261 research outputs found

    Towards fast machine-learning-assisted Bayesian posterior inference of microseismic event location and source mechanism

    Get PDF
    Bayesian inference applied to microseismic activity monitoring allows the accurate location of microseismic events from recorded seismograms and the estimation of the associated uncertainties. However, the forward modelling of these microseismic events, which is necessary to perform Bayesian source inversion, can be prohibitively expensive in terms of computational resources. A viable solution is to train a surrogate model based on machine learning techniques, to emulate the forward model and thus accelerate Bayesian inference. In this paper, we substantially enhance previous work, which considered only sources with isotropic moment tensors. We train a machine learning algorithm on the power spectrum of the recorded pressure wave and show that the trained emulator allows complete and fast event locations for any source mechanism. Moreover, we show that our approach is computationally inexpensive, as it can be run in less than 1 hour on a commercial laptop, while yielding accurate results using less than 104 training seismograms. We additionally demonstrate how the trained emulators can be used to identify the source mechanism through the estimation of the Bayesian evidence. Finally, we demonstrate that our approach is robust to real noise as measured in field data. This work lays the foundations for efficient, accurate future joint determinations of event location and moment tensor, and associated uncertainties, which are ultimately key for accurately characterising human-induced and natural earthquakes, and for enhanced quantitative seismic hazard assessments

    Path Integral Marginalization for Cosmology: Scale Dependent Galaxy Bias & Intrinsic Alignments

    Full text link
    We present a path-integral likelihood formalism that extends parameterized likelihood analyses to include continuous functions. The method finds the maximum likelihood point in function-space, and marginalizes over all possible functions, under the assumption of a Gaussian-distributed function-space. We apply our method to the problem of removing unknown systematic functions in two topical problems for dark energy research : scale-dependent galaxy bias in redshift surveys; and galaxy intrinsic alignments in cosmic shear surveys. We find that scale-dependent galaxy bias will degrade information on cosmological parameters unless the fractional variance in the bias function is known to 10%. Measuring and removing intrinsic alignments from cosmic shear surveys with a flat-prior can reduce the dark energy Figure-of-Merit by 20%, however provided that the scale and redshift-dependence is known to better than 10% with a Gaussian-prior, the dark energy Figure-of-Merit can be enhanced by a factor of two with no extra assumptions.Comment: 11 pages, 4 figures, submitted to MNRA

    Cosmological systematics beyond nuisance parameters: form-filling functions

    Get PDF
    In the absence of any compelling physical model, cosmological systematics are often misrepresented as statistical effects and the approach of marginalizing over extra nuisance systematic parameters is used to gauge the effect of the systematic. In this article, we argue that such an approach is risky at best since the key choice of function can have a large effect on the resultant cosmological errors. As an alternative we present a functional form-filling technique in which an unknown, residual, systematic is treated as such. Since the underlying function is unknown, we evaluate the effect of every functional form allowed by the information available (either a hard boundary or some data). Using a simple toy model, we introduce the formalism of functional form filling. We show that parameter errors can be dramatically affected by the choice of function in the case of marginalizing over a systematic, but that in contrast the functional form-filling approach is independent of the choice of basis set. We then apply the technique to cosmic shear shape measurement systematics and show that a shear calibration bias of |m(z)| ≲ 10−3 (1 +z)0.7 is required for a future all-sky photometric survey to yield unbiased cosmological parameter constraints to per cent accuracy. A module associated with the work in this paper is available through the open source icosmo code available at http://www.icosmo.or

    Galaxy alignments: An overview

    Full text link
    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.Comment: 43 pages excl. references, 16 figures; minor changes to match version published in Space Science Reviews; part of a topical volume on galaxy alignments, with companion papers at arXiv:1504.05546 and arXiv:1504.0546

    Galaxy alignments: Observations and impact on cosmology

    Full text link
    Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the physics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of galaxy alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments have taken on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes galaxy alignments, commonly referred to as intrinsic alignments, an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.Comment: 52 pages excl. references, 16 figures; minor changes to match version published in Space Science Reviews; part of a topical volume on galaxy alignments, with companion papers arXiv:1504.05456 and arXiv:1504.0554

    Weak gravitational lensing with the Square Kilometre Array

    Get PDF
    We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.Comment: 19 pages, 6 figures. Cosmology Chapter, Advancing Astrophysics with the SKA (AASKA14) Conference, Giardini Naxos (Italy), June 9th-13th 201

    Cosmological Systematics Beyond Nuisance Parameters : Form Filling Functions

    Full text link
    In the absence of any compelling physical model, cosmological systematics are often misrepresented as statistical effects and the approach of marginalising over extra nuisance systematic parameters is used to gauge the effect of the systematic. In this article we argue that such an approach is risky at best since the key choice of function can have a large effect on the resultant cosmological errors. As an alternative we present a functional form filling technique in which an unknown, residual, systematic is treated as such. Since the underlying function is unknown we evaluate the effect of every functional form allowed by the information available (either a hard boundary or some data). Using a simple toy model we introduce the formalism of functional form filling. We show that parameter errors can be dramatically affected by the choice of function in the case of marginalising over a systematic, but that in contrast the functional form filling approach is independent of the choice of basis set. We then apply the technique to cosmic shear shape measurement systematics and show that a shear calibration bias of |m(z)|< 0.001(1+z)^0.7 is required for a future all-sky photometric survey to yield unbiased cosmological parameter constraints to percent accuracy. A module associated with the work in this paper is available through the open source iCosmo code available at http://www.icosmo.org .Comment: 24 pages, 18 figures, accepted to MNRA

    Accelerating Bayesian microseismic event location with deep learning

    Get PDF
    We present a series of new open-source deep-learning algorithms to accelerate Bayesian full-waveform point source inversion of microseismic events. Inferring the joint posterior probability distribution of moment tensor components and source location is key for rigorous uncertainty quantification. However, the inference process requires forward modelling of microseismic traces for each set of parameters explored by the sampling algorithm, which makes the inference very computationally intensive. In this paper we focus on accelerating this process by training deep-learning models to learn the mapping between source location and seismic traces for a given 3D heterogeneous velocity model and a fixed isotropic moment tensor for the sources. These trained emulators replace the expensive solution of the elastic wave equation in the inference process. We compare our results with a previous study that used emulators based on Gaussian processes to invert microseismic events. For fairness of comparison, we train our emulators on the same microseismic traces and using the same geophysical setting. We show that all of our models provide more accurate predictions, ∼ 100 times faster predictions than the method based on Gaussian processes, and a (105) speed-up factor over a pseudo-spectral method for waveform generation. For example, a 2 s long synthetic trace can be generated in ∼ 10 ms on a common laptop processor, instead of ∼ 1 h using a pseudo-spectral method on a high-profile graphics processing unit card. We also show that our inference results are in excellent agreement with those obtained from traditional location methods based on travel time estimates. The speed, accuracy, and scalability of our open-source deep-learning models pave the way for extensions of these emulators to generic source mechanisms and application to joint Bayesian inversion of moment tensor components and source location using full waveforms.</p

    Flat-sky pseudo-cls analysis for weak gravitational lensing

    Get PDF
    We investigate the use of estimators of weak lensing power spectra based on a flat-sky implementation of the Pseudo-Cl (PCl) technique, where the masked shear field is transformed without regard for masked regions of sky. This masking mixes power, and E-convergence and B-modes. To study the accuracy of forward-modelling and full-sky power spectrum recovery we consider both large-area survey geometries, and small-scale masking due to stars and a checkerboard model for field-of-view gaps. The power spectrum for the large-area survey geometry is sparsely-sampled and highly oscillatory, which makes modelling problematic. Instead, we derive an overall calibration for large-area mask bias using simulated fields. The effects of small-area star masks can be accurately corrected for, while the checkerboard mask has oscillatory and spiky behaviour which leads to percent biases. Apodisation of the masked fields leads to increased biases and a loss of information. We find that we can construct an unbiased forward-model of the raw PCls, and recover the full-sky convergence power to within a few percent accuracy for both Gaussian and lognormal-distributed shear fields. Propagating this through to cosmological parameters using a Fisher-Matrix formalism, we find we can make unbiased estimates of parameters for surveys up to 1,200 deg2^2 with 30 galaxies per arcmin2^2, beyond which the percent biases become larger than the statistical accuracy. This implies a flat-sky PCl analysis is accurate for current surveys but a Euclid-like survey will require higher accuracy.Comment: 25 pages, 14 figure

    Group-scale intrinsic galaxy alignments in the Illustris-TNG and MassiveBlack-II simulations

    Get PDF
    We study the alignments of satellite galaxies, and their anisotropic distribution, with respect to location and orientation of their host central galaxy in MassiveBlack-II and IllustrisTNG simulations. We find that: the shape of the satellite system in halos of mass (>1013h−1M⊙> 10^{13}h^{-1}M_{\odot}) is well aligned with the shape of the central galaxy at z=0.06z=0.06 with the mean alignment between the major axes being ∼Δθ=12∘\sim \Delta \theta = 12^{\circ} when compared to a uniform random distribution; that satellite galaxies tend to be anisotropically distributed along the major axis of the central galaxy with a stronger alignment in halos of higher mass or luminosity; and that the satellite distribution is more anisotropic for central galaxies with lower star formation rate, which are spheroidal, and for red central galaxies.Radially we find that satellites tend to be distributed along the major axis of the shape of the stellar component of central galaxies at smaller scales and the dark matter component on larger scales. We find that the dependence of satellite anisotropy on central galaxy properties and the radial distance is similar in both the simulations with a larger amplitude in MassiveBlack-II. The orientation of satellite galaxies tends to point toward the location of the central galaxy at small scales and this correlation decreases with increasing distance, and the amplitude of satellite alignment is higher in high mass halos. However, the projected ellipticities do not exhibit a scale-dependent radial alignment, as has been seen in some observational measurements.Comment: 15 pages, 9 figures, revised after referee comments, accepted for publication in MNRA
    • …
    corecore