
Please cite the Published Version

Morgan, Paul T, Barton, Matthew J and Bowtell, Joanna L (2019) Montmorency cherry supplemen-
tation improves 15-km cycling time-trial performance. European Journal of Applied Physiology,
119 (3). pp. 675-684. ISSN 1439-6319

DOI: https://doi.org/10.1007/s00421-018-04058-6

Publisher: Springer Verlag

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/633279/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: The version of record of this article, first published in European Journal
of Applied Physiology, is available online at Publisher’s website: http://dx.doi.org/10.1007/s00421-
018-04058-6

Enquiries:
If you have questions about this document, contact rsl@mmu.ac.uk. Please include the
URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1007/s00421-018-04058-6
https://e-space.mmu.ac.uk/633279/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s00421-018-04058-6
http://dx.doi.org/10.1007/s00421-018-04058-6
mailto:rsl@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Vol.:(0123456789)1 3

European Journal of Applied Physiology (2019) 119:675–684 
https://doi.org/10.1007/s00421-018-04058-6

ORIGINAL ARTICLE

Montmorency cherry supplementation improves 15-km cycling time-
trial performance

Paul T. Morgan1  · Matthew J. Barton1 · Joanna L. Bowtell1

Received: 10 August 2018 / Accepted: 18 December 2018 / Published online: 8 January 2019 
© The Author(s) 2019

Abstract
Aim Montmorency cherries are rich in polyphenols that possess antioxidant, anti-inflammatory and vasoactive properties. 
We investigated whether 7-day Montmorency cherry powder supplementation improved cycling time-trial (TT) performance.
Methods 8 trained male cyclists ( V̇O2peak : 62.3 ± 10.1 ml kg−1 min−1) completed 10-min steady-state (SS) cycling at ~ 65% 
V̇O2peak followed by a 15-km TT on two occasions. Participants consumed 6 pills per day (Montmorency cherry powder, 
MC; anthocyanin 257 mg day−1 or dextrose powder, PL) for a 7-day period, 3 pills in the morning and evening. Capillary 
blood [lactate] was measured at baseline, post SS and post TT. Pulmonary gas exchange and tissue oxygenation index (TOI) 
of m. vastus lateralis via near-infrared spectroscopy, were measured throughout.
Results TT completion time was 4.6 ± 2.9% faster following MC (1506 ± 86  s) supplementation compared to PL 
(1580 ± 102 s; P = 0.004). Blood [lactate] was significantly higher in MC after SS (PL: 4.4 ± 2.1 vs. MC: 6.7 ± 3.3 mM, 
P = 0.017) alongside an elevated baseline TOI (PL: 68.7 ± 2.1 vs. MC: 70.4 ± 2.3%, P = 0.018).
Discussion Montmorency cherry supplementation improved 15-km cycling TT performance. This improvement in exercise 
performance was accompanied by enhanced muscle oxygenation suggesting that the vasoactive properties of the Mont-
morency cherry polyphenols may underpin the ergogenic effects.

Keywords Flavonoids · Montmorency cherry · Oxidative stress · Polyphenols · Vascular function

Abbreviations
BLa  Blood lactate
CV  Coefficient of variation
FMD  Flow-mediated dilatation
MC  Montmorency cherry
NO  Nitric oxide
PL  Placebo
ROS  Reactive oxygen species
SS  Steady-state exercise
TOI  Tissue oxygenation index
TT  Time-trial
V̇O2peak  Peak oxygen uptake

Introduction

Reactive oxygen species (ROS) are continuously generated 
during repetitive muscular action from a variety of sources 
including enzymes such as NADPH oxidase and xanthine 
oxidase (Reid 2016a) in an intensity-dependent fashion (Bai-
ley et al. 2007). Reactive oxygen species act as important 
signalling molecules and have been implicated in contrac-
tion-mediated increase in muscle glucose uptake (Merry and 
McConell 2009) and control of skeletal muscle blood flow 
(Trinity et al. 2016). It appears that under conditions of low 
oxidative stress and redox balance, ROS promote optimal 
vasodilation and hyperaemia in exercising muscle (Durand 
et al. 2015). However, under conditions of oxidative stress 
or already disturbed redox balance, ROS generation dur-
ing exercise impairs blood flow and vasodilatory capacity 
(Donato et al. 2010).

Ryanodine receptors are the major calcium release chan-
nel in sarcoplasmic reticulum and due to the high number 
of cysteine residues in this protein, it is redox sensitive. 
Excess ROS generation has been shown to impair calcium 
handling and sensitivity, resulting in reduced contractile 
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force development, thus impairing exercise performance 
(Reid 2016a). It is, therefore, plausible that elevated muscle 
antioxidant capacity may counteract fatigue and enhance 
performance during high intensity or prolonged exercise, 
by minimising disturbance of redox balance (Reid 2016b).

As a consequence, there is growing interest in the effi-
cacy of fruit-derived polyphenol supplements, which possess 
antioxidant and anti-inflammatory properties, in improving 
exercise performance and/or tolerance both acutely (Cases 
et al. 2017; Deley et al. 2017; Oh et al. 2010; Trexler et al. 
2014) and chronically (Braakhuis et al. 2014; Braakhuis and 
Hopkins 2015; Cook et al. 2015; Kang et al. 2012; MacRae 
and Mefferd 2006; Murphy et al. 2017; Sadowska-Krępa 
et al. 2008). Montmorency cherry polyphenols have been 
shown to enhance recovery of muscle strength following 
a bout of muscle-damaging exercise (Bowtell et al. 2011; 
Howatson et al. 2010). This enhanced exercise performance 
and functional recovery following muscle damage is likely 
to be mediated through the observed reduction in serum 
markers of oxidative damage after Montmorency cherry 
supplementation. These effects are suggested to be medi-
ated via inhibition of superoxide producing enzymes such 
as NADPH oxidase or xanthine oxidase (Rodriguez-Mateos 
et al. 2013) or enhanced endogenous antioxidant capacity 
induced via nrf2 signalling (Huang et al. 2015). The result-
ing attenuation in superoxide exposure would reduce conver-
sion of nitric oxide (NO) to peroxynitrite so preserving NO 
bioavailability during prolonged intense exercise (Benjamin 
et al. 1994; Cosby et al. 2003), and thus blood flow and tis-
sue perfusion.

Polyphenol supplementation has also been implicated 
in increasing nitric oxide (NO) availability directly (Sto-
clet et al. 2004) by increasing the conversion of nitrite to 
NO (Rocha et al. 2009) as well as upregulating nitric oxide 
synthase (NOS, for review Galleano et al. 2010). Indeed, 
acute (Rodriguez-Mateos et al. 2013) and chronic (Khan 
et al. 2014) polyphenol supplementation has been linked to 
endothelium-dependent vasodilation. A meta-analysis found 
that supplementation with a mix of flavonoids increased 
flow-mediated dilatation (FMD) by 2.3% (based on 18 acute 
supplementation studies) and by 0.7% with chronic supple-
mentation (based on 14 studies, Kay et al. 2012). This is 
likely to have a significant impact on exercise performance, 
during whole body exercise, where blood flow is considered 
to be a critical limiting factor to perfusion (Mortensen et al. 
2008). Increased perfusion would result in increased tissue 
oxygen saturation and improved efflux of metabolic waste 
products such as lactate during exercise and subsequently 
enhance muscle function (Jacobs et al. 2011).

However, despite the potential for ergogenic effects of 
Montmorency cherry supplementation on exercise perfor-
mance, very few studies have directly tested this hypoth-
esis. Specifically, Montmorency cherry supplementation 

has recently been shown to enhance end-sprint cycling 
(Keane et al. 2018), aerobic running (Levers et al. 2016), 
and the recovery from prolonged, intermittent running per-
formance (Bell et al. 2016) following a single, acute dose, 
of 7 or 8 days of supplementation, respectively.

The purpose of this study was to investigate the effect 
of 7-day Montmorency cherry supplementation on cycling 
time-trial (TT) performance. It was hypothesised that, 
compared to placebo, 7-day Montmorency cherry supple-
mentation would: (1) enhance cycling TT performance, 
measured as a reduced time-to-complete the 15-km TT; 
(2) enhance tissue oxygenation during exercise, measured 
via the tissue oxygenation index (TOI); and (3) increase 
end-exercise capillary blood [lactate].

Materials and methods

Participants

Eight trained male competitive (> 250 miles/week) 
cyclists (mean ± SD: age: 19.7 ± 1.6 years, height: 
1.79 ± 0.69  m, body mass: 75.0 ± 9.6  kg, V̇O2peak : 
62.3 ± 10.1  ml  kg−1  min−1, power output at V̇O2peak : 
401 ± 38 W) volunteered and gave written informed con-
sent to participate in this double blind crossover study, 
which had been approved by the University of Exeter 
Research Ethics Committee. A power analysis with an α 
error = 0.05, power = 0.95, and effect size = 2.89, was per-
formed using the G × Power 3.1 analysis software (Hein-
rich Hein University, Duesseldorf, Germany), based on 
the effects of 7 days of blackcurrant supplementation on 
16.1-km time-trial performance (Cook et al. 2015). This 
produced a minimum sample size of 4 participants. A 
total of eight participants were recruited to account for 
possible variation in the effects of Montmorency cherries 
and blackcurrants, and to maximise the statistical power 
for the secondary outcomes of TOI and other measures 
that may provide insight into the mechanisms of action. 
Participants reported to all testing sessions well-hydrated, 
having avoided strenuous exercise and caffeine ingestion 
for 24 and 3 h prior to testing, respectively. Participants 
were also instructed to consume their habitual diet and 
continue normal training activities for the first 5 days of 
the supplementation period but to refrain from strenuous 
physical activity for 48 h prior to the intensive exercise 
protocol. Participants recorded their diet and physical 
activity for 7 days prior to the cycling exercise trial (as 
described below) and then replicated this diet for the sec-
ond, cross-over, trial. Testing was performed at the same 
time of day (± 2 h) for each subject.
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Experimental design

Participants visited the laboratory on 4 occasions during a 
4-week period. All participants completed: (i) an incremen-
tal test to exhaustion; (ii) two familiarisation 15-km cycling 
TTs; and (iii) two 15-km cycling TTs following 7-day sup-
plementation of placebo and Montmorency cherry supple-
mentation. Experimental tests were randomised and counter-
balanced, separated by a minimum 2-week wash-out period 
and performed on a customised TT bike (Planet X, Sheffield, 
UK) that replicated the set-up (namely seat post and handle-
bars) of their own competition bike to maximise ecological 
validity. The bike was then loaded onto a static trainer to 
complete TT simulations within the lab (Kinetic Magnetic, 
Minneapolis, USA). Power output and work done (and dis-
tance) were measured via a mobile power meter integrated 
into the rear wheel (PowerTap G3 Hub, Madison, USA) 
connected wirelessly to a data logger (PowerTap Joule, 
Madison, WI, USA). The PowerTap G3 device was zeroed 
before each test. All laboratory-based tests were performed 
in similar environmental conditions (temperature, 18–20 °C; 
relative humidity, 45–55%). Participants were provided with 
feedback regarding the elapsed work done and distance com-
pleted as well as the work and distance remaining during the 
laboratory TTs at 5-km intervals.

Incremental test

On the first laboratory visit, participants performed a ramp-
incremental cycling test for the determination of peak oxy-
gen uptake ( V̇O2peak ) and calculation of a heavy-intensity 
work load for steady-state (SS) exercise on an electronically 
braked cycle ergometer (Corival, Lode BV, Groningen, The 
Netherlands). The test was preceded by 3 min of ‘baseline’ 
cycling at 20 W after which the workload increased to 75 W. 
The work load then continued to increase at a rate of 30 
W min−1 until the limit of exercise tolerance. Participants 
pedalled at a self-selected cadence between 80 and 100 rpm. 
The test was terminated when cadence dropped by more than 
10 rpm from the selected cadence for more than 10 s despite 
strong verbal encouragement. The V̇O2peak was calculated 
as the highest 30-s average value attained before volitional 
exhaustion.

Experimental trial

Following familiarisation, participants completed two tri-
als under the experimental conditions, placebo (PL) and 
Montmorency cherry supplementation (MC). To assess dif-
ferences in muscle tissue oxygenation, initially, participants 
completed 3 min of baseline cycling (i.e., 20 W) before 
an abrupt increase to the work rate which corresponded to 
~ 65% V̇O2peak (steady-state exercise) for 10 min on a lode 

cycle ergometer. Following a 5-min period of rest, partici-
pants then completed a 15-km TT in the shortest time possi-
ble on a TT bike (as described above). Muscle tissue oxygen 
saturation, blood lactate (BLa) and pulmonary gas exchange 
(detailed below) were measured throughout.

Muscle oxygenation

For all experimental visits, muscle oxygenation status of the 
m. vastus lateralis of the right leg was monitored using near-
infrared spectroscopy (Portamon, Artinis medical systems, 
The Netherlands). The CV of the device in our lab during 
unloaded cycling was recorded at 1.3 ± 0.5%. On arrival at 
the laboratory, the skin area underneath the near-infrared 
spectroscopy device was shaved, then exfoliated and cleaned 
with alcohol to minimise skin impedance. The sensor was 
placed at the midpoint between the lateral epicondyle of the 
femur and the femoral head. Adhesive tape and a hypoaller-
genic medical tape were used to ensure the sensor stability. 
An elastic bandage was wrapped around the participants’ 
leg and secured with adhesive tape to ensure the sensor did 
not move during exercise as well as minimising potential 
of extraneous light influencing the signal. The transmitted 
light was recorded at 10 Hz but down-sampled and exported 
at 1 Hz into proprietary software (Oxysoft, Artinis medical 
systems, The Netherlands). Tissue oxygenation index (i.e., 
TOI) was calculated as the percentage of total haemoglo-
bin and myoglobin that was oxygenated. During SS exer-
cise, TOI was averaged across the final 5 min of the 10-min 
bout. TOI was averaged in three work periods correspond-
ing to 5-km intervals during TT exercise (i.e., 0–5 , 5–10 , 
10–15 km) (Fig. 1).

Measurements

Throughout all tests, pulmonary gas exchange and venti-
lation was measured using an online gas analyser (Cortex 
Metalyzer 2R, Leipzig, Germany) with a CV of < 2% (Mac-
farlane and Wong 2012). A volume transducer was securely 
attached to a facemask and a capillary line was connected 
to the mask allowing inspired and expired gas volume and 
gas concentration to be collected. Known gas concentrations 
were used to calibrate gas analysers in line with manufac-
turer’s recommendations. The turbine volume transducer 
was calibrated using a 3-L syringe (Hans Rudolph, Kansas 
City, MO). Fingertip capillary blood samples were collected 
at baseline, post SS cycling and immediately after the com-
pletion of TT for the assessment of BLa using a portable 
lactate analyser (Lactate Pro, Arkray Inc, Japan). The CV 
using this device has been shown to be < 3.6% (Bonaventura 
et al. 2015).
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Nutritional supplements

Each cherry capsule (CherryActive® Ltd, MC) consisted 
of finely powdered freeze-dried Montmorency cherry sur-
rounded by a gelatine shell containing 0.3 g CHO and pro-
vided a total of 1.3 kCal. Tart cherry powder was analysed 
for total polyphenol content (Folin-Denis method) and 
anthocyanin content (high performance liquid chromatog-
raphy, Atlas Bioscience Inc., Tucson, AZ, USA). Total poly-
phenol content provided by the 6 capsules, consumed daily 
(3 in the morning and 3 in the evening), was 462.8 mg day−1 
and total anthocyanin content was 256.8 mg day−1. On day 7 
(day of experimental testing), participants consumed 3 pills 
60 min prior to the first experimental test. The optimal dose 
identified in a recent meta-analysis (Kay et al. 2012) was 
500 mg per day total flavonoids or 300 mg per day of procya-
nidins, and the dose provided in the present study was based 
on this work. The placebo was made from dextrose powder 
inserted into gelatine capsules designed to have a similar 

appearance to cherry capsules but without the phytochemical 
content. To ensure compliance, in addition to recording diet 
and physical activity, participants were required to complete 
a 7-day supplementation record. This was then repeated in 
the crossover trial. For all participants, compliance was 
recorded at 100%.

Statistical analysis

Paired samples t test was used to compare mean V̇O2 , res-
piratory exchange ratio and TOI for the final 5 min of SS 
exercise between PL and MC. In addition, paired sam-
ples t test was used to assess the differences in completion 
times of the 15-km TT between conditions. Data normality 
assumptions were assessed using Kolmogorov–Smirnov test. 
Pearson’s product–moment correlation was used to exam-
ine the inter-relationship between TOI and the percentage 
of V̇O2peak during SS exercise. Specifically, the correlation 
between the difference in TOI between conditions and the 
percentage of V̇O2peak during SS exercise was calculated. 
Profiles of TT performance split times, V̇O2 and TOI were 
analysed using two-way ANOVAs with repeated measures 
(condition [placebo vs. MC] × distance: [first, middle and 
final 5-km averages]). BLa was analysed using a two-way 
repeated-measures ANOVA with two timepoints (baseline 
and end-exercise). Where the ANOVA revealed a significant 
interaction effect, a post hoc t test was conducted using a 
Bonferroni correction. For calculation of effect size, partial 
eta squared (η2) was used for omnibus tests and Cohen’s 
d was used to calculate the effect size for paired t tests. In 
addition, Cohen’s d was corrected for the paired t test for 
dependence. Where sphericity was violated, a Greenhouse-
Geisser correction factor was used. For all tests, results were 
considered statistically significant when P < 0.05. Data are 
presented as means ± SD unless otherwise indicated. All sta-
tistical analyses were conducted using IBM SPSS Statistics 
version 24.

Results

Physiological responses to steady‑state (SS) exercise

The work rate required to elicit ~ 65% V̇O2peak during SS 
exercise, determined during the preliminary incremental 
test, was 235 ± 38 W, and 141 ± 23 kJ of work was com-
pleted during SS exercise. The physiological responses 
to SS exercise for MC and PL can be seen in Table 1. 
Baseline TOI was significantly higher in MC (70.4 ± 2.3%) 
compared to PL (68.7 ± 2.1%, P = 0.02, d = 0.76, Table 1). 
In addition, whilst there was not a statistically signifi-
cant difference in mean TOI during SS exercise follow-
ing MC supplementation (57.4 ± 1.7 vs. 54.4 ± 6.9%, 

Fig. 1  Exemplar plot of TOI during steady-state (a) and time-trial (b) 
exercise. Tissue oxygenation index (i.e., TOI) was calculated as the 
percentage of total haemoglobin and myoglobin that was oxygenated. 
During steady-state exercise, TOI was averaged across the final 5 min 
of the 10-min bout. TOI was averaged in three work periods corre-
sponding to 5-km intervals during TT exercise
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P = 0.06, d = 0.52), the difference in TOI between PL 
and MC trials was negatively correlated with SS relative 
exercise intensity (i.e., percentage of V̇O2peak , r = − 0.79, 
P = 0.02, Fig. 2). Baseline BLa was similar between tri-
als (PL: 1.7 ± 0.4, MC: 1.5 ± 0.4 mM, P = 0.31, d = 0.38 
Table 1). However, end-exercise BLa was significantly 
higher in MC (PL: 4.4 ± 2.1, MC: 6.7 ± 3.3 mM, P = 0.02, 
d = 0.86, Table  1). There was no difference in mean 
V ̇O2 (PL: 3.1 ± 0.5 vs. MC: 3.1 ± 0.6 l min−1, P = 0.23, 
d = 0.10) or respiratory exchange ratio (PL: 0.96 ± 0.06, 
MC: 0.93 ± 0.07, P = 0.19, d = 0.49) between conditions.

15‑km cycling TT performance

Mean completion time for the 15-km TT was 4.6 ± 2.9% 
(74 ± 50  s) faster in MC (1506 ± 86  s) compared to PL 
(1580 ± 102 s, P < 0.01, d = 0.78, Fig. 3). In addition, there 
was a significant interaction effect (distance × condition, 
P < 0.0001, η2 = 0.75) and the main effects of distance 
(P < 0.0001, η2 = 0.99) and condition (P = 0.02, η2 = 0.58) on 
time taken to complete each 5 km block of the TT, indicat-
ing improved performance following MC supplementation. 
Post hoc t test confirmed that there was a difference between 
conditions during the middle (i.e., 5–10 km) and final 5-km 
intervals (all P < 0.0001, Fig. 4). This improvement in mean 
group performance was consistent in all 8 participants, rang-
ing from a 0.6 to 8.9% reduction in time to complete the 
15-km TT (Fig. 3).

15‑km cycling physiological responses

BLa was significantly increased after the TT (P < 0.0001, 
η2 = 0.90, Table  1). However, no interaction effect or 
main effect of condition were observed between MC 
(12.1 ± 4.2 mM) and PL (12.4 ± 3.9 mM, P = 0.82) immedi-
ately post TT. There was also no interaction effect or main 
effect of condition on TOI between MC (55.1 ± 7.7%) and 
PL (53.7 ± 7.2%, P = 0.70), despite observing a significant 
decrease in TOI during the TT (main time effect: P < 0.0001, 
η2 = 0.71). Similarly, analysis of the V̇O2 profile revealed 
no interaction effect or main effect of condition (mean V̇O2 
PL: 3.4 ± 0.6 l min−1 MC: 3.5 ± 0.5 l min−1 P = 0.70). A 

Table 1  Physiological responses to steady-state and 15-km cycling 
TT

RER respiratory exchange ratio, TOI tissue oxygen saturation index, 
TT time-trial
a Significantly different from PL, P < 0.05

Placebo (PL) Cherry Active (MC)

Steady-state exercise
 End-exercise lactate (mmol/L) 4.4 ± 2.1 6.7 ± 3.3a

 End-exercise RER 0.96 ± 0.06 0.93 ± 0.07
 Baseline TOI (%) 68.7 ± 2.1 70.4 ± 2.3*
 Mean SS exercise TOI (%) 54.4 ± 6.8 57.4 ± 4.8
 Mean V̇O

2
 (L/min) 3.1 ± 0.5 3.1 ± 0.6

15-km time-trial
 TT performance (s) 1580 ± 102 1506 ± 86*
 End-exercise lactate (mmol/L) 12.4 ± 3.9 12.1 ± 4.2
 End-exercise RER 0.99 ± 0.05 0.96 ± 0.06
 End-exercise TOI (%) 53.7 ± 7.2 55.1 ± 7.7
 Mean V̇O

2
 (L/min) 3.4 ± 0.6 3.5 ± 0.5

Fig. 2  Difference in tissue oxygenation index (TOI) between cherry 
and placebo trials during steady-state exercise for each participant. 
A significant correlation was found between the difference in TOI 
between trials and SS percentage of V̇O2peak (r = − 0.79, r2 = 0.62, 
P < 0.05) with the cherry supplementation shown to yield larger 
changes in TOI compared to placebo trial at lower relative V̇O2

Fig. 3  Mean completion time for the 15-km TT following placebo 
(dark grey) and cherry supplementation (grey). Completion time was 
significantly decreased following cherry supplementation (P < 0.05). 
Of the 8 participants, all 8 completed the TT in a quicker time follow-
ing cherry supplementation compared to placebo, ranging from a 9 s 
(0.6%) improvement to a 155 s (8.9%) improvement. Asterisk signifi-
cantly different to placebo (P < 0.05)



680 European Journal of Applied Physiology (2019) 119:675–684

1 3

main effect of time on V̇O2 was observed during the TT 
(main time effect: P < 0.0001, η2 = 0.74), reflecting increase 
in oxygen consumption as the TT progressed. Asterisk sig-
nificantly different from placebo (P < 0.05)

Discussion

The main novel finding of this study was that, consistent 
with our primary hypothesis, 15-km TT performance was 
improved following 7-day MC supplementation compared 
with PL in a group of trained male cyclists. This improve-
ment in exercise performance was accompanied by a sig-
nificant increase in resting (‘baseline’) m. vastus lateralis 
oxygenation.

In the current study, 15-km cycling TT performance was 
improved by ~ 4.6% following MC relative to PL. MC sup-
plementation has been shown to decrease markers of inflam-
mation and oxidative stress (Bell et al. 2014), as well as 
enhance recovery from muscle damage (Bowtell et al. 2011; 
Howatson et al. 2010). The magnitude of improvement in TT 
performance in our study is larger than that proposed as the 
“smallest worthwhile change” for road TT cycling (Paton 
and Hopkins 2006) and are similar to acute nitrate sup-
plementation of similar TT duration (Lansley et al. 2011). 
However, it is pertinent to note that whilst the magnitude of 
improvement in mean group TT performance was larger than 
that proposed as the smallest worthwhile change, only 6 of 8 
subjects experienced improvements in TT performance that 
exceeded the smallest worthwhile change. Thus, whilst all 8 
subjects experienced an ‘improvement’ in TT performance, 

the ‘differences’ observed within 2 participants were within 
the day-to-day variability of the measurement. As a conse-
quence, we only observed a medium effect size of supple-
mentation on TT performance (d = 0.78).

However, our findings support recent observations on 
the potential of MC supplementation to improve exercise 
performance (Keane et al. 2018; Levers et al. 2016). Spe-
cifically, Keane et al. (2018) found a single acute dose of 
Montmorency cherry concentrate (60 ml, providing 73 mg 
cyanidin-3-glucoside per L) to increase peak power by 
9.5% in trained endurance cyclists. Whereas, Levers et al. 
(2016), demonstrated a freeze-dried Montmorency cherry 
supplement (480 mg daily, ~ 990 mg polyphenols includ-
ing ~ 66 mg anthocyanins, 7 days before, the day of, and 2 
days after completing a half-marathon) to attenuate post-
run markers of muscle catabolism and physiological stress 
(dampening of the inflammatory response and better main-
tenance of redox balance) in trained individuals. However, it 
should be noted that this study randomised participants into 
independent groups matched for reported race pace and thus 
did not perform a crossover design. In addition, a ‘non-sig-
nificant trend’ (P = 0.09) was observed for an improvement 
in running performance (~ 13%) when compared to predicted 
race pace. In addition, many studies, including Keane et al. 
(2018), ask participants to adhere to a restricted diet in the 
days preceding the trials, highlighting the need for further 
work in investigating the potential synergetic effects of MC 
supplementation within habitual dietary practices. This is 
particularly important for athletes who typically have a diet 
high in polyphenols.

Our findings are in agreement with Cook et al. (2015) 
who reported enhanced 16.1-km cycling TT performance 
by ~ 2.4% following 7-day blackcurrant supplementation 
(providing 105 mg day−1 anthocyanins). A number of other 
studies have also observed enhanced exercise performance 
after acute polyphenol supplementation during, for exam-
ple, treadmill running (ecklonia cava, Oh et al. 2010) and 
repeated all-out cycling (grape, pomegranate and green tea 
blend, Cases et al. 2017; pomegranate extract; Trexler et al. 
2014). Chronic (7 day) blackcurrant polyphenol (105 mg 
anthocyanin, Cook et al. 2015; Perkins et al. 2015; Mur-
phy et al. 2017) and 2-day epigallocatechin (EGCG, Rich-
ards et al. 2010) supplementation have also been shown to 
enhance exercise performance.

In contrast, a previous study has reported no improvement 
in 20-km TT performance in moderately trained individu-
als following MC supplementation despite a 3-day ingestion 
of dried Montmorency cherries which provided 216 mg of 
polyphenol of which the final dose was administered 2–3 h 
prior to the cycling trial (Clifford et al. 2013). In addition, 
not all studies have found ergogenic effects of polyphe-
nol ingestion (Crum et al. 2017; Labonté et al. 2013). The 
absence of effect in these studies may relate to differences 

Fig. 4  Mean ± SD completion time for the 15-km TT following pla-
cebo (dark grey) and cherry supplementation (grey) in 5-km inter-
vals. Completion time was significantly decreased following cherry 
supplementation (P < 0.05). TT time was significantly different at 
10- and 15-km time points. Asterisk significantly different to placebo 
(P < 0.05)
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in dosing (i.e., 462 vs. 216 mg; 7 vs. 3 days, Clifford et al. 
2013), training status (i.e., novice vs. athlete, Crum et al. 
2017; Labonté et al. 2013), environmental conditions (i.e., 
high altitude, Crum et al. 2017), current antioxidant status 
(i.e., high vs. low, Green et al. 2004) as well as the timing 
of intake (i.e., 60 min vs. 2–3 h prior to exercise, Clifford 
et al. 2013) which may have marked effects on the ergogenic 
effects of polyphenol supplementation. The current investi-
gation used MC powdered capsules in trained cyclists, using 
a TT scenario and a high polyphenol dose (462 mg poly-
phenols day−1) for 7 days, combined with a maintenance of 
habitual diet (i.e., with no polyphenol restrictions), thereby 
potentially explaining some of the differences observed 
between studies and maximising the ecological validity of 
our findings, respectively. In addition, the last supplement 
dose on day 7 was taken 60 min prior to exercise, since it 
has been observed that the endothelial-dependent vasodila-
tation response peaks approximately 60 min after ingestion 
of blueberry polyphenols (Rodriguez-Mateos et al. 2013). 
However, other studies have timed the polyphenol dose to 
coincide with peak plasma anthocyanin metabolite concen-
tration which occurs 90–120 min following consumption 
(Keane et al. 2018).

We also observed a significant increase in baseline muscle 
oxygenation (i.e., TOI) with a medium effect size (d = 0.76), 
suggesting increased perfusion following MC supplementa-
tion. However, there was no statistically significant effect 
of MC on TOI during SS exercise (d = 0.52), which may 
indicate that the study was underpowered to detect an effect 
on TOI during exercise. There was a significant negative 
correlation in the difference in TOI between conditions with 
the percentage of V̇O2peak suggesting that the increase in TOI 
after MC supplementation was more pronounced at lower 
exercise intensities. In agreement with this observation of 
increased perfusion with MC supplementation, enhanced 
vascular function has been implicated in other studies fol-
lowing polyphenol supplementation, which paralleled the 
ergogenic effects for performance (blackcurrant, Cook et al. 
2015; pomegranate; Roelofs et al. 2017; pomegranate; Trex-
ler et al. 2014). This suggestion of increased perfusion is 
corroborated by the elevated BLa in the cherry trial, which 
is unlikely to be due to increased lactate production, since 
oxygen consumption and the amount of work completed dur-
ing 10-min SS cycle exercise at 65% V̇O2peak were identical 
between trials. Rather, the elevated BLa is most likely due 
to increased lactate efflux from the muscle as a consequence 
of higher perfusion (Richardson et al. 1998). These observa-
tions are consistent with previous findings of reduced blood 
pressure following MC supplementation (Keane et al. 2018), 
providing further support that the enhanced performance 
might be mediated through the vasodilatory properties of 
polyphenol-rich MC.

These vasoactive properties of fruit-derived polyphenols 
have been also been demonstrated in resting conditions, with 
enhanced FMD evident after acute blueberry (Rodriguez-
Mateos et al. 2013) and chronic blackcurrant (Khan et al. 
2014) supplementation. The improvement in FMD is, by 
definition, a result of increased NO bioavailability, since 
FMD is NO dependent (Pyke and Tschakovsky 2005). It 
is likely that similar mechanisms underpin the enhanced 
muscle oxygenation observed in the present study and the 
improved arterio-venous difference postulated by others 
(Richards et al. 2010). However, Keane et al. (2018) recently 
demonstrated an improvement in end-sprint cycling perfor-
mance despite no differences in plasma nitrite concentration 
between MC and PL suggesting that the improvements in 
performance with MC supplementation appear to be inde-
pendent of NO-mediated signalling (and thus perfusion) 
and likely due to a reduction in ROS production. Although 
plasma nitrite may not be a sufficiently sensitive measure 
of NO in muscle (see Bryan and Grisham 2007 for review). 
However, our results do corroborate Keane et al. (2018) as, 
during all-out cycling where the participant has an ability to 
manipulate work output, we observed no differences in TOI.

During high-intensity exercise, excessive ROS production 
can lead to cellular damage and oxidative stress (Powers 
et al. 2004; MacRae and Mefferd 2006). There is evidence 
that acute (dark chocolate, Davison et al. 2012; black grape, 
raspberry and redcurrant polyphenol blend; Morillas-Ruiz 
et al. 2006; curcumin; Takahashi et al. 2014) and chronic 
(blueberry, McAnulty et al. 2011) polyphenol supplementa-
tion protects against endurance exercise-induced oxidative 
damage, but unfortunately these studies did not include an 
assessment of exercise performance. Whereas in the present 
study, whilst performance was enhanced, no measures of 
oxidative damage are available. However, MC concentrate 
has been shown to reduce oxidative damage after intense 
exercise (i.e., Bowtell et al. 2011; Howatson et al. 2010).

Previous literature has reported that the baseline antioxi-
dant profile of an individual is an important determinant of 
the ergogenic effectiveness of an antioxidant intervention 
(Paschalis et al. 2018). In contrast to some other studies, 
no dietary restrictions to reduce polyphenol intake were 
imposed in the present study and ergogenic effects were 
nonetheless evident. The improvement in cycling perfor-
mance in the current study could prove beneficial in elite 
sporting performance where athletes are attempting to find 
small but significant improvements in performance. Our 
findings are especially pertinent for highly trained indi-
viduals who demonstrate optimal NOS expression and high 
habitual dietary intakes of antioxidants to combat oxidative 
stress (Green et al. 2004).

In conclusion, 7-day Montmorency cherry powder sup-
plementation enhanced 15-km cycling TT performance. 
This improvement in exercise performance seems to involve 
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enhanced muscle perfusion as evidenced by increased mus-
cle oxygenation presumably due to the vasoactive and anti-
oxidative effects of the phytochemicals within the Mont-
morency cherries. The results of this study suggest that 
supplementation with MC concentrate might represent, a 
practical, non-pharmacological, dietary intervention to 
reduce enhance cycling performance in trained individu-
als. However, further research is required to investigate the 
dose–response between MC supplementation and cycling 
performance as well as the precise mechanisms responsible 
for this ergogenic potential, especially in the presence of a 
diet high in polyphenols.
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