26,203 research outputs found

    Seeing, Wind and Outer Scale Effects on Image Quality at the Magellan Telescopes

    Full text link
    We present an analysis of the science image quality obtained on the twin 6.5 metre Magellan telescopes over a 1.5 year period, using images of ~10^5 stars. We find that the telescopes generally obtain significantly better image quality than the DIMM-measured seeing. This is qualitatively consistent with expectations for large telescopes, where the wavefront outer scale of the turbulence spectrum plays a significant role. However, the dominant effect is found to be wind speed with Magellan outperforming the DIMMs most markedly when the wind is strongest. Excluding data taken during strong wind conditions (>10 m/s), we find that the Magellan telescopes still significantly outperform the DIMM seeing, and we estimate the site to have L_0 ~ 25 m on average. We also report on the first detection of a negative bias in DIMM data. This is found to occur, as predicted, when the DIMM is affected by certain optical aberrations and the turbulence profile is dominated by the upper layers of the atmosphere.Comment: Accepted for publication in PASP. 10 pages, 12 figures

    Photo-emission rate of sQGP at finite density

    Full text link
    We calculate the thermal spectral function of SYM plasma with finite density using holographic technique. We take the RN-AdS black hole as the dual gravity theory. In the presence of charge, vector modes of gravitational and electromagnetic perturbation are coupled with each other. By introducing master variables for these modes, we solve the coupled system and calculate spectral function. We also calculated photoemission rate of SYM plasma from spectral function for light like momentum, AC conductivity and their density dependence. The suppression of the conductivity in high density is noticed, which might be yet another mechanism for the Jet quenching phenomena in RHIC experiment.Comment: 27 pages, 10 figure

    Three-loop HTL gluon thermodynamics at intermediate coupling

    Get PDF
    We calculate the thermodynamic functions of pure-glue QCD to three-loop order using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature quantum field theory. We show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T3  TcT\simeq3\;T_c. Our results suggest that HTLpt provides a systematic framework that can used to calculate static and dynamic quantities for temperatures relevant at LHC.Comment: 24 pages, 13 figs. 2nd version: improved discussion and fixing typos. Published in JHE

    Measuring the Hidden Aspects of Solar Magnetism

    Full text link
    2008 marks the 100th anniversary of the discovery of astrophysical magnetic fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines in sunspots. With the introduction of Babcock's photoelectric magnetograph it soon became clear that the Sun's magnetic field outside sunspots is extremely structured. The field strengths that were measured were found to get larger when the spatial resolution was improved. It was therefore necessary to come up with methods to go beyond the spatial resolution limit and diagnose the intrinsic magnetic-field properties without dependence on the quality of the telescope used. The line-ratio technique that was developed in the early 1970s revealed a picture where most flux that we see in magnetograms originates in highly bundled, kG fields with a tiny volume filling factor. This led to interpretations in terms of discrete, strong-field magnetic flux tubes embedded in a rather field-free medium, and a whole industry of flux tube models at increasing levels of sophistication. This magnetic-field paradigm has now been shattered with the advent of high-precision imaging polarimeters that allow us to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar magnetism that have been hidden to Zeeman diagnostics. It is found that the bulk of the photospheric volume is seething with intermediately strong, tangled fields. In the new paradigm the field behaves like a fractal with a high degree of self-similarity, spanning about 8 orders of magnitude in scale size, down to scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Future CMB tests of dark matter: ultra-light axions and massive neutrinos

    Get PDF
    Measurements of cosmic microwave background (CMB) anisotropies provide strong evidence for the existence of dark matter and dark energy. They can also test its composition, probing the energy density and particle mass of different dark-matter and dark-energy components. CMB data have already shown that ultra-light axions (ULAs) with mass in the range 1032 eV1026 eV10^{-32}~{\rm eV} \to 10^{-26}~{\rm eV} compose a fraction <0.01< 0.01 of the cosmological critical density. Here, the sensitivity of a proposed CMB-Stage IV (CMB-S4) experiment (assuming a 1 arcmin beam and <1 μKarcmin< 1~\mu K{\rm-arcmin} noise levels over a sky fraction of 0.4) to the density of ULAs and other dark-sector components is assessed. CMB-S4 data should be 10\sim 10 times more sensitive to the ULA energy-density than Planck data alone, across a wide range of ULA masses 1032<ma<1023 eV10^{-32}< m_{a}< 10^{-23}~{\rm eV}, and will probe axion decay constants of fa1016 GeVf_{a}\approx 10^{16}~{\rm GeV}, at the grand unified scale. CMB-S4 could improve the CMB lower bound on the ULA mass from 1025 eV\sim 10^{-25}~{\rm eV} to 1023 eV10^{-23}~{\rm eV}, nearing the mass range probed by dwarf galaxy abundances and dark-matter halo density profiles. These improvements will allow for a multi-σ\sigma detection of percent-level departures from CDM over a wide range of masses. Much of this improvement is driven by the effects of weak gravitational lensing on the CMB, which breaks degeneracies between ULAs and neutrinos. We also find that the addition of ULA parameters does not significantly degrade the sensitivity of the CMB to neutrino masses. These results were obtained using the axionCAMB code (a modification to the CAMB Boltzmann code), presented here for public use.Comment: 16 pages, 12 figures. The axionCAMB code will be available online at http://github.com/dgrin1/axionCAMB from 1 August 201

    A Substantial Amount of Hidden Magnetic Energy in the Quiet Sun

    Full text link
    Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only 1{\sim}1% of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99%. Here we report three-dimensional radiative tranfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data we find a ubiquitous tangled magnetic field with an average strength of 130{\sim}130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.Comment: 21 pages and 2 figures (letter published in Nature on July 15, 2004

    Three-loop HTL QCD thermodynamics

    Get PDF
    The hard-thermal-loop perturbation theory (HTLpt) framework is used to calculate the thermodynamic functions of a quark-gluon plasma to three-loop order. This is the highest order accessible by finite temperature perturbation theory applied to a non-Abelian gauge theory before the high-temperature infrared catastrophe. All ultraviolet divergences are eliminated by renormalization of the vacuum, the HTL mass parameters, and the strong coupling constant. After choosing a prescription for the mass parameters, the three-loop results for the pressure and trace anomaly are found to be in very good agreement with recent lattice data down to T23TcT \sim 2-3\,T_c, which are temperatures accessible by current and forthcoming heavy-ion collision experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE

    Pengaruh Ukuran Manset Terhadap Hasil Pengukuran Tekanan Darah

    Full text link
    Correct blood pressure measurements are essential to diagnosing and treating high blood pressure. Several factors influence blood pressure measurements and the factor which is often neglected by the medical professionals is the cuff size inappropriate to the arm size of the patient. &nbsp;Public assumes adult cuff in ordinary sphygmomanometer according to measure blood pressure in all people. This research evaluated the effect of adult cuff size and 8-9 cuff size for children on blood pressure measurement of 30 children 8-10 years old. The research was an analytic survey. Data measured in the form of systolic pressure and diastolic pressure in set of mmHg. &nbsp;The result of the experiment, the average of systole blood pressure using adult cuff size was 89.9 mmHg and using 8-9 cm cuff was 104.1 mmHg. While the average of diastole using adult cuff size &nbsp;was 58 mmHg and using 8-9 cm cuff was 68 mmHg. Analysis data shows that measurement of systole and diastole blood pressure using adult &nbsp;cuff will &nbsp;gives lower blood pressure result than 8-9 cm cuff (p&lt;0.0001). Conclusion is cuff size influences the result of blood pressure measurement, measurement of blood pressure using larger cuff will gives lower blood pressure result

    Conclusions from the symposium: Two decades of ART: success through research

    Get PDF
    Two decades of ART research has served as the catalyst for a new way of thinking about oral health care. It is now necessary to build on the success of ART research by educating existing and future oral health professionals and health decision makers about the benefits of the ART approach. It is also important to build upon the sound research base that already exists on ART even though enough is known about ART to consider it is a reliable and quality approach to control caries. While oral health promotion through prevention remains the essential foundation of oral health, the ART approach is an important corner stone in the building of global oral health
    corecore