6 research outputs found

    Observing and Studying Extreme Low Pressure Events with Altimetry

    Get PDF
    The ability of altimetry to detect extreme low pressure events and the relationship between sea level pressure and sea level anomalies during extra-tropical depressions have been investigated. Specific altimeter treatments have been developed for tropical cyclones and applied to obtain a relevant along-track sea surface height (SSH) signal: the case of tropical cyclone Isabel is presented here. The S- and C-band measurements are used because they are less impacted by rain than the Ku-band, and new sea state bias (SSB) and wet troposphere corrections are proposed. More accurate strong altimeter wind speeds are computed thanks to the Young algorithm. Ocean signals not related to atmospheric pressure can be removed with accuracy, even within a Near Real Time context, by removing the maps of sea level anomaly (SLA) provided by SSALTO/Duacs. In the case of Extra-Tropical Depressions, the classical altimeter processing can be used. Ocean signal not related to atmospheric pressure is along-track filtered. The sea level pressure (SLP)-SLA relationship is investigated for the North Atlantic, North Pacific and Indian oceans; three regression models are proposed allowing restoring an altimeter SLP with a mean error of 5 hPa if compared to ECMWF or buoys SLP. The analysis of barotropic simulation outputs points out the regional variability of the SLP/Model Sea Level relationship and the wind effects

    A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces

    No full text
    International audienceWe report here a novel "one-pot" approach for the controlled growth and organization of Prussian blue nanostructures on three different surfaces: pure Au 0 , cysteamine-functionalized Au 0 , and SiO2-supported lipid bilayers with different natures of lipids. We demonstrate that fine control over the size, morphology, and the degree and homogeneity of the surface coverage by Prussian Blue (PB) nanostructures may be achieved by manipulating different parameters, which are the precursor concentration, the nature of the functional groups or the nature of lipids on the surfaces. This allows the growth of isolated PB nanopyramids and nanocubes or the design of thin dense films over centimeter square surfaces. The formation of unusual Prussian blue nanopyramids is discussed. Finally, we demonstrate, by using experimental techniques and theoretical modeling, that PB nanoparticles deposited on the gold surface exhibit strong photothermal properties, permitting a rapid temperature increase up to 90 °C with a conversion of the laser power of almost 50% for power source heat

    Biological Fate of Fe3O4 Core-Shell Mesoporous Silica Nanoparticles Depending on Particle Surface Chemistry

    No full text
    International audienceThe biological fate of nanoparticles (NPs) for biomedical applications is highly dependent of their size and charge, their aggregation state and their surface chemistry. The chemical composition of the NPs surface influences their stability in biological fluids, their interaction with proteins, and their attraction to the cell membranes. In this work, core-shell magnetic mesoporous silica nanoparticles (Fe3O4@ MSN), that are considered as potential theranostic candidates, are coated with polyethylene glycol (PEG) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. Their biological fate is studied in comparison to the native NPs. The physicochemical properties of these three types of NPs and their suspension behavior in different media are investigated. The attraction to a membrane model is also evaluated using a supported lipid bilayer. The surface composition of NPs strongly influences their dispersion in biological fluids mimics, protein binding and their interaction with cell membrane. While none of these types of NPs is found to be toxic on mice four days after intravenous injection of a dose of 40 mg kg(-1) of NPs, their surface coating nature influences the in vivo biodistribution. Importantly, NP coated with DMPC exhibit a strong accumulation in liver and a very low accumulation in lung in comparison with nude or PEG ones
    corecore