92 research outputs found

    Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF

    Get PDF
    We used ndhF sequence variation to reconstruct relationships across 282 taxa representing 78 monocot families and all 12 orders. The resulting tree is highly resolved and places commelinids sister to Asparagales, with both sister to Liliales—Pandanales in the strict consensus; Pandanales are sister to Dioscoreales in the bootstrap majority-rule tree, just above Petrosaviales. Acorales are sister to all other monocots, with Alismatales sister to all but Acorales. Relationships among the four major clades of commelinids remain unresolved. Relationships within orders are consistent with those based on rbcL, alone or in combination with atpB and 18S nrDNA, and generally better supported: ndhF contributes more than twice as many informative characters as rbcL, and nearly as many as rbcL, atpB, and 18S nrDNA combined. Based on functional arguments, we hypothesized that net venation and fleshy fruits should both evolve—and thus undergo concerted convergence—in shaded habitats, and revert to parallel venation and dry, passively dispersed fruits in open, sunny habitats. Our data show that net venation arose at least 26 times and disappeared 9 times, whereas fleshy fruits arose 22 times and disappeared 11 times. Both traits arose together at least 15 times and disappeared together 5 times. They thus show a highly significant pattern of concerted convergence (P \u3c 10-9) and are each even more strongly associated with shaded habitats (P \u3c 10-10 to 10-23); net venation is also associated, as predicted, with broad-leaved aquatic plants. Exceptions to this pattern illustrate the importance of other selective constraints and phylogenetic inertia

    A Spatial Analysis of Rift Valley Fever Virus Seropositivity in Domestic Ruminants in Tanzania

    Get PDF
    Rift Valley fever (RVF) is an acute arthropod-borne viral zoonotic disease primarily occurring in Africa. Since RVF-like disease was reported in Tanzania in 1930, outbreaks of the disease have been reported mainly from the eastern ecosystem of the Great Rift Valley. This cross-sectional study was carried out to describe the variation in RVF virus (RVFV) seropositivity in domestic ruminants between selected villages in the eastern and western Rift Valley ecosystems in Tanzania, and identify potential risk factors. Three study villages were purposively selected from each of the two Rift Valley ecosystems. Serum samples from randomly selected domestic ruminants (n = 1,435) were tested for the presence of specific immunoglobulin G (IgG) and M (IgM), using RVF enzyme-linked immunosorbent assay methods. Mixed effects logistic regression modelling was used to investigate the association between potential risk factors and RVFV seropositivity. The overall RVFV seroprevalence (n = 1,435) in domestic ruminants was 25.8% and species specific seroprevalence was 29.7%, 27.7% and 22.0% in sheep (n = 148), cattle (n = 756) and goats (n = 531), respectively. The odds of seropositivity were significantly higher in animals sampled from the villages in the eastern than those in the western Rift Valley ecosystem (OR = 1.88, CI: 1.41, 2.51; p<0.001), in animals sampled from villages with soils of good than those with soils of poor water holding capacity (OR = 1.97; 95% CI: 1.58, 3.02; p< 0.001), and in animals which had been introduced than in animals born within the herd (OR = 5.08, CI: 2.74, 9.44; p< 0.001). Compared with animals aged 1-2 years, those aged 3 and 4-5 years had 3.40 (CI: 2.49, 4.64; p< 0.001) and 3.31 (CI: 2.27, 4.82, p< 0.001) times the odds of seropositivity. The findings confirm exposure to RVFV in all the study villages, but with a higher prevalence in the study villages from the eastern Rift Valley ecosystem

    Characterizing Gravitational Wave Detector Networks: From A♯^\sharp to Cosmic Explorer

    Full text link
    Gravitational-wave observations by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo have provided us a new tool to explore the universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A#, and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped Cosmic Explorer observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein Telescope with 10 km arms in Europe. We use a set of science metrics derived from the top priorities of several funding agencies to characterize the science capabilities of different networks. The presence of one or two A# observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy and precision measurement of the Hubble parameter. A network of two Cosmic Explorer observatories and the Einstein Telescope is critical for accomplishing all the identified science metrics including the nuclear equation of state, cosmological parameters, growth of black holes through cosmic history, and make new discoveries such as the presence of dark matter within or around neutron stars and black holes, continuous gravitational waves from rotating neutron stars, transient signals from supernovae, and the production of stellar-mass black holes in the early universe. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A# observatories.Comment: 45 pages, 20 figure

    Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine

    Get PDF
    Background There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes. Methods The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naïve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 × 105 (2 subjects), or 3 × 106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression). Results None of the subjects who were administered with 1800 or 1.8 × 105 parasites developed parasitemia; 3/4 subjects administered 3× 106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo. Conclusions This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrp– strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses

    Neutrino Education, Outreach, and Communications Activities: Captivating Examples from IceCube

    Get PDF

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    Get PDF

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
    • …
    corecore