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Role of tectonic stress in seepage evolution along
the gas hydrate-charged Vestnesa Ridge, Fram Strait
A. Plaza-Faverola1, S. Bünz1, J. E. Johnson1,2, S. Chand1,3, J. Knies1,3, J. Mienert1, and P. Franek1

1Centre for Arctic Gas Hydrate, Environment and Climate, UiT The Arctic University of Norway, Tromsø, Norway,
2Department of Earth Sciences, University of New Hampshire, Durham, New Hampshire, USA, 3Geological Survey of
Norway, Trondheim, Norway

Abstract Methane expulsion from the world ocean floor is a broadly observed phenomenon known to be
episodic. Yet the processes that modulate seepage remain elusive. In the Arctic offshore west Svalbard, for
instance, seepage at 200–400mwater depthmay be explained by ocean temperature-controlled gas hydrate
instabilities at the shelf break, but additional processes are required to explain seepage in permanently
cold waters at depths >1000m. We discuss the influence of tectonic stress on seepage evolution along
the ~100 km long hydrate-bearing Vestnesa Ridge in Fram Strait. High-resolution P-Cable 3-D seismic data
revealed fine-scale (>10m width) near-vertical faults and fractures controlling seepage distribution. Gas
chimneys recordmultiple seepage events coinciding with glacial intensification and active faulting. The faults
document the influence of nearby tectonic stress fields in seepage evolution along this deepwater gas
hydrate system for at least the last ~2.7Ma.

1. Introduction

Methane emissions from ocean floors are a global phenomenon often recognized by the presence of seafloor
morphologies (e.g., pockmarks and mounds) and acoustic flares, which indicate rising gas bubbles in the
water column [e.g., King and Maclean, 1970]. Pockmark fields are frequently documented in gas hydrate
provinces [e.g., Vogt et al., 1994; Riedel et al., 2002; Hovland et al., 2005; Gay et al., 2006; Skarke et al., 2014] as
well as from shallow seafloors (<200m) outside the gas hydrate stability zone (GHSZ) [e.g., Hasiotis et al.,
1996; Judd et al., 2002; García-García et al., 2006; Canet et al., 2010; Riboulot et al., 2014]. The geological
settings in which seepage has been identified vary from passive margins [e.g., Berndt et al., 2005], active
pull-apart basins [e.g., Canet et al., 2010], subduction margins [e.g., Barnes et al., 2010], epicontinental seas
[e.g., Chand et al., 2012], and mixed compressional and shear deformation regimes [e.g., Plaza-Faverola
et al., 2014]. Seepage activity is episodic, and the duration of the episodes varies from short term
(e.g., seasonal or tide related) to longer term (thousands of years) [e.g., Hovland and Sommerville, 1985;
Baraza and Ercilla, 1996; Hasiotis et al., 1996; Roberts and Carney, 1997; Çifçi et al., 2003; Moss et al., 2012;
Plaza-Faverola et al., 2012; Crutchley et al., 2013; Pape et al., 2014; Riboulot et al., 2014].

Identifying the processes controlling seepage distribution, periodicity, and duration is necessary to further
understand the potential role of geological gas emissions on global climate. Episodic seepage at the updip
termination of the GHSZ near the shelf break has been attributed to seasonal gas hydrate dissociation controlled
by temperature variations [e.g., Berndt et al., 2014; Phrampus and Hornbach, 2012; Skarke et al., 2014;Westbrook
et al., 2009]. Longer-term seepage periodicity (>10,000 years) has been attributed to pressure changes governed
by processes associated with glacial-interglacial cycles like sea level fluctuations, changes in sedimentation
rates, and ice loading/unloading [e.g., Chand et al., 2012; Davy et al., 2010; Plaza-Faverola et al., 2011; Riboulot et al.,
2014] as well as fault reactivationmechanisms [e.g., Plaza-Faverola et al., 2014; Roberts and Carney, 1997; Zühlsdorff
and Spiess, 2004]. Recent studies demonstrate the influence of inherited structural deformation, tectonic
stresses, and fluid dynamics onmodernmargin evolution [Autin et al., 2013; Zoback et al., 1989; Armitage et al.,
2010; Terakawa et al., 2013]. Tectonic stresses include the forces that drive or resist plate motion, forces
that result from flexural deformation due to sediment loading, and inhomogeneous density distribution, as
well as temperature-related forces from the cooling of oceanic lithosphere [Zoback et al., 1989].

Here our aim is to identify the processes controlling seepage evolution along Vestnesa Ridge, a contourite
drift on the west Svalbard passive margin located in close proximity to the ultraslow-spreading ridges of the
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northern North Atlantic (Figure 1). Seepage along the west Svalbard margin occurs both inside and outside
the extent of the hydrate stability zone. Seasonal hydrate dissociation is suggested to govern short-term
seepage periodicity at the updip termination of the GHSZ in water depths <400m [Berndt et al., 2014;
Westbrook et al., 2009]. In deep waters (>1000m), a gas hydrate province with associated seepage sites exists
along the ~100 km long Vestnesa Ridge [Bünz et al., 2012; Hustoft et al., 2009; Petersen et al., 2010; Smith et al.,
2014; Vogt et al., 1994]. What controls the spatial distribution, duration, and periodicity of these deepwater
seeps, however, remains elusive. We hypothesize that stresses associated with extension at the Molloy
and Knipovich spreading ridges play a major role in seepage evolution along this hydrate system. We use
high-resolution P-Cable 3-D seismic data to document stratigraphic and structural differences in the
expression of fluid expulsion features along Vestnesa Ridge and subsequently propose a model for seepage
evolution during the last 2.7Ma.

Figure 1. (a and b) Bathymetry maps showing location of Vestnesa Ridge and 3-D seismic surveys used in our study.
MTF =Molloy Transform Fault, STF = Spitsbergen Transform Fault, MR=Molloy Ridge, and KR= Knipovich Ridge. The grey
dots in Figure 1a are the mapped seep sites [Sahling et al., 2014] at the west Svalbard margin. (c) Earthquake distribution
(open circles) from 1964 to 2011, focal mechanisms (ISC, Reference Event Bulletin, hppt://www.isc.ac.uk), and heat flow data
[Crane et al., 1991; Geissler et al., 2014] projected on the bathymetry. (d) Sketch of stress vectors influencing deformation on
the Vestnesa Ridge, drawnover recently updated satellite gravity data (Scripps Institute of Oceanography (http://topex.ucsd.edu).
Projected features are compiled from Crane et al. [2001], Engen et al. [2008], and Hustoft et al. [2009]. COT= continent-ocean
transition and U=uncertain. The dashed orange line represents the weakness planes at the intersection between the STF
and the northward extent of KR.
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2. Previous Research

The Vestnesa Ridge is a >2 km thick sediment drift developed off the west Svalbard margin, at water
depths of 1000–2000m, under the effect of contour currents [Eiken and Hinz, 1993; Howe et al., 2008; Hustoft
et al., 2009; Sarkar et al., 2011]. It consists of two segments differing in strikes by ~30° [Vogt et al., 1994]
(Figure 1). Although Vestnesa Ridge is part of the west Svalbard passive margin, it exists in a region with
highly complex and currently active tectonics: the ridge is located between the dextral-slip Spitsbergen
Transform Fault (STF) [Ritzmann et al., 2004] and the subparallel Molloy Transform Fault (MTF) [Engen et al.,
2008] (Figure 1); the northward propagating Knipovich Ridge (KR) reaches the eastern Vestnesa segment
from its south facing flank [Crane et al., 2001; Vanneste et al., 2005](Figure 1d). Based on Bouger gravity
anomalies, the continent-ocean transition (COT) lies<20km fromVestnesa’s north facing flank [Engen et al., 2008].
Earthquake focal mechanisms show dextral strike-slip deformation to the north and the south and extension to
the west and the southeast (Figure 1c). In addition, Vestnesa Ridge is located within the paleo-Spitsbergen shear
zone, suggested to control orientation and distribution of extensional faults associated with rifting along the
northern Knipovich Ridge [Crane et al., 1991, 2001]. The geological history of the region includes Paleocene strike
slip within this ancient shear zone previous to the final breakup between Svalbard and Greenland [e.g., Eldholm
et al., 1987]. Opening of Fram Strait dates from ~10 to 20Ma [Engen et al., 2008; Jakobsson et al., 2007]. Heat flow
measurements and regional seismic data [Crane et al., 1991; Geissler et al., 2014] (Figure 1c) revealed asymmetric
opening of Fram Strait, suggested by Crane et al. [1991] to result from a combination of asymmetric pure shear,
lithospheric simple shear, and rifting.

The Vestnesa Ridge is divided into three main stratigraphic sequences: YP1 (as for Yermak Plateau) is the
oldest sequence (Miocene) and consists of synrift deposits over a <20Ma old oceanic crust [Eiken and Hinz,
1993; Hustoft et al., 2009; Ritzmann et al., 2004], YP2 is the result of migrating contour currents with a main
sedimentary depocenter striking parallel to the west Svalbard margin [Eiken and Hinz, 1993], and YP3, also
dominated by margin-parallel contour currents, has two main depocenters separated by a thin sedimentary
sequence [Eiken and Hinz, 1993]. The YP2/YP3 boundary is dated to ~2.7Ma based on correlations with Ocean
Drilling Program (ODP) Leg 151 sites [Knies et al., 2009, 2014; Mattingsdal et al., 2014].

3. Data and Methods

We used two high-resolution 3-D seismic data sets acquired with the P-Cable system [Planke et al., 2009] on
board R/V Helmer Hanssen (i.e., 1.8 ×15 km2 and 2×7 km2) (Figure 1b). Acquisition and processing details for
data on the western segment can be found in Petersen et al. [2010]. Data from the eastern segment were
acquired during the summer in 2013 using 14 25m long streamers with eight channels per streamer. The source
consisted of a mini-GI gun (246/246 cm3) firing every 6 s with a peak frequency of 135Hz. Data processing
included band-pass filtering (30-50-300-350Hz), amplitude correction, and common depth point reflection
binning at 6.25× 6.25m2. Normal moveout correction, stacking, and 3-D Stolt migration were done using
1500m/s. Themigrated stack has a lateral resolution of 6.25m and a vertical resolution of ~5m (i.e., taken as λ/2).

Variance maps—a measurement of dip and azimuth variability of adjacent seismic traces— were extracted
along major reflections for structural analysis. Faults were automatically extracted for dip and azimuth
quantifications using commercially available seismic interpretation software. Seismic results were analyzed in
conjunction with high-resolution bathymetry data (50 × 50m) [Hustoft et al., 2009; Vanneste et al., 2005],
seismological data (International Seismological Centre (ISC) database http://www.isc.ac.uk), and updated
gravimetric maps (Scripps Institute of Oceanography http://topex.ucsd.edu).

4. Observations and Discussion

The following sections describe and discuss the structural and stratigraphic observations that allow us to
reconstruct the seepage evolution along Vestnesa Ridge and enable us to identify major processes
modulating gas expulsion along this deepwater gas hydrate system.

4.1. Faulting and Fracturing of Vestnesa Ridge

The area connecting the southern rim of Vestnesa Ridge with Knipovich Ridge (KR) hosts a system of westward
dipping extensional faults visible on multibeam bathymetry and seismic data [Crane et al., 2001; Hustoft et al.,
2009; Vanneste et al., 2005]. The faults strike NNW-SSE toward the KR spreading center but change to a NW-SE
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strike at the rim of the eastern Vestnesa segment, where they no longer have a bathymetric expression
(Figures 1b and 3a). Although the NW-SE trending faults are not visible onmultibeam bathymetry at the crest of
the ridge, 3-D seismic data reveal fine-scale (~10m width), NW-SE oriented (300< azimuth< 330; Figure 3b)
curvilinear faults (i.e., with gentle normal throws, ~5–10m) and fractures (i.e., near-vertical features with no
evident vertical displacement) (Figures 2b and 4). Only some of these faults have a subtle manifestation at the
seafloor, indicating recent activity (Figures 3 and 4). Their orientation and curvilinear character, mainly at the
eastern Vestnesa segment, make them comparable to the seafloor emergent fault system south of Vestnesa
(Figures 2a and 2b), interpreted as evidence of ongoing northward propagation of KR [Crane et al., 2001;
Vanneste et al., 2005]. However, these features at the eastern Vestnesa segment are near vertical and dipping NE
at>60° (Figure 2b), opposite dip to the emergent extensional faults north of KR [Hustoft et al., 2009].We suggest
that these features are thus associated with shear deformation [e.g., Sylvester, 1988]. Similar scale faults have
been recently documented in P-Cable seismic data from the Hikurangi Margin, where seepage systems were
suggested to be associated with Riedel shears [Plaza-Faverola et al., 2014]. An interpretation of NW-SE oriented
shear-related faults dissecting the Vestnesa Ridge with an extensional component supports the mixed simple
and pure shear model proposed by Crane et al. [2001] for the opening of Fram Strait.

The faulting pattern at the eastern Vestnesa segment is distinctive. The 3-D seismic data from the western
Vestnesa segment show discontinuous fault segments, which appear less defined in the seismic data
(Figure 2c). NS to NW-SE oriented faults cut Vestnesa Ridge between the two segments (Figures 1b and 2b).
This fault area is aligned with the northwest termination of extensional faults propagating from KR [Crane
et al., 2001] and connects to the north with the projected continent-ocean transition (COT) [Ritzmann et al.,
2004; Engen et al., 2008] (Figure 1d). Based on this observation, we infer the presence of a shear weakness

Figure 2. Bathymetry map along (a) Vestnesa Ridge showing orientation of outcropping regional faults with respect to the
mapped (b and c) subseabed faults in 3-D seismic data. Structural maps (Figures 2b and 2c) were extracted along seismic
horizon H80 (~1.5Ma [Mattingsdal et al., 2014]) at both eastern and western segments of Vestnesa Ridge. B-B′ and C-C′ show
the seismic character of chimneys at each segment. The inset in Figure 2b is a detailed view of the internal structure of a
chimney (fine-scale polygonal fracturing). For geographical location of the seismic volumes, please refer to Figure 1.
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plane between the two Vestnesa Ridge segments (Figure 1d) coinciding with a zone where the southward
extent of the Spitsbergen Transform Fault (STF) (i.e., following the flow line of Greenland relative to Eurasia
[Engen et al., 2008]) and the northward propagating KR [Crane et al., 2001] encounters each other (Figure 1d). This
hypothesis is further supported by gravimetric maps (Scripps Institute of Oceanography http://topex.ucsd.edu)
in which a remarkably high gravity anomaly marks a distinction between the western and eastern Vestnesa
segments (Figure 1d). We speculate that a component of the Molloy Ridge southeast trending stress vector is
accommodated along the N-S oriented weakness plane between ridge segments, resulting in strike-slip
movement along the weakness plane, translating the western Vestnesa Ridge segment southward (Figure 1d).
With a Molloy Ridge (MR) stress vector approximately parallel to the eastern Vestnesa segment, at an incidence
angle of ~30° with respect to the western segment (Figure 1d) and a half-spread rate of 6.5mm/yr [Ehlers and
Jokat, 2009], the tectonic stress from MR can be partitioned to yield a rate of southward slip of the western
Vestnesa segment of ~3.7mm/yr.

These structural differences along Vestnesa Ridge (Figure 1d) may be reflecting lateral variations in the
strength and elastic properties of the strata [e.g., Zoback et al., 1989] or may result from heterogeneities in the
stress field [Hardebeck and Hauksson, 2001; Luther and Axen, 2013]. Temporal and spatial variations of stress
fields are expected in seismically active regions [Hardebeck and Hauksson, 2001; Luther and Axen, 2013,
and references therein]. We argue that although the entire ridge is under the influence of insipient shear,

Figure 3. Seismic profile in two-way time showing syndepositional faulting and fracturing imaged at the eastern Vestnesa
segment. Three time maps (sf–seafloor, H50 and H80) are presented to show variations in the morphology of gas chimneys
through time and their spatial relation to faults. The inset shows an example of a mound adjacent to a buried pockmark along
a fault.
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i.e., from the STF [e.g., Crane et al., 2001], each Vestnesa Ridge segment reflects the influence of different
stress fields. The western Vestnesa segment is dominantly affected by southward slip motion at present.
The orientation of the MR spreading vector with respect to the eastern Vestnesa segment (i.e., acting as σ1)
may be favoring strike-slip faulting and explains the presence of recently active faults and fractures at the eastern
segment (Figure 2b). These faults could have enhanced permeability [e.g., Roberts et al., 1996] and explain the
seafloor seepage exclusively observed in this part of Vestnesa Ridge at present.

4.2. Chimney Morphology and Distribution Along Vestnesa Ridge

Gas chimneys underlying seafloor pockmarks are documented from both the western [Petersen et al., 2010]
and eastern Vestnesa segments (Figure 2). The 3-D seismic data reveal noteworthy differences in the spatial
distribution, morphology, and geometry of chimneys along the ridge [Bünz et al., 2012]. While the eastern
segment crest is narrow (<2 km wide), rectilinear, and has active seepage, the western segment has a broad
(~4 km wide) crest where acoustic flares have not been documented [Bünz et al., 2012; Smith et al., 2014].

Importantly, gas chimneys, regardless of their position along the ridge, show evidence of buried pockmarks
or mounds (i.e., indicators of paleoseepage) [Plaza-Faverola et al., 2011; Riboulot et al., 2014] identified by
truncation of reflections through chimney conduits at specific stratigraphic intervals (Figures 3 and 4).
Nonetheless, the internal geometry of chimneys at each Vestnesa segment suggests dissimilar seepage
evolution (Figures 3 and 4). At the western segment, gas chimneys consist of concentric stacks of pockmarks
with symmetric truncations with respect to chimney centers (Figures 4d–4f). These chimneys are similar to
those documented at other inactive pockmark fields, e.g., at the mid-Norwegian margin [Plaza-Faverola et al.,
2011]. At the eastern Vestnesa segment, pockmark stacks are nonconcentric, chimneys have a crooked
geometry, they record syndepositional deformation, and their latest stage of deformation occurred such that
truncation of reflections prograded along an oblique plane (Figures 4a–4c). Buried mounds, suggested for
other margins to indicate authigenic carbonate precipitation during past seepage events [e.g., Plaza-Faverola
et al., 2011], are also a dominant characteristic of these chimneys (Figure 3).

Figure 4. Comparison between the seepage evolution at (a–c) the eastern and (d–f ) western Vestnesa segments.
BGHS = base of the gas hydrate stability zone and BSR = bottom simulating reflector.
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In terms of their distribution, gas chimneys are directly linked to fault planes (Figures 2b, 2c, and 4). Gas
accumulation at the crest of Vestnesa Ridge is morphologically controlled [Bünz et al., 2012]. This factor
together with the presence of faults and fractures as pathways for fluid migration determines the gas
chimney distribution (Figures 2b and 4). The relationship between chimney evolution and faulting is clearer
at the eastern Vestnesa segment, where currently active seepage [Bünz et al., 2012; Smith et al., 2014] is
occurring along interpreted shear-related faults (as described in section 4.1). This assumption is further based
on the observation of short (<10m) syndepositional fault offsets indicating fault reactivation (Figure 3), as
well as the presence of high seismic amplitude anomalies, highly disrupted strata, and buried mounds
(Figure 3), indicating active fluid accumulation and migration exclusively at the eastern Vestnesa segment.
The westward decrease in fault continuity along the ridge (Figure 3) coincides with a decrease in seepage
activity and is consistent with our interpretation of faults with higher permeability (i.e., presently more active)
in the eastern, compared to the western, Vestnesa segment.

4.3. Chronostratigraphic Constraints for the Last 2.7Ma of Seepage

Correlation of our seismic data with seismic stratigraphy from the Yermak Plateau [Mattingsdal et al., 2014]
places the YP3/YP2 interface (~2.7Ma) >250m below the bottom simulating reflector (BSR) in the
region and shows that a reflection dated to ~1.5Ma [Mattingsdal et al., 2014] corresponds to a major
reflection in our data, identified as H80 (Figures 3 and 4). The 2.7Ma interface marks the intensification
of Northern Hemisphere Plio-Pleistocene glaciations, while the 1.5Ma interface marks a regional glacial
intensification at the west Svalbard margin [Knies et al., 2009; Mattingsdal et al., 2014; Vorren and Laberg,
1997]. An additional major seismic reflection (H50; Figures 3 and 5) is estimated to be ~0.2–0.3Ma
based on average sedimentation rates extrapolated from ODP (Ocean Drilling Program) sites in the
Yermak Plateau [Mattingsdal et al., 2014] and a gravity core at the western Vestnesa segment [Consolaro
et al., 2014]. Gas chimneys record morphological changes through these three major stratigraphic
periods (Figure 4):

1. 2.7–1.5Ma: Active faulting preceded the formation of gas chimneys with possible seafloor seepage
associated (Figures 4a and 4d).

2. 1.5–~0.2Ma: A stack of concentric pockmarks intercalated with periods of inactivity marks the onset of regular
seepage cycles (Figures 4b and 4e). Observation of stacked pockmarks only posterior to 1.5Ma coincides with
a period of glacial intensification and repeated ice sheet advances beyond the shelf edge [Knies et al., 2009].
Fault reactivation and syndepositional deformation including buried mounds (Figure 2, B-B′) toward the
eastern segment dominate this period.

3. ~0.2Ma to present: This is the second and youngest major stack of pockmarks and mounds. Toward the
western segment, short-lived (<1000 years) periodic seepage events [Consolaro et al., 2014] are manifested
as concentrically stacked pockmarks, largely inactive at present (Figure 4f). Toward the eastern segment, this
period is characterized by an oblique progradation of buried pockmark (Figures 4c and 4f) that record
syndepositional faulting events and active seepage [Smith et al., 2014].

4.4. Seepage Modulation

Based on the presented structural and stratigraphic observations, we argue that gas chimneys along both
Vestnesa segments record periodic seepage cycles overlapped by less predictable seepage events recorded
primarily within the active fault-related chimneys in the eastern Vestnesa segment (Figure 4c). In our model
of seepage evolution, gas expulsion events are dominated by pressure changes (i.e., that have a direct effect
on the dynamics of the free gas zone underneath the hydrate zone [Bünz et al., 2012; Petersen et al., 2010;
Hustoft et al., 2009]) and/or fault movements.

Several processes could explain fault reactivation-driven seepage events along Vestnesa Ridge: (1) increases
in sediment input (e.g., reflecting sedimentation rate changes during buildup of the contourite drift [Eiken
and Hinz, 1993]); (2) sea level fluctuations between glaciations, as observed in the Gulf of Mexico [Roberts and
Carney, 1997]; and (3) seismicity as a cause and/or effect of changes in the stress field [e.g., Luther and Axen,
2013] involving active rifting and shear motion surrounding Vestnesa (Figure 1c). Tectonic stress induces
rapid buildup of excess pore fluid pressure and the subsequent flow of fluids through faults, triggering
fault movement, fracturing, and seismicity [Sibson, 1990; Terakawa et al., 2013]. Polygonal-like fractures
successfully imaged within some of the chimneys linked to active faults (Figure 2b, inset) might provide
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evidence of excess pore fluid pressure cycles associated with faulting [e.g., Gay et al., 2012; Osborne and
Swarbrick, 1997; Sibson, 2000; Roberts et al., 1996].

For resolving the causes of more regular seepage, improved chronostratigraphic constraints for the
Pleistocene glacial-interglacial periods are needed locally at Vestnesa Ridge. Nevertheless, its manifestation
as stacked pockmarks intercalated with the periods of inactivity (Figure 4) makes these fluid escape features
comparable to those from the mid-Norwegian margin, the Hikurangi Margin, Congo Basin, and the Gulf of
Lions, where a link between periodicity and glacial-interglacial cycles has been documented [e.g., Andresen
and Huuse, 2011; Davy et al., 2010; Riboulot et al., 2014; Plaza-Faverola et al., 2011].

Finally, the Vestnesa Ridge gas hydrate system, similar to other gas-charged contourite drifts such as Blake
Ridge offshore the U.S. coast, evolved under cold deepwater conditions (>1000m). This characteristic implies
(1) that the extent of the GHSZ is less vulnerable to temperature changes and is more pressure dominated;
(2) that gas recycling from hydrate dissociation at the base of the GHSZ—and not at the seafloor—is an
important process caused by the small-scale fluctuation of the GHSZ extent, sustaining periodic seepage
through faults and fractures; and (3) that at every fault movement, free gas trapped at the base of the GHSZ, is
available to be released in response to tectonic stresses.

5. Conclusions

High-resolution P-Cable 3-D seismic data from the ~100 km long hydrate-charged Vestnesa Ridge in Fram Strait
revealed faults and fractures that reflect the influence of nearby tectonic stress fields (i.e., rifting at theMolloy and
Knipovich Ridges, as well as shear motion along the Spitsbergen Transform Fault) on seepage evolution. Gas
chimney distribution and seepage periodicity appear closely linked to these faults and fractures. Multiple
seepage periods during the last 2.7Ma have been identified. Periodic seepage on the order of a few hundred
thousand years is suggested by regular intervals of buried pockmarks coincidingwith glacial intensification at the
west Svalbard margin. Additional irregular gas expulsion events, likely associated with fault reactivation and
fracturing, are identified from syndepositional fault deformation within gas chimneys. Vestnesa Ridge hosts a
deepwater gas hydrate system with significant amounts of gas trapped underneath that has been susceptible to
gas expulsion in response to mechanical failure induced by tectonic stress.
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