37 research outputs found

    Conformational States of a Bacterial α2-Macroglobulin Resemble Those of Human Complement C3

    Get PDF
    α2 macroglobulins (α2Ms) are broad-spectrum protease inhibitors that play essential roles in the innate immune system of eukaryotic species. These large, multi-domain proteins are characterized by a broad-spectrum bait region and an internal thioester, which, upon cleavage, becomes covalently associated to the target protease, allowing its entrapment by a large conformational modification. Notably, α2Ms are part of a larger protein superfamily that includes proteins of the complement system, such as C3, a multi-domain macromolecule which is also characterized by an internal thioester-carrying domain and whose activation represents the pivotal step in the complement cascade. Recently, α2M/C3-like genes were identified in a large number of bacterial genomes, and the Escherichia coli α2M homolog (ECAM) was shown to be activated by proteases. In this work, we have structurally characterized ECAM by electron microscopy and small angle scattering (SAXS) techniques. ECAM is an elongated, flexible molecule with overall similarities to C3 in its inactive form; activation by methylamine, chymotrypsin, or elastase induces a conformational modification reminiscent of the one undergone by the transformation of C3 into its active form, C3b. In addition, the proposed C-terminus of ECAM displays high flexibility and different conformations, and could be the recognition site for partner macromolecules. This work sheds light on a potential bacterial defense mechanism that mimics structural rearrangements essential for activation of the complement cascade in eukaryotes, and represents a possible novel target for the development of antibacterials

    Role of Arginine 285 in the Active Site of Rhodotorula gracilis d-Amino Acid Oxidase A SITE-DIRECTED MUTAGENESIS STUDY

    Get PDF
    Abstract Arg285, one of the very few conserved residues in the active site of d-amino acid oxidases, has been mutated to lysine, glutamine, aspartate, and alanine in the enzyme from the yeast Rhodotorula gracilis (RgDAAO). The mutated proteins are all catalytically competent. Mutations of Arg285 result in an increase (≈300-fold) ofK m for the d-amino acid and in a large decrease (≈500-fold) of turnover number. Stopped-flow analysis shows that the decrease in turnover is paralleled by a similar decrease in the rate of flavin reduction (k 2), the latter still being the rate-limiting step of the reaction. In agreement with data from the protein crystal structure, loss of the guanidinium group of Arg285 in the mutated DAAOs drastically reduces the binding of several carboxylic acids (e.g. benzoate). These results highlight the importance of this active site residue in the precise substrate orientation, a main factor in this redox reaction. Furthermore, Arg285 DAAO mutants have spectral properties similar to those of the wild-type enzyme, but show a low degree of stabilization of the flavin semiquinone and a change in the redox properties of the free enzyme. From this, we can unexpectedly conclude that Arg285 in the free enzyme form is involved in the stabilization of the negative charge on the N(1)-C(2)=O locus of the isoalloxazine ring of the flavin. We also suggest that the residue undergoes a conformational change in order to bind the carboxylate portion of the substrate/ligand in the complexed enzyme

    A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response

    Get PDF
    International audienceIntracellular pathogens such as Listeria monocytogenesListeria\ monocytogenes subvert cellular functions through the interaction of bacterial effectors with host components. Here we found that a secreted listerial virulence factor, LntA, could target the chromatin repressor BAHD1 in the host cell nucleus to activate interferon IFN-stimulated genes (ISGs). IFN-λ\lambda expression was induced in response to infection of epithelial cells with bacteria lacking LntA; however, the BAHD1-chromatin associated complex repressed downstream ISGs. In contrast, in cells infected with lntAlntA-expressing bacteria, LntA prevented BAHD1 recruitment to ISGs and stimulated their expression. Murine listeriosis decreased in BAHD1+/^{+/-} mice or when lntAlntA was constitutively expressed. Thus, the LntA-BAHD1 interplay may modulate IFN-λ\lambda-mediated immune response to control bacterial colonization of the host

    INNOVA Research Journal

    Get PDF
    la Universidad Internacional del Ecuador (Sede Loja) en conjunto con la Fundación de Conservación Jocotoco, desde agosto de 2015, vienen desarrollando actividades de cuidado del tapir de montaña (Tapirus pinchaque) y los hábitats en los que se desarrolla en Los Andes del sur de Ecuador, en ambientes de bosque nublado y páramos de la Reserva Biológica Tapichalaca y zonas colindantes. Para ello se propuso la realización del presente proyecto que busca establecer un sistema de monitoreo e investigación de esta especie bandera con fines ecoturísticos, así como también para apoyar la capacitación en educación ambiental; mediante un diagnóstico preliminar y la implementación de un sistema de investigación y monitoreo de los especímenes mediante cámaras trampa y observación directa, con el fin de generar datos poblacionales e imágenes de esta especie en su hábitat natural e identificar los sitios más idóneos para observar estos animales en actividades de ecoturismo; se busca además crear cartillas y cuentos didácticos que describan los principales aspectos ecológicos del tapir de montaña, sin descuidar el desarrollo de propuestas de conservación, acordes con los objetivos del milenio, las metas estratégicas de los gobiernos autónomos descentralizados parroquiales y provinciales locales y los Planes de Manejo de los Parques Nacionales Podocarpus y Yacuri

    Cochaperone Interactions in Export of the Type III Needle Component PscF of Pseudomonas aeruginosa▿

    No full text
    Type III secretion (T3S) systems allow the export and translocation of bacterial effectors into the host cell cytoplasm. Secretion is accomplished by an 80-nm-long needle-like structure composed, in Pseudomonas aeruginosa, of the polymerized form of a 7-kDa protein, PscF. Two proteins, PscG and PscE, stabilize PscF within the bacterial cell before its export and polymerization. In this work we screened the 1,320-Å2 interface between the two chaperones, PscE and PscG, by site-directed mutagenesis and determined hot spot regions that are important for T3S function in vivo and complex formation in vitro. Three amino acids in PscE and five amino acids in PscG, found to be relevant for complex formation, map to the central part of the interacting surface. Stability assays on selected mutants performed both in vitro on purified PscE-PscG complexes and in vivo on P. aeruginosa revealed that PscE is a cochaperone that is essential for the stability of the main chaperone, PscG. Notably, when overexpressed from a bicistronic construct, PscG and PscF compensate for the absence of PscE in cytotoxic P. aeruginosa. These results show that all of the information needed for needle protein stabilization and folding, its presentation to the T3 secreton, and its export is present within the sequence of the PscG chaperone

    Structure of internalin InlK from the human pathogen Listeria monocytogenes.

    No full text
    International audienceListeria monocytogenes is a human pathogen that employs a wide variety of virulence factors in order to adhere to, invade, and replicate within target cells. Internalins play key roles in processes ranging from adhesion to receptor recognition and are thus essential for infection. Recently, InlK, a surface-associated internalin, was shown to be involved in Listeria's ability to escape from autophagy by recruitment of the major vault protein (MVP) to the bacterial surface. Here, we report the structure of InlK, which harbors four domains arranged in the shape of a "bent arm". The structure supports a role for the "elbow" of InlK in partner recognition, as well as of two Ig-like pedestals intercalated by hinge regions in the projection of InlK away from the surface of the bacterium. The unusual fold and flexibility of InlK could be essential for MVP binding and concealment from recognition by molecules involved in the autophagic process

    Common alterations in PBP1a from resistant streptococcus pneumoniae decrease its reactivity towards beta -lactams: Structural insights.

    No full text
    The development of high level beta-lactam resistance in the pneumococcus requires the expression of an altered form of PBP1a, in addition to modified forms of PBP2b and PBP2x, which are necessary for the appearance of low levels of resistance. Here, we present the crystal structure of a soluble form of PBP1a from the highly resistant S. pneumoniae strain 5204 (minimal inhibitory concentration of cefotaxime = 12 mg.L(-1)). Mutations T371A, which is adjacent to the catalytic nuclophile Ser370, and TSQF(574-577)NTGY, which lie in a loop bordering the active site cleft, were investigated by site-directed mutagenesis. The consequences of these substitutions on reaction kinetics with beta-lactams were probed in vitro, and their effect on resistance were measured in vivo. The results are interpreted in the framework of the crystal structure, which displays a narrower, discontinuous active site cavity, compared to that of PBP1a from the beta-lactam susceptible strain R6, as well as a reorientation of the catalytic Ser370

    Structural Basis of Chaperone Recognition of Type III Secretion System Minor Translocator Proteins*

    No full text
    The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the “translocators”) are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development

    Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa.

    No full text
    International audiencePseudomonas aeruginosa is an opportunistic human pathogen that employs a finely tuned type III secretion system (T3SS) to inject toxins directly into the cytoplasm of target cells. ExsB is a 15.6-kDa protein encoded in a T3SS transcription regulation operon that displays high sequence similarity to YscW, a lipoprotein from Yersinia spp. whose genetic neighborhood also involves a transcriptional regulator, and has been shown to play a role in the stabilization of the outer membrane ring of the T3SS. Here, we show that ExsB is expressed in P. aeruginosa upon induction of the T3SS, and subcellular fractionation studies reveal that it is associated with the outer membrane. The high-resolution crystal structure of ExsB shows that it displays a compact β-sandwich fold with interdependent β-sheets. ExsB possesses a large patch of basic residues that could play a role in membrane recognition, and its structure is distinct from that of MxiM, a lipoprotein involved in secretin stabilization in Shigella, as well as from those of Pil lipoproteins involved in pilus biogenesis. These results reveal that small lipoproteins involved in formation of the outer membrane secretin ring display clear structural differences that may be related to the different functions they play in these systems
    corecore