22 research outputs found

    Loss of Function of the Nuclear Receptor NR2F2, Encoding COUP-TF2, Causes Testis Development and Cardiac Defects in 46,XX Children

    Get PDF
    Emerging evidence from murine studies suggests that mammalian sex determination is the outcome of an imbalance between mutually antagonistic male and female regulatory networks that canalize development down one pathway while actively repressing the other. However, in contrast to testis formation, the gene regulatory pathways governing mammalian ovary development have remained elusive. We performed exome or Sanger sequencing on 79 46,XX SRY-negative individuals with either unexplained virilization or with testicular/ovotesticular disorders/differences of sex development (TDSD/OTDSD). We identified heterozygous frameshift mutations in NR2F2, encoding COUP-TF2, in three children. One carried a c.103_109delGGCGCCC (p.Gly35Argfs( *)75) mutation, while two others carried a c.97_103delCCGCCCG (p.Pro33Alafs( *)77) mutation. In two of three children the mutation was de novo. All three children presented with congenital heart disease (CHD), one child with congenital diaphragmatic hernia (CDH), and two children with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). The three children had androgen production, virilization of external genitalia, and biochemical or histological evidence of testicular tissue. We demonstrate a highly significant association between the NR2F2 loss-of-function mutations and this syndromic form of DSD (p = 2.44 x 10(-8)). We show that COUP-TF2 is highly abundant in a FOXL2-negative stromal cell population of the fetal human ovary. In contrast to the mouse, these data establish COUP-TF2 as a human "pro-ovary" and "anti-testis" sex-determining factor in female gonads. Furthermore, the data presented here provide additional evidence of the emerging importance of nuclear receptors in establishing human ovarian identity and indicate that nuclear receptors may have divergent functions in mouse and human biology

    Mutations involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive anomalies.

    Get PDF
    © The Author(s) 2018. Published by Oxford University Press. All rights reserved. SOX8 is an HMG-box transcription factor closely related to SRY and SOX9. Deletion of the gene encoding Sox8 in mice causes reproductive dysfunction but the role of SOX8 in humans is unknown. Here, we show that SOX8 is expressed in the somatic cells of the early developing gonad in the human and influences human sex determination. We identified two individuals with 46, XY disorders/differences in sex development (DSD) and chromosomal rearrangements encompassing the SOX8 locus and a third individual with 46, XY DSD and a missense mutation in the HMG-box of SOX8. In vitro functional assays indicate that this mutation alters the biological activity of the protein. As an emerging body of evidence suggests that DSDs and infertility can have common etiologies, we also analysed SOX8 in a cohort of infertile men (n=274) and two independent cohorts of women with primary ovarian insufficiency (POI; n=153 and n=104). SOX8 mutations were found at increased frequency in oligozoospermic men (3.5%; P < 0.05) and POI (5.06%; P=4.5×10 -5 ) as compared with fertile/normospermic control populations (0.74%). The mutant proteins identified altered SOX8 biological activity as compared with the wild-type protein. These data demonstrate that SOX8 plays an important role in human reproduction and SOX8 mutations contribute to a spectrum of phenotypes including 46, XY DSD, male infertility and 46, XX POI.Link_to_subscribed_fulltex

    Pituitary stalk interruption syndrome is characterized by genetic heterogeneity

    No full text
    International audiencePituitary stalk interruption syndrome is a rare disorder characterized by an absent or ectopic posterior pituitary, interrupted pituitary stalk and anterior pituitary hypoplasia, as well as in some cases, a range of heterogeneous somatic anomalies. A genetic cause is identified in only around 5% of all cases. Here, we define the genetic variants associated with PSIS followed by the same pediatric endocrinologist. Exome sequencing was performed in 52 (33 boys and 19 girls), including 2 familial cases single center pediatric cases, among them associated 36 (69.2%) had associated symptoms or syndromes. We identified rare and novel variants in genes (37 families with 39 individuals) known to be involved in one or more of the following—midline development and/or pituitary development or function ( BMP4 , CDON , GLI2 , GLI3 , HESX1 , KIAA0556 , LHX9 , NKX2-1 , PROP1 , PTCH1 , SHH , TBX19 , TGIF1 ), syndromic and non-syndromic forms of hypogonadotropic hypogonadism ( CCDC141 , CHD7 , FANCA , FANCC , FANCD2 , FANCE , FANCG , IL17RD , KISS1R , NSMF , PMM2 , SEMA3E , WDR11 ), syndromic forms of short stature ( FGFR3 , NBAS , PRMT7 , RAF1 , SLX4 , SMARCA2 , SOX11 ), cerebellum atrophy with optic anomalies ( DNMT1 , NBAS ), axonal migration ( ROBO1 , SLIT2 ), and agenesis of the corpus callosum ( ARID1B , CC2D2A , CEP120 , CSPP1 , DHCR7 , INPP5E , VPS13B , ZNF423 ). Pituitary stalk interruption syndrome is characterized by a complex genetic heterogeneity, that reflects a complex phenotypic heterogeneity. Seizures, intellectual disability, micropenis or cryptorchidism, seen at presentation are usually considered as secondary to the pituitary deficiencies. However, this study shows that they are due to specific gene mutations. PSIS should therefore be considered as part of the phenotypic spectrum of other known genetic syndromes rather than as specific clinical entity

    Peripheral Precocious Puberty of Ovarian Origin in a Series of 18 Girls: Exome Study Finds Variants in Genes Responsible for Hypogonadotropic Hypogonadism

    No full text
    International audienceBackground: Peripheral precocious puberty of ovarian origin is a very rare condition compared to central form. It may be associated with an isolated ovarian cyst (OC). The causes of OC in otherwise healthy prepubertal girls is currently unknown. Methods: Exome sequencing was performed on a cohort of 18 unrelated girls presenting with prenatal and/or prepubertal OC at pelvic ultrasonography. The presenting symptom was prenatal OC in 5, breast development in 7 (with vaginal bleeding in 3) and isolated vaginal bleeding in 6. All had OC ≄ 10 mm. The girls had no other anomalies. Four patients had a familial history of ovarian anomalies and/or infertility. Results: In 9 girls (50%), candidate or known pathogenic variants were identified in genes associated with syndromic and non-syndromic forms of hypogonadotropic hypogonadism including PNPLA6, SEMA3A, TACR3, PROK2, KDM6A, KMT2D, OFD1, GNRH1, GNRHR, GLI3, INSR, CHD7, CDON, RNF216, PROKR2, GLI3, LEPR . Basal plasma concentrations of gonadotropins were undetectable and did not increase after gonadotropin-releasing hormone test in 3 of them whilst 5 had prepubertal values. The plasma estradiol concentrations were prepubertal in 6 girls, high (576 pmol/L) in one and not evaluated in 2 of them. Conclusions: In the first study reporting exome sequencing in prepubertal OC, half of the patients with OC carry either previously reported pathogenic variants or potentially pathogenic variants in genes known to be associated with isolated or syndromic forms of congenital hypogonadotropic hypogonadism. Functional studies and studies of other cohorts are recommended to establish the causality of these variants

    Mutations in the Human ROBO1 Gene in Pituitary Stalk Interruption Syndrome

    No full text
    International audiencePituitary stalk interruption syndrome (PSIS) is characterized by a thin or absent pituitary stalk usually in association with an ectopic posterior pituitary and hypoplasia/aplasia of the anterior pituitary. Associated phenotypes include varied ocular anomalies, hypoglycemia, micropenis/cryptorchidism, growth failure, or combined pituitary hormone deficiencies. Although genetic causes have been identified, they explain only around 5% of PSIS cases

    Disorders of Sex Development in a Large Ukrainian Cohort: Clinical Diversity and Genetic Findings

    No full text
    International audienceBackground: The clinical profile and genetics of individuals with Disorders/Differences of Sex Development (DSD) has not been reported in Ukraine.Materials and Methods: We established the Ukrainian DSD Register and identified 682 DSD patients. This cohort includes, 357 patients (52.3% [303 patients with Turner syndrome)] with sex chromosome DSD, 119 (17.5%) with 46,XY DSD and 206 (30.2%) with 46,XX DSD. Patients with sex chromosome DSD and congenital adrenal hyperplasia (CAH, n=185) were excluded from further studies. Fluorescence in situ hybridization (FISH) was performed for eight 46,XX boys. 79 patients underwent Whole Exome Sequencing (WES).Results: The majority of patients with 46,XY and 46,XX DSD (n=140), were raised as female (56.3% and 61.9% respectively). WES (n=79) identified pathogenic (P) or likely pathogenic (LP) variants in 43% of the cohort. P/LP variants were identified in the androgen receptor (AR) and NR5A1 genes (20.2%). Variants in other DSD genes including AMHR2, HSD17B3, MYRF, ANOS1, FGFR11, WT1, DHX37, SRD5A1, GATA4, TBCE, CACNA1A and GLI2 were identified in 22.8% of cases. 83.3% of all P/LP variants are novel. 35.3% of patients with a genetic diagnosis had an atypical clinical presentation. A known pathogenic variant in WDR11, which was reported to cause congenital hypogonadotropic hypogonadism (CHH), was identified in individuals with primary hypogonadism.Conclusions: WES is a powerful tool to identify novel causal variants in patients with DSD, including a significant minority that have an atypical clinical presentation. Our data suggest that heterozygous variants in the WDR11 gene are unlikely to cause of CHH

    A Novel Homozygous Missense Mutation in the FU-CRD2 Domain of the<b><i> R-spondin1 </i></b>Gene Associated with Familial 46,XX DSD

    No full text
    International audienceR-spondin proteins are secreted agonists of canonical WNT/ÎČ-catenin signaling. Homozygous RSPO1 mutations cause a syndrome of 46,XX disorder of sexual development (DSD), palmoplantar keratoderma (PPK), and predisposition to squamous cell carcinoma. We report exome sequencing data of two 46,XX siblings, one with testicular DSD and the other with suspected ovotesticular DSD. Both have PPK and hearing impairment and carried a novel homozygous mutation c.332G>A (p.Cys111Tyr) located in the highly conserved furin-like cysteine-rich domain-2 (FU-CRD2). Cysteines in the FU-CRDs are strictly conserved, indicating their functional importance in WNT signaling through interaction with the leucine-rich repeat-containing G-protein-coupled receptors. This is the first RSPO1 missense mutation reported in association with human disease

    The TALE homeodomain of PBX1 is involved in human primary testis‐determination

    No full text
    International audienceHuman sex-determination is a poorly understood genetic process, where gonad development depends on a cell fate decision that occurs in a somatic cell to commit to Sertoli (male) or granulosa (female) cells. A lack of testis-determination in the human results in 46,XY gonadal dysgenesis. A minority of these cases is explained by mutations in genes known to be involved in sex-determination. Here, we identified a de novo missense mutation, p.Arg235Gln in the highly conserved TALE homeodomain of the transcription factor Pre-B-Cell Leukemia Transcription Factor 1 (PBX1) in a child with 46,XY gonadal dysgenesis and radiocubital synostosis. This mutation, within the nuclear localization signal of the protein, modifies the ability of the PBX1 protein to localize to the nucleus. The mutation abolishes the physical interaction of PBX1 with two proteins known to be involved in testis-determination, CBX2 and EMX2. These results provide a mechanism whereby this mutation results specifically in the absence of testis-determination
    corecore