28 research outputs found

    Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene

    Get PDF
    The chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the expression of a neighbouring gene, DEXI. The CLEC16A alleles that are protective from T1D and MS are associated with increased expression of DEXI, and no other genes in the region, in two independent monocyte gene expression data sets. Critically, using chromosome conformation capture (3C), we identified physical proximity between the DEXI promoter region and intron 19 of CLEC16A, separated by a loop of >150 kb. In reciprocal experiments, a 20 kb fragment of intron 19 of CLEC16A, containing SNPs associated with T1D and MS, as well as with DEXI expression, interacted with the promotor region of DEXI but not with candidate DNA fragments containing other potential causal genes in the region, including CLEC16A. Intron 19 of CLEC16A is highly enriched for transcription-factor-binding events and markers associated with enhancer activity. Taken together, these data indicate that although the causal variants in the 16p13 region lie within CLEC16A, DEXI is an unappreciated autoimmune disease candidate gene, and illustrate the power of the 3C approach in progressing from genome-wide association studies results to candidate causal genes

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases

    The genetic architecture of type 2 diabetes

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.</p

    Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations

    Get PDF
    Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p &lt; 5 × 10−9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies. Delineation of the genetic architecture of hematological traits in a multi-ethnic dataset allows identification of rare variants with strong effects specific to non-European populations and improved fine mapping of GWAS variants using the trans-ethnic approach

    Polymorphism in NOD2, Crohn's disease, and susceptibility to pulmonary tuberculosis

    No full text
    The nucleotide oligomerization binding domain 2 gene (NOD2) encodes an intracellular receptor for bacterial components, which is expressed in monocytes and is associated with Crohn's Disease (CD). This finding, along with epidemiological evidence, supports a role for infection in the pathogenesis of CD. Speculation that mycobacteria are involved in CD led us to investigate NOD2 in susceptibility to tuberculosis (TB), a global public health problem caused by Mycobacterium tuberculosis. CD-associated NOD2 variants were absent in a case-control study of 640 Gambians, where CD is rare. Novel NOD2 promoter polymorphisms were identified but showed no association with TB in this African population sample

    No Evidence of Association or Interaction between the IL4RA, IL4, and IL13 Genes in Type 1 Diabetes

    Get PDF
    Attempts to identify susceptibility loci that, on their own, have marginal main effects by use of gene-gene interaction tests have increased in popularity. The results obtained from analyses of epistasis are, however, difficult to interpret. Gene-gene interaction, albeit only marginally significant, has recently been reported for the interleukin-4 and interleukin-13 genes (IL4 and IL13) with the interleukin-4 receptor A gene (IL4RA), contributing to the susceptibility of type 1 diabetes (T1D). We aimed to replicate these findings by genotyping both large family and case-control data sets and by using previously published data. Gene-gene interaction tests were performed using linear regression models in cases only. We did not find any single-locus associations with T1D and did not obtain evidence of gene-gene interaction. Additional support from independent samples will be even more important in the study of gene-gene interactions and other subgroup analyses

    Association of intercellular adhesion molecule-1 gene with type 1 diabetes

    No full text
    Intercellular adhesion molecule-1 (ICAM-1) functions via its ligands, the leucocyte integrins, in adhesion of immune cells to endothelial cells and in T cell activation. The third immunoglobulin-like extracellular domain binds integrin Mac-1 and contains a common non-conservative aminoacid polymorphism, G241R. Phenotypically, ICAM-1 has been associated with type 1 diabetes, a T-cell-mediated autoimmune disease. We assessed two independent datasets, and noted that R241 was associated with lower risk of type 1 diabetes than is G241 (3695 families, relative risk 0.91, p=0.03; 446 families, 0.60, p=0.006). Our data indicate an aetiological role for ICAM-1 in type 1 diabetes, which needs to be confirmed in future genetic and functional experiments
    corecore