1,432 research outputs found
Historical forest biomass dynamics modelled with Landsat spectral trajectories
Acknowledgements National Forest Inventory data are available online, provided by Ministerio de Agricultura, Alimentación y Medio Ambiente (España). Landsat images are available online, provided by the USGS.Peer reviewedPostprin
Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations
Background The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. Results The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6–8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. Conclusions External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include efforts to minimise such external sources of infection
Continuity of Landsat Obersvations: Short Term Considerations
As of writing in mid-2010, both Landsat-5 and -7 continue to function, with sufficient fuel to enable data collection until the launch of the Landsat Data Continuity Mission (LDCM) scheduled for December of 2012. Failure of one or both of Landsat-5 or -7 may result in a lack of Landsat data for a period of time until the 2012 launch. Although the potential risk of a component failure increases the longer the sensor\u27s design life is exceeded, the possible gap in Landsat data acquisition is reduced with each passing day and the risk of Landsat imagery being unavailable diminishes for all except a handful of applications that are particularly data demanding. Advances in Landsat data compositing and fusion are providing opportunities to address issues associated with Landsat-7 SLC-off imagery and to mitigate a potential acquisition gap through the integration of imagery from different sensors. The latter will likely also provide short-term, regional solutions to application-specific needs for the continuity of Landsat-like observations. Our goal in this communication is not to minimize the community\u27s concerns regarding a gap in Landsat observations, but rather to clarify how the current situation has evolved and provide an up-to-date understanding of the circumstances, implications, and mitigation options related to a potential gap in the Landsat data record
Assessing Precision in Conventional Field Measurements of Individual Tree Attributes
Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh), and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5%) and 0.5 m (2.9%), respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.Peer reviewe
Analysis of Implementation the Evaluation of Guidance and Counseling Program at Senior High Schools of Singkawang
Focus of this study are (1) describe and analyze the implementation of the guidance and counseling program, (2) find some factors inhibiting the implementation of the guidance and counseling program. This study uses qualitative methods; using interview data collecting technique, tested its validity through triangulation. Subjects in this study are all teachers of guidance and counseling in the Senior High School of Singkawang as many as 10 people as well as principals and supervisors as the informants with the total of 11 people. Results (1) the implementation of evaluation of guidance and counseling program by the teachers still has many weaknesses on each phase of the evaluation, such as not understanding the evaluation models of the guidance and counseling program, how to apply them, and monitoring process that is not done in deeply and in detail, (2) Some factors inhibiting the implementation of the evaluation of guidance and counseling program are lack of knowledge and understanding of the evaluation of guidance and counseling program in the schools, lack of interest in developing professional competencies, and lack of guidance to the teachers in implementing the guidance and counseling evaluation program
Assessing spectral measures of post-harvest forest recovery with field plot data
Information regarding the nature and rate of forest recovery is required to inform forest management, monitoring, and reporting activities. Delayed establishment or return of forests has implications to harvest rotations and carbon uptake, among others, creating a need for spatially-explicit, large-area, characterizations of forest recovery. Landsat time series (LTS) has been demonstrated as a means to quantitatively relate forest recovery, noting that there are gaps in our understanding of the linkage between spectral measures of forest recovery and manifestations of forest structure and composition. Field plots provide a means to better understand the linkage between forest characteristics and spectral recovery indices. As such, from a large set of existing field plots, we considered the conditions present for the year in which the co-located pixel was considered spectrally recovered using the Years to Recovery (Y2R) metric. Y2R is a long-term metric of spectral recovery that indicates the number of years required for a pixel to return to 80% of its pre-disturbance Normalized Burn Ratio value. Absolute and relative metrics of recovery at 5 years post-disturbance were also considered. We used these three spectral recovery metrics to predict the stand development class assigned by the field crew for 284 seedling plots with an overall accuracy of 73.59%, with advanced seedling stands more accurately discriminated (omission error, OE = 15.74%) than young seedling stands (OE = 49.84%). We then used field-measured attributes (e.g. height, stem density, dominant species) from the seedling plots to classify the plots into three spectral recovery groups, which were defined using the Y2R metric: spectral recovery in (1) 1–5 years, (2) 6–10 years, or (3) 11–15 years. Overall accuracy for spectral recovery groups was 61.06%. Recovery groups 1 and 3 were discriminated with greater accuracy (producer’s and user’s accuracies > 66%) than recovery group 2 ( 66%) than recovery group 2 ( 66%) than recovery group 2 (<50%). The top field-measured predictors of spectral recovery were mean height, dominant species, and percentage of stems in the plot that were deciduous. Variability in stand establishment and condition make it challenging to accurately discriminate among recovery rates within 10 years post-harvest. Our results indicate that the long-term metric Y2R relates to forest structure and composition attributes measured in the field and that spectral development post-disturbance corresponds with expectations of structural development, particularly height, for different species, site types, and deciduous abundance. These results confirm the utility of spectral recovery measures derived from LTS data to augment landscape-level assessments of post-disturbance recovery.Peer reviewe
Implications of differing input data sources and approaches upon forest carbon stock estimation
Site index is an important forest inventory attribute that relates productivity and growth expectation of forests over time. In forest inventory programs, site index is used in conjunction with other forest inventory attributes (i.e., height, age) for the estimation of stand volume. In turn, stand volumes are used to estimate biomass (and biomass components) and enable conversion to carbon. In this research, we explore the implications and consequences of different estimates of site index on carbon stock characterization for a 2,500-ha Douglas-fir-dominated landscape located on Eastern Vancouver Island, British Columbia, Canada. We compared site index estimates from an existing forest inventory to estimates generated from a combination of forest inventory and light detection and ranging (LIDAR)-derived attributes and then examined the resultant differences in biomass estimates generated from a carbon budget model (Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3)). Significant differences were found between the original and LIDAR-derived site indices for all species types and for the resulting 5-m site classes (p < 0.001). The LIDAR-derived site class was greater than the original site class for 42{\%} of stands; however, 77{\%} of stands were within +/-1 site class of the original class. Differences in biomass estimates between the model scenarios were significant for both total stand biomass and biomass per hectare (p < 0.001); differences for Douglas-fir-dominated stands (representing 85{\%} of all stands) were not significant (p = 0.288). Overall, the relationship between the two biomass estimates was strong (R(2) = 0.92, p < 0.001), suggesting that in certain circumstances, LIDAR may have a role to play in site index estimation and biomass mapping
Characterizing Fire-Induced Forest Structure and Aboveground Biomass Changes in Boreal Forests Using Multi-Temporal Lidar and Landsat
Wildfire is the dominant stand-replacing disturbance regime in Canadian boreal forests. An accurate quantification of post-fire changes in forest structure and aboveground biomass density (AGBD) provides a means to understand the magnitudes of ecosystem changes through wildfires and related linkages with global climate. While multispectral remote sensing has been extensively utilized for burn severity assessment, its capacity for post-fire forest structure and AGBD change monitoring has been more limited to date. This study evaluates the interactions among burn severity, forest structure, and fire-return intervals for two representative sites in the western Canadian boreal forest. We adopted burn severity measurements from Landsat to characterize the heterogeneity of wildfire effects, while vertical forest structure information from lidar was utilized to inform on realized forest changes and carbon fluxes associated with fire. Dominant trees in biomass-rich stands showed higher tolerance to low- and moderate-severity wildfires, while understory vegetation in these same stands showed a severity-invariant response to wildfires indicated by high vegetation mortality regardless of burn severity levels. Compared to a site without previous burn, canopy height and AGBD experienced lower magnitudes of change after subsequent wildfires, explained by a negative feedback between high frequency wildfires and biomass loss ( ΔCanopyCanopy Height single wildfire = 3.03 m; ΔCanopyCanopy Height successive wildfire = 2.47 m; ΔAGBDAGBD single wildfire = 8.40 Mg/ha; ΔAGBDAGBD successive wildfire = 6.69 Mg/ha). This study provides new insights into forest recovery dynamics following fire disturbance, which is particularly relevant given increased fire frequency and intensity in boreal ecosystems resulting from climate change
Lidar sampling for large-area forest characterization: A review
The ability to use digital remotely sensed data for forest inventory is often limited by the nature of the measures, which, with the exception of multi-angular or stereo observations, are largely insensitive to vertically distributed attributes. As a result, empirical estimates are typically made to characterize attributes such as height, volume, or biomass, with known asymptotic relationships as signal saturation occurs. Lidar (light detection and ranging) has emerged as a robust means to collect and subsequently characterize vertically distributed attributes. Lidar has been established as an appropriate data source for forest inventory purposes; however, large area monitoring and mapping activities with lidar remain challenging due to the logistics, costs, and data volumes involved.The use of lidar as a sampling tool for large-area estimation may mitigate some or all of these problems. A number of factors drive, and are common to, the use of airborne profiling, airborne scanning, and spaceborne lidar systems as sampling tools for measuring and monitoring forest resources across areas that range in size from tens of thousands to millions of square kilometers. In this communication, we present the case for lidar sampling as a means to enable timely and robust large-area characterizations. We briefly outline the nature of different lidar systems and data, followed by the theoretical and statistical underpinnings for lidar sampling. Current applications are presented and the future potential of using lidar in an integrated sampling framework for large area ecosystem characterization and monitoring is presented. We also include recommendations regarding statistics, lidar sampling schemes, applications (including data integration and stratification), and subsequent information generation. © 2012
Landsat archive holdings for Finland : opportunities for forest monitoring
There is growing interest in the use of Landsat data to enable forest monitoring over large areas. Free and open data access combined with high performance computing have enabled new approaches to Landsat data analysis that use the best observation for any given pixel to generate an annual, cloud-free, gap-free, surface reflectance image composite. Finland has a long history of incorporating Landsat data into its National Forest Inventory to produce forest information in the form of thematic maps and small area statistics on a variety of forest attributes. Herein we explore the spatial and temporal characteristics of the Landsat archive in the context of forest monitoring in Finland. The United States Geological Survey Landsat archive holds a total of 30 076 images (1972-2017) for 66 scenes (each 185 km by 185 km in size) representing the terrestrial area of Finland, of which 93.6% were acquired since 1984 with a spatial resolution of 30 m. Approximately 16.3% of the archived images have desired compositing characteristics (acquired within August 1 +/- 30 days,Peer reviewe
- …