276 research outputs found
Nitrogen Isotope Evidence for Changing Arctic Ocean Ventilation Regimes During the Cenozoic
In this work, I report on the coupling of dinitrogen (N2) fixation and denitrification in oxygen-deficient waters of the Arctic Ocean during the Paleogene. This coupling fertilized marine phytoplankton growth and favored organic carbon burial. Reduced vertical mixing due to salinity stratification in a tectonically closed oceanic basin created conditions favorable for N2-fixation by phytoplankton harboring diazotrophic bacterial symbionts. A positive shift of 5‰ in the δ15N record indicates a change in the main source of biologically available nitrogen due to rapidly changing nutrient availability. I interpret this shift as a switch to Atlantic-sourced nitrate as the main nitrogen source owing to the opening of the Arctic-Atlantic gateway to the northern North Atlantic. While the timing of the opening is still disputed among the available Arctic records, I use evidence from the northern North Atlantic to argue that the Arctic Ocean has been fully ventilated since the early Neogene
Plio-Pleistocene changes in water mass exchange and erosional inputs in the Fram Strait
We determined the isotopic composition of neodymium (Nd) and lead (Pb) of past seawater to reconstruct water mass exchange and erosional input between the Arctic Ocean and the Norwegian-Greenland Seas over the past 5 Ma. For this purpose, sediments of ODP site 911 (leg 151) located at 900 m water depth on the Yermak Plateau in the Fram Strait were used. The paleo-seawater variability of Nd and Pb isotopes was extracted from the sea water-derived metal oxide coatings on the sediment particles following the leaching method of Gutjahr et al. (2007). All radiogenic isotope data were acquired by Multi-Collector (MC) ICP-MS. The site 911 stratigraphy of Knies et al. (2009) was applied. Surface sediment Sr and Nd isotope data, as well as downcore Sr isotope data obtained on the same leaches are close to seawater and confirm the seawater origin of the Nd and Pb isotope signatures. The deep water Nd isotope time series extracted from site 911 was in general more radiogenic ("Nd = -7.5 to -10) than present day deep water ("Nd = -9.8 to -11.8) in the area of the Fram Strait (Andersson et al., 2008) and does not show a systematic trend with time. In contrast, the radiogenic isotope composition of Pb evolved from 206Pb/204Pb ratios around 18.7 to more radiogenic values around 19.2 between 2 Ma and today.
The data indicate that mixing of water masses from the Arctic Ocean and the Norwegian-Greenland Seas has controlled the Nd isotope signatures of deep waters on the Yermak Plateau over the past 5 Ma. Prior to 1.7 Ma the Nd isotope signatures on the Yermak Plateau were less radiogenic than waters from the same depth in the central Arctic Ocean (Haley et al., 2008) pointing to a greater influence from the Norwegian-Greenland Seas. After 1.7 Ma the central Arctic and Yermak Plateau data have varied around similar values indicating water mass mixing overall similar to today.
In contrast, the Pb isotope composition of deep waters in the Fram Strait appears to have been dominated by weathering inputs from glacially weathering old continental landmasses, such as Greenland or parts of Svalbard since 2 Ma. A similar control over the Pb isotope evolution of seawater since the onset of Northern Hemisphere Glaciation was recorded by ferromanganese crusts that grew from North Atlantic DeepWater in the western North Atlantic.
References:
Gutjahr, M., Frank, M., Stirling, C.H., Klemm, V., van de Flierdt, T. and Halliday, A.N. (2007): Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments.- Chemical Geology 242, 351-370
Haley B. A., M. Frank, R.F. Spielhagen and A. Eisenhauer (2008): Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nature Geoscience 1, 68–72
Andersson, P.S., Porcelli, D., Frank, M., Björk, G., Dahlqvist, R. and Gustafsson, Ö. (2008): Neodymium isotopes in seawater from the Barents Sea and Fram Strait Arctic- Atlantic gateways.- Geochim. Cosmochim. Acta 72, 2854-2867
Knies, J., J. Matthiessen, C. Vogt, J.S. Laberg, B.O. Hjelstuen, M.Smelror, E. Larsen, K. Andreassen, T. Eidvin and T.O. Vorren (2009): The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy - Quaternary Science Reviews 28, 9-10, 812-82
Impact of Arctic shelf summer stratification on Holocene climate variability
Accepted manuscript version, licensed CC BY-NC-ND 4.0. Published version available at: http://doi.org/10.1016/j.quascirev.2018.05.017Understanding the dynamic of freshwater and sea-ice export from the Arctic is crucial to
better comprehend the potential near-future climate change consequences. Here, we report
nitrogen isotope data of a core from the Laptev Sea to shed light on the impact of the Holocene
Siberian transgression on the summer stratification of the Laptev Sea. Our data suggest that the
oceanographic setting was less favourable to sea-ice formation in the Laptev Sea during the early
to mid-Holocene. It is only after the sea level reached a standstill at around 4 ka that the water
column structure in the Laptev Sea became more stable. Modern-day conditions, often described
as “sea-ice factory”, were reached about 2 ka ago, after the development of a strong summer stratification. These results are consistent with sea-ice reconstruction along the Transpolar Drift, highlighting the potential contribution of the Laptev Sea to the export of freshwater from the Arctic
Ocean
A flexural isostasy model for the Pleistocene evolution of the Barents Sea bathymetry
Source at: http://doi.org/10.17850/njg97-1-01 The topographic relief of the Barents Sea was subjected to major changes during the past 1.5 million years mostly due to sediment redistribution
driven by glacial activity. This paper addresses the problem of Pleistocene bathymetric evolution of the southern Barents Sea using a numerical
modelling approach that considers the influence of regional isostasy on relief development. The model presented in this work shows that most of the
bathymetric features were initiated prior to the first documented, shelf-edge glaciations at around 1.5 Ma. During the Early Pleistocene (Calabrian),
the Barents Sea shelf was close to sea level with some areas elevated to about 300 m. Most of the shelf experienced up to 200 m topography reduction
during the Early to Middle Pleistocene (1.5–0.7 Ma) facilitating bifurcation of the North Atlantic waters into the Barents Sea. Later during the Middle
Pleistocene–Present (0.7–0.0 Ma) the relief deepened by 0 to 250 m. Our results demonstrate that the present-day topography of the southern Barents
Sea is the consequence of glacial activity influenced by a regional isostatic component, which is the result of selective trough erosion and significant
sediment deposition at the Barents Sea margins during the Pleistocene
Plio-Pleistocene evolution of water mass exchange and erosional input at the Atlantic-Arctic gateway
Water mass exchange between the Arctic Ocean and the Norwegian-Greenland Seas has played an important role for the Atlantic thermohaline circulation and Northern Hemisphere climate. We reconstruct past water mass mixing and erosional inputs from the radiogenic isotope compositions of neodymium (Nd), lead (Pb), and strontium (Sr) at Ocean Drilling Program site 911 (leg 151) from 906 m water depth on Yermak Plateau in the Fram Strait over the past 5.2 Myr. The isotopic compositions of past bottom waters were extracted from authigenic oxyhydroxide coatings of the bulk sediments. Neodymium isotope signatures obtained from surface sediments agree well with present-day deepwater εNd signature of −11.0 ± 0.2. Prior to 2.7 Ma the Nd and Pb isotope compositions of the bottom waters only show small variations indicative of a consistent influence of Atlantic waters. Since the major intensification of the Northern Hemisphere Glaciation at 2.7 Ma the seawater Nd isotope composition has varied more pronouncedly due to changes in weathering inputs related to the waxing and waning of the ice sheets on Svalbard, the Barents Sea, and the Eurasian shelf, due to changes in water mass exchange and due to the increasing supply of ice-rafted debris (IRD) originating from the Arctic Ocean. The seawater Pb isotope record also exhibits a higher short-term variability after 2.7 Ma, but there is also a trend toward more radiogenic values, which reflects a combination of changes in input sources and enhanced incongruent weathering inputs of Pb released from freshly eroded old continental rocks
Role of tectonic stress in seepage evolution along the gas hydrate‐charged Vestnesa Ridge, Fram Strait
Methane expulsion from the world ocean floor is a broadly observed phenomenon known to be episodic. Yet the processes that modulate seepage remain elusive. In the Arctic offshore west Svalbard, for instance, seepage at 200–400 m water depth may be explained by ocean temperature‐controlled gas hydrate instabilities at the shelf break, but additional processes are required to explain seepage in permanently cold waters at depths \u3e1000 m. We discuss the influence of tectonic stress on seepage evolution along the ~100 km long hydrate‐bearing Vestnesa Ridge in Fram Strait. High‐resolution P‐Cable 3‐D seismic data revealed fine‐scale (\u3e10 m width) near‐vertical faults and fractures controlling seepage distribution. Gas chimneys record multiple seepage events coinciding with glacial intensification and active faulting. The faults document the influence of nearby tectonic stress fields in seepage evolution along this deepwater gas hydrate system for at least the last ~2.7 Ma
Impact of tides and sea-level on deep-sea Arctic methane emissions
Sub-sea Arctic methane and gas hydrate reservoirs are expected to be severely impacted by ocean temperature increase and sea-level rise. Our understanding of the gas emission phenomenon in the Arctic is however partial, especially in deep environments where the access is difficult and hydro-acoustic surveys are sporadic. Here, we report on the first continuous pore-pressure and temperature measurements over 4 days in shallow sediments along the west-Svalbard margin. Our data from sites where gas emissions have not been previously identified in hydro-acoustic profiles show that tides significantly affect the intensity and periodicity of gas emissions. These observations imply that the quantification of present-day gas emissions in the Arctic may be underestimated. High tides, however, seem to influence gas emissions by reducing their height and volume. Hence, the question remains as to whether sea-level rise may partially counterbalance the potential threat of submarine gas emissions caused by a warmer Arctic Ocean
Ice-sheet melt drove methane emissions in the Arctic during the last two interglacials
Circum-Arctic glacial ice is melting in an unprecedented mode, and release of currently trapped geological methane may act as a positive feedback on ice-sheet retreat during global warming. Evidence for methane release during the penultimate (Eemian, ca. 125 ka) interglacial, a period with less glacial sea ice and higher temperatures than today, is currently absent. Here, we argue that based on foraminiferal isotope studies on drill holes from offshore Svalbard, Norway, methane leakage occurred upon the abrupt Eurasian ice-sheet wastage during terminations of the last (Weichselian) and penultimate (Saalian) glaciations. Progressive increase of methane emissions seems to be first recorded by depleted benthic foraminiferal δ13C. This is quickly followed by the precipitation of methane-derived authigenic carbonate as overgrowth inside and outside foraminiferal shells, characterized by heavy δ18O and depleted δ13C of both benthic and planktonic foraminifera. The similarities between the events observed over both terminations advocate for a common driver for the episodic release of geological methane stocks. Our favored model is recurrent leakage of shallow gas reservoirs below the gas hydrate stability zone along the margin of western Svalbard that can be reactivated upon initial instability of the grounded, marine-based ice sheets. Analogous to this model, with the current acceleration of the Greenland ice melt, instabilities of existing methane reservoirs below and nearby the ice sheet are likely
Global warming leads to Early Triassic nutrient stress across northern Pangea
The largest extinction in Earth history, in the latest Permian, was followed throughout most of the Early Triassic by a prolonged period of ecologic recovery. What factors delayed biotic recovery are still under debate and partly revolve around impacts of global warming on primary marine productivity. We examined N isotope records from the Festningen section on Spitsbergen, Arctic Norway, to examine changes in nutrient availability through the Early to Middle Triassic along the northern margin of Pangea. Our results show progressive decline in N availability throughout the Griesbachian, leading to severe nutrient limitations through the remainder of the Early Triassic, until returning to a highly productive continental margin in Middle Triassic time. These results are consistent with other studies from northern and western Pangea and thus show regional nutrient limitations occurred in what should have been the main zone of marine primary productivity. Such nutrient limitation likely stressed primary production and consequently contributed to prolonged marine recovery. We suggest this was driven by high ocean temperatures depressing the marine nutricline
Lack of detectable chemosynthesis at a sponge dominated subarctic methane seep
We used high-resolution imagery within a Geographic Information System (GIS), free gas and porewater analyses and animal bulk stable isotope measurements to characterize the biotic and abiotic aspects of the newly discovered Vestbrona Carbonate Field (VCF) seep site on the Norwegian shelf (63°28′N, 6° 31′E, ∿270 m water depth). Free gas was mainly composed of microbial methane. Sediment porewater sulfide concentrations were in the millimolar range and thus high enough to sustain seep chemosymbiotrophic animals. Nonetheless, the VCF lacked chemosymbiotrophic animals despite an abundance of methane-derived carbonate crusts which are formed by the same anaerobic processes that sustain chemosymbiotrophic animals at seeps. Furthermore, none of the sampled taxa, across various trophic guilds exhibited a detectable contribution of chemosynthetically fixed carbon to their diets based on bulk stable isotope values, suggesting a predominantly photosynthetic source of carbon to the VCF seep food web. We link the absence of chemosymbiotrophic animals to highly localized methane flow pathways, which may act as a “shunt-bypass” of the anaerobic oxidation of methane (AOM) and by extension sulfide generation, thus leading to sediment sulfide concentrations that are highly heterogeneous over very short lateral distances, inhibiting the successful colonization of chemosymbiotrophic animals at the VCF seep. Instead, the seep hosted diverse biological communities, consisting of heterotrophic benthic fauna, including long lived taxa, such as soft corals (e.g., Paragorgia arborea) and stony corals (i.e., Desmophyllum pertusum, formerly known as Lophelia pertusa). Compared to the surrounding non-seep seafloor, we measured heightened megafaunal density at the seep, which we attribute to increased habitat heterogeneity and the presence of a variety of hard substrates (i.e., methane-derived authigenic carbonates, dropstones and coral rubble), particularly since the most abundant taxa all belonged to the phylum Porifera. Compared to the surrounding non-seep seafloor, marine litter was denser within the VCF seep, which we link to the more variable local topography due to authigenic carbonates, which can rip off parts of bottom trawling nets thereby making the seep act as catchment area for marine litter
- …