCTCTAATTTGGTGGTAAATTCCATCTAAAGCTAAATATTGGTGG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  GAGACCGATAGCGTACAAGTACCGTGAGGGAAAGATGCAAAGAACTTTGA 
P . h e i  GAGACCGATAGCGTACAAGTACCGTGAGGGAAAGATGCAAAGAACTTTGA 
D 257F GAGACCGATAGCGTACAAGTACCGTGAGGGAAAGATGCAAAGAACTTTGA 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  AAAGAGAGTTAAAGAGTACCTGAAATTGCTGAAACGGAAGCGAAGGAAAC 
P . h e i  AAAGAGAGTTAAAGAGTACCTGAAATTGCTGAAACGGAAGCGAAGGAAAC 
D25 7 F AAAGAGAGTTAAAGAGTACCTGAAATTGCTGAAACGGAAGCGAAGGAAAC 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  CAGTGTTTGTATGTTCATATTTCCCTTGCCACTTGTGGTGTGGGCGCTGT 
P . h e i  CAGTGTTTGTATGTTCATATTTCCCTTGCCACTTGTGGTGTGGGCGCTGT 
D25 7 F CAGTGTTTGTATGTTCATATTTCCCTTGCCACTTGTGGTGTGGGCGCTGT 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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p . s u b  GGATATGCGTGGGTTTGATTTGGTTGATCCCTTTGGAAGAGCGCAGTCAG 
P . h e i  GGATATGCGTGGGTTTGATTTGGTTGATCCCTTTGGAAGAGCGCAGTCAG 
D 257F GGATATGCGTGGGTTTGATTTGGTTGATCCCTTTGGAAGAGCGCAGTCAG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  AGTTGATGTCTGTTGCTAGCACTGGGTTTGACTCAATCAGACGAAATGGT 
P . h e i  AGTTGATGTCTGTTGCTAGCACTGGGTTTGACTCAATCAGACGAAATGGT 
D 257F  AGTTGATGTCTGTTGCTAGCACTGGGTTTGACTCAATCAGACGAAATGGT 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  TTTCTTTACCCCGTCTTGAAACACGGACCAAGGAGTCTAACATATGTGCG 
P . h e i  TTTCTTTACCCCGTCTTGAAACACGGACCAAGGAGTCTAACATATGTGCG 
D 257F TTTCTTTACCCCGTCTTGAAACACGGACCAAGGAGTCTAACATATGTGCG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  AGTACAGGGGTGTCAAACCCCGGTGCGTAATGAAAGTGACAGTGGTTGGA 
P . h e i  AGTACAGGGGTGTCAAACCCCGGTGCGTAATGAAAGTGACAGTGGTTGGA 
D 257F AGTACAGGGGTGTCAAACCCCGGTGCGTAATGAAAGTGACAGTGGTTGGA 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  CAATTTTTGCACAATCCGCCGGCCTCAATCCTTCGGGAGAACGGTCTGAG 
P . h e i  CAATTTTTGCACAATCCGCCGGCCTCAATCCTTCGGGAGAACGGTCTGAG 
D 257F CAATTTTTGCACAATCCGCCGGCCTCAATCCTTCGGGAGAACGGTCTGAG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  TGTGAGCACACATGTTGGGACCCGAAAGATGGTGAACTATGCCTGAATAG 
P . h e i  TGTGAGCACACATGTTGGGACCCGAAAGAAGGTGAACTATGCCTGAATAG 
D25 7 F TGTGAGCACACATGTTGGGACCCGAAAGATGGTGAACTATGCCTGAATAG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ * * * * * * * * * * * * * * * * * * * *

P . s u b  GGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC 
P . h e i  GGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC 
D 257F GGTGAAGCCAGGGGAAACTCTGGTGGAGGCTCGTAGCGATTCTGACGTGC 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  AAATCGATCGTCAAATTTGGG
P . h e i  AAATCGTTCGTAAGGG---------
D 257F AAATCGATCGTCAAATTTGGG 

* * * * * *  * * * * * * * * * *

ITS
P. subpacifica (AY257859, clone Limens 8) = P.sub 
and D257F 
- = gap; * = match;. = mismatch

P . s u b  TGAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCTGTCTTCATT 
D257F -GAACCTGCGGAAGGATCATTACCACACCGATCCAAGATCTGTCTTCATT 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  GTGAATCTGATTTCGTTGACAGTCCTTCAGTGGGCTGTACTTCGTCGTCA 
D2 57 F GTGAATCTGATTTCGTTGACAGTCCTTCAGTGGGCTGTACTTCGTCGTCA 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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p . s u b  ACATTATTGGGATATGCTGCCATTACCCACTGTGGTGATGGTAGTTGTCC 
D25 7 F ACATTATTGGGATATGCTGTCATTGCCCACTGTGGTGATGGTGGTTGTCC 

* * * * * * * * * * * * * * * * * * * ^* * * * ^* * * * * * * * * * * * * * * * *  * * * * * * *

P . s u b  CGCGATCTGCCATATCAGCCTTGTGCTGTAGCGGGTCGCAAACCCCCCAT 
D2 57 F CGTGATCTGCCATATCAGCCTTGTGCTGTAGCGGATCGCAAACCCCCCAT 

* * ^* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *   ̂* * * * * * * * * * * * * * *

P . s u b  TCTATATGGTAACCGGAAAGAACCAAATGACCTAAAGTAAAATGTGCAGA 
D 257F TCTATATGGTAACCGGAAAGAACCAAATGACCTAAAGTAAAATGTGCAGA 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P .s u b  TGGTCTGGTGTTGTGCTTAGTGCCAACACCGATCCTGTACACAAAACCTA 
D 257F TGGTCTGGTGTTGTGCTTAGTGCCAACACCGATCCTGTACACAAAACCTA 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  ATGACTTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAG 
D257 F ATGACTTACAACTTTCAGCGGTGGATGTCTAGGTTCCCACAACGATGAAG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  AACGCAGCGAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCA 
D 257F AACGCAGCGAAATGCGATACGTAATGCGAATTGCAAGACCTCGTGAATCA 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  TTAAAATTTTGAACGCACATTGCGCTTTCGGGATCTTCCCGGGAGCATGC 
D 257F TTAAAATTTTGAACGCACATTGCGCTTTCGGGATTTTCCCGGGAGCATGC 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *   ̂* * * * * * * * * * * * * * *

P . s u b  TTGTCTGAGTGTCTGTGGATCCCACTCAGCGCTGGTCTGCCCTTTGGGTG 
D 257F TTGTCTGAGTGTCTGTGGATCCCACTCAGCGCTGGTCTGCCCTTTGGGTG 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  GATTGGTAGCTGGTTACTTTGGCTTTGATGGATTCTATCCTTCTTTGCTT 
D 257F GATTGGTAGCTGGTTACTTTGGCTTTGATGGATTCTGTCCTTCTTTGCTT 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *   ̂* * * * * * * * * * * * *

P . s u b  AAATTCTACATACATGTACGCGAATAGATCTGGAGGAGTCTTGTGTCTGT 
D 257F AAATTCTACATACATGTACGCGAATAGATCTAGAGGAGTCTTGTGTCTGT 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * *

P . s u b  CCTAAGGACGGCATTGGCAATCTCATCTATCTCTGGTAGAGTTAATTCTC 
D 257F CCTAAGGACGGCATTGGCAATCTCATCTATCTCTGGTAGAGTTAATTCTC 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  TGGAGTTTGAACGAGTTTTGCCTTTAGCTGTTTTGAGTTCAACCAAAGCT 
D 257F TGGAGTTTGAACGAGTTTTGCCTTTAGCTGTTTTGAGTTCAACCAAAGCT 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

P . s u b  TTTTCTAGTGAAGGGCCAGTAGCAGTAAATGCCTACTGACCAACTAATTC 
D 257F TTTTTTAGTGAAGGGCCAGTAGCAGTAA-TGCCTACTGACCAACTAATTC 

* * * * ^* * * * * * * * * * * * * * * * * * * * * * *   ̂* * * * * * * * * * * * * * * * * * * * *

P.sub CGGATC 
D257F CGGAT-

XXXIV
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