43 research outputs found

    Montmorency cherry supplementation improves 15-km cycling time-trial performance

    Get PDF
    Aim: Montmorency cherries are rich in polyphenols that possess antioxidant, anti-inflammatory and vasoactive properties. We investigated whether 7-day Montmorency cherry powder supplementation improved cycling time-trial (TT) performance. Methods: 8 trained male cyclists (V˙ O 2 peak : 62.3 ± 10.1 ml kg −1  min −1 ) completed 10-min steady-state (SS) cycling at ~ 65% V˙ O 2 peak followed by a 15-km TT on two occasions. Participants consumed 6 pills per day (Montmorency cherry powder, MC; anthocyanin 257 mg day −1 or dextrose powder, PL) for a 7-day period, 3 pills in the morning and evening. Capillary blood [lactate] was measured at baseline, post SS and post TT. Pulmonary gas exchange and tissue oxygenation index (TOI) of m. vastus lateralis via near-infrared spectroscopy, were measured throughout. Results: TT completion time was 4.6 ± 2.9% faster following MC (1506 ± 86 s) supplementation compared to PL (1580 ± 102 s; P = 0.004). Blood [lactate] was significantly higher in MC after SS (PL: 4.4 ± 2.1 vs. MC: 6.7 ± 3.3 mM, P = 0.017) alongside an elevated baseline TOI (PL: 68.7 ± 2.1 vs. MC: 70.4 ± 2.3%, P = 0.018). Discussion: Montmorency cherry supplementation improved 15-km cycling TT performance. This improvement in exercise performance was accompanied by enhanced muscle oxygenation suggesting that the vasoactive properties of the Montmorency cherry polyphenols may underpin the ergogenic effects

    Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation

    Get PDF
    © 2017, Canadian Science Publishing. All rights reserved. Blueberries are rich in flavonoids, which possess antioxidant and anti-inflammatory properties. High flavonoid intakes attenuate age-related cognitive decline, but data from human intervention studies are sparse. We investigated whether 12 weeks of blueberry concentrate supplementation improved brain perfusion, task-related activation, and cognitive function in healthy older adults. Participants were randomised to consume either 30 mL blueberry concentrate providing 387 mg anthocyanidins (5 female, 7 male; age 67.5 ± 3.0 y; body mass index, 25.9 ± 3.3 kg·m−2) or isoenergetic placebo (8 female, 6 male; age 69.0 ± 3.3 y; body mass index, 27.1 ± 4.0 kg·m−2). Pre-and postsupplementation, participants undertook a battery of cognitive function tests and a numerical Stroop test within a 1.5T magnetic resonance imaging scanner while functional magnetic resonance images were continuously acquired. Quantitative resting brain perfusion was determined using an arterial spin labelling technique, and blood biomarkers of inflammation and oxidative stress were measured. Significant increases in brain activity were observed in response to blueberry supplementation relative to the placebo group within Brodmann areas 4/6/10/ 21/40/44/45, precuneus, anterior cingulate, and insula/thalamus (p < 0.001) as well as significant improvements in grey matter perfusion in the parietal (5.0 ± 1.8 vs-2.9 ± 2.4%, p = 0.013) and occipital (8.0 ± 2.6 vs-0.7 ± 3.2%, p = 0.031) lobes. There was also evidence suggesting improvement in working memory (2-back test) after blueberry versus placebo supplementation (p = 0.05). Supplementation with an anthocyanin-rich blueberry concentrate improved brain perfusion and activation in brain areas associated with cognitive function in healthy older adults

    Acetaminophen ingestion improves muscle activation and performance during a 3-min all-out cycling test

    Get PDF
    Purpose: Acute acetaminophen (ACT) ingestion has been shown to enhance cycling time-trial performance. The purpose of this study was to assess whether ACT ingestion enhances muscle activation and critical power (CP) during maximal cycling exercise. Methods: Sixteen active male participants completed two 3-min all-out tests against a fixed resistance on an electronically-braked cycle ergometer 60 minutes following ingestion of 1 g ACT or placebo (maltodextrin, PL). CP was estimated as the mean power output over the final 30 s of the test and W′ (the curvature constant of the power-duration relationship) was estimated as the work done above CP. The femoral nerve was stimulated every 30 s to measure membrane excitability (M-wave) and surface electromyography (EMGRMS) was recorded continuously to infer muscle activation. Results: Compared to PL, ACT ingestion increased CP (ACT: 297 ± 32 vs PL: 288 ± 31 W, PRMS amplitude declined throughout the 3-min protocol in both PL and ACT conditions; however, the decline in EMGRMS was attenuated in the ACT condition, with the EMGRMS amplitude being greater compared to PL over the last 60 s of the test (P=0.04). Conclusion: These findings indicate that acute ACT ingestion might increase performance and CP during maximal cycling exercise by enhancing muscle activation

    Acute ibuprofen ingestion does not attenuate fatigue during maximal intermittent knee extensor or all-out cycling exercise

    Get PDF
    Purpose: Recent research suggests that acute consumption of pharmacological analgesics can improve exercise performance, but the ergogenic potential of ibuprofen (IBP) administration is poorly understood. This study tested the hypothesis that IBP administration would enhance maximal exercise performance. Methods: In one study, 13 physically active males completed 60 × 3-s maximum voluntary contractions (MVC) of the knee extensors interspersed with a 2-s passive recovery period, on two occasions, with the critical torque (CT) estimated as the mean torque over the last 12 contractions (part A). In another study, 16 active males completed two 3-min all-out tests against a fixed resistance on an electrically-braked cycle ergometer with the critical power (CP) estimated from the mean power output over the final 30-s of the test (part B). All tests were completed 60 min after ingesting maltodextrin (placebo, PL) or 400 mg of IBP. Peripheral nerve stimulation was administered at regular intervals and electromyography was measured throughout. Results: For part A, mean torque (IBP: 60±12 vs. PL: 58±14% of pre-exercise MVC) and CT (IBP: 40±15 vs. PL: 41±16% of pre-exercise MVC) were not different between conditions (P>0.05). For part B, end-test power output (IBP: 292±28 W vs PL: 288±31 W) and work done (IBP: 65.9±5.9kJ vs PL: 65.4±6.4kJ) during the 3-min all-out cycling tests were not different between conditions (all P>0.05). For both studies, neuromuscular fatigue declined at a similar rate in both conditions (P>0.05). Conclusion: Acute ingestion of 400 mg IBP does not improve single-leg or maximal cycling performance in healthy humans

    Acute acetaminophen ingestion improves performance and muscle activation during maximal intermittent knee extensor exercise

    Get PDF
    Aim: Acetaminophen is a commonly used medicine for pain relief and emerging evidence suggests that it may improve endurance exercise performance. This study investigated some of the physiological mechanisms by which acute acetaminophen ingestion might blunt muscle fatigue development. Methods: Thirteen active males completed 60 × 3 s maximum voluntary contractions (MVC) of the knee extensors with each contraction separated by a 2 s passive recovery period. This protocol was completed 60 min after ingesting 1 g of maltodextrin (placebo) or 1 g of acetaminophen on two separate visits. Peripheral nerve stimulation was administered every 6th contraction for assessment of neuromuscular fatigue development, with the critical torque (CT), which reflects the maximal sustainable rate of oxidative metabolism, taken as the mean torque over the last 12 contractions. Surface electromyography was recorded continuously as a measure of muscle activation. Results: Mean torque (61 ± 11 vs. 58 ± 14 % pre-exercise MVC) and CT (44 ± 13 vs. 40 ± 15 % pre-exercise MVC) were greater in the acetaminophen trial compared to placebo (both P0.05). However, the decline in electromyography amplitude was attenuated in the acetaminophen trial, with electromyography amplitude being greater compared to placebo from 210 s onwards (P<0.05). Conclusion: These findings indicate that acute acetaminophen ingestion might be ergogenic by increasing CT and preserving muscle activation during high-19 intensity exercise

    Montmorency cherry supplementation attenuates vascular dysfunction induced by prolonged forearm occlusion in overweight, middle-aged men

    Get PDF
    Flavonoid supplementation improves brachial artery flow-mediated dilation (FMD), but it is not known whether flavonoids protect against vascular dysfunction induced by ischemia-reperfusion (IR) injury and associated respiratory burst. In a randomized, double-blind, placebo-controlled, crossover study, we investigated whether 4 wk supplementation with freeze-dried Montmorency cherry (MC) attenuated suppression of FMD after IR induced by prolonged forearm occlusion. Twelve physically inactive overweight, middle-aged men (52.8 ± 5.8 yr, BMI: 28.1 ± 5.3 kg/m2) consumed MC (235 mg/day anthocyanins) or placebo capsules for 4 wk, with supplementation blocks separated by 4 wk washout. Before and after each supplementation block, FMD responses and plasma nitrate and nitrite ([ N O − 2 ]) concentrations were measured at baseline and 15, 30, and 45 min after prolonged (20 min) forearm occlusion. FMD response was significantly depressed by the prolonged occlusion ( P < 0.001). After a 45-min reperfusion, FMD was restored to baseline levels after MC (ΔFMD presupplementation: -30.5 ± 8.4%, postsupplementation: -0.6 ± 9.5%) but not placebo supplementation (ΔFMD presupplementation: -11.6 ± 10.6, postsupplementation: -25.4 ± 4.0%; condition × supplement interaction: P = 0.038). Plasma [ N O − 2 ] decreased after prolonged occlusion but recovered faster after MC compared with placebo (Δ45 min to baseline; MC: presupplementation: -15.3 ± 9.6, postsupplementation: -6.2 ± 8.1; Placebo: presupplementation: -16.3 ± 5.9, postsupplementation: -27.7 ± 11.1 nmol/l; condition × supplement × time interaction: P = 0.033). Plasma peroxiredoxin concentration ([Prx2]) was significantly higher after MC (presupplementation: 22.8 ± 1.4, postsupplementation: 28.0 ± 2.4 ng/ml, P = 0.029) but not after placebo supplementation (presupplementation: 22.1 ± 2.2, postsupplementation: 23.7 ± 1.5 ng/ml). In conclusion, 4 wk MC supplementation enhanced recovery of endothelium-dependent vasodilatation after IR, in parallel with faster recovery of plasma [ N O − 2 ], suggesting NO dependency. These protective effects seem to be related to increased plasma [Prx2], presumably conferring protection against the respiratory burst during reperfusion. NEW & NOTEWORTHY This is the first study to demonstrate that 4 wk of Montmorency cherry powder supplementation exerted protective effects on endothelium-dependent vasodilation after transient ischemia-reperfusion injury in overweight, physically inactive, nonmedicated, hypertensive middle-aged men. These effects seem to be due to increased nitric oxide availability, as evidenced by higher plasma nitrite concentration and peak arterial diameter during the flow-mediated dilation measurement. This may be a consequence of increased concentration of peroxiredoxin and other antioxidant systems and, hence, reduced reactive oxygen species exposure.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was partially funded by a grant from the Cherry Research Committee, Aboo-Bakkar was supported by a Ph.D. studentship from the Universiti Kuala Lumpur, and Fulford’s salary was provided by National Institute for Health Research.accepted version (12 month embargo

    Stool Microbiota Diversity Analysis of Blastocystis-Positive and Blastocystis-Negative Individuals

    Get PDF
    Blastocystis is a unicellular eukaryote found in the gastrointestinal tract of both human and other animal hosts. The clinical significance of colonic Blastocystis colonization remains obscure. In this study, we used metabarcoding and bioinformatics analyses to identify differences in stool microbiota diversity between Blastocystis-positive and Blastocystis-negative individuals (n = 1285). Alpha diversity was significantly higher in Blastocystis carriers. At phylum level, Firmicutes and Bacteroidetes were enriched in carriers, while Proteobacteria were enriched in non-carriers. The genera Prevotella, Faecalibacterium, Flavonifracter, Clostridium, Succinivibrio, and Oscillibacter were enriched in carriers, whereas Escherichia, Bacteroides, Klebsiella, and Pseudomonas were enriched in non-carriers. No difference in beta diversity was observed. Individuals with Blastocystis-positive stools appear to have gut microbiomes associated with eubiosis unlike those with Blastocystis-negative stools, whose gut microbiomes are similar to those associated with dysbiosis. The role of Blastocystis as an indicator organism and potential modulator of the gut microbiota warrants further scrutiny.publishedVersio

    Tart cherry supplement enhances skeletal muscle glutathione peroxidase expression and functional recovery after muscle damage

    Get PDF
    Introduction: Montmorency cherry concentrate (MCC) supplementation enhances functional recovery from exercise, potentially due to antioxidant and anti-inflammatory effects. However, to date, supporting empirical evidence for these mechanistic hypotheses is reliant on indirect blood biomarkers. This study is the first to investigate functional recovery from exercise alongside molecular changes within the exercised muscle following MCC supplementation. Methods: Ten participants completed two maximal unilateral eccentric knee extension trials following MCC or placebo supplementation for 7 days prior to and 48 hours following exercise. Knee extension maximum voluntary isometric contractions (MVC), maximal isokinetic contractions, single leg jumps, and soreness measures were assessed before, immediately, 24 and 48 h after exercise. Venous blood and vastus lateralis muscle samples were collected at each time point. Plasma concentrations of IL-6, TNF-⍺, C-reactive protein, creatine kinase, and phenolic acids were quantified. Intramuscular mRNA expression of SOD 1 and 3, GPX1, 3, 4 and 7, Catalase, and Nrf2 and relative intramuscular protein expression of SOD1, Catalase and GPX3 were quantified. Results: MCC supplementation enhanced recovery of normalized MVC 1s average compared to placebo (Post- Exercise PLA: 59.5±18.0% vs MCC: 76.5±13.9%; 24 h PLA: 69.8±15.9% vs MCC: 80.5±15.3%; supplementation effect p=0.024). MCC supplementation increased plasma hydroxybenzoic, hippuric and vanillic acid concentrations (supplementation effect p = 0.028, p = 0.002, p= 0.003); SOD3, GPX3, GPX4, GPX7 (supplement effect p < 0.05) and GPX1 (interaction effect p = 0.017) gene expression; and GPX3 protein expression (supplementation effect p = 0.004) versus placebo. There were no significant differences between conditions for other outcome measures. Conclusion: MCC supplementation conserved isometric muscle strength and upregulated antioxidant gene and protein expression in parallel with increased phenolic acid concentrations

    Shatavari supplementation in postmenopausal women improves handgrip strength and increases vastus lateralis myosin regulatory light chain phosphorylation but does not alter markers of bone turnover

    Get PDF
    Abstract: Shatavari has long been used as an Ayurvedic herb for women’s health, but empirical evidence for its effectiveness has been lacking. Shatavari contains phytoestrogenic compounds that bind to the estradiol receptor. Postmenopausal estradiol deficiency contributes to sarcopenia and osteoporosis. In a randomised double-blind trial, 20 postmenopausal women (68.5 ± 6 years) in-gested either placebo (N = 10) or shatavari (N = 10; 1000 mg/d, equivalent to 26,500 mg/d fresh weight shatavari) for 6 weeks. Handgrip and knee extensor strength were measured at baseline and at 6 weeks. Vastus lateralis (VL) biopsy samples were obtained. Data are presented as difference scores (Week 6 – baseline, median ± interquartile range). Handgrip, (but not knee extensor) strength was improved by shatavari supplementation (shatavari +0.7 ± 1.1 kg, placebo -0.4 ± 1.3 kg; p=0.04). Myosin regulatory light chain phosphorylation, a known marker of improved myosin contractile function, was increased in VL following shatavari supplementation (immunoblotting; placebo -0.08 ± 0.5 a.u. shatavari +0.3 ± 1 arbitrary units (a.u.); p = 0.03). Shatavari increased phosphorylation of Aktser473 (Aktser473 (placebo -0.6 ± 0.6 a.u. shatavari +0.2 ± 1.3 a.u; p = 0.03) in VL. Shatavari supplementation did not alter plasma markers of bone turnover (P1NP, β-CTX) and stimulation of human osteoblasts with pooled sera (N = 8 per condition) from placebo and shatavari supplementation conditions did not alter cytokine or metabolic markers of osteoblast activity. Shatavari may improve muscle function and contractility via myosin conformational change and warrants further investigation in larger and more diverse cohorts of its utility in conserving and enhancing musculoskeletal functio

    Montmorency cherry juice reduces muscle damage caused by intensive strength exercise.

    Get PDF
    addresses: Sports and Exercise Science Research Centre, London South Bank University, London, United Kingdom. [email protected]: Clinical Trial; Journal Article; Research Support, Non-U.S. Gov'tThis is a non-final version of an article published in final form in Medicine and Science in Sports and Exercise, 2011, Vol. 43, Issue 8, pp. 1544 – 1551. © 2011 American College of Sports Medicine (ACSM)Montmorency cherries contain high levels of polyphenolic compounds including flavonoids and anthocyanins possessing antioxidant and anti-inflammatory effects. We investigated whether the effects of intensive unilateral leg exercise on oxidative damage and muscle function were attenuated by consumption of a Montmorency cherry juice concentrate using a crossover experimental design
    corecore