1,763 research outputs found

    Recycling of Reinforced Glass Fibers Waste: Current Status

    Get PDF
    UID/00667/2020In this paper, a review of the current status and future perspectives for reinforced glass fiber waste is undertaken, as well as an evaluation of the management hierarchy for these end-of-life materials. Waste levels are expected to increase in the coming years, but an improvement of collection routes is still necessary. The recycling processes for these materials are presented. The associated advantages and disadvantages, as well as the corresponding mechanical characteristics, are described. Although mechanical shredding is currently the most used process, there is a potential for thermal processes to be more competitive than others due to the fiber quality after the recycling process. However, the energy requirements of each of the processes are not yet well explained, which compromises the determination of the economic value of the recycled fibers when included in other products, as well as the process feasibility. Nevertheless, the work of some authors that successfully integrated recycled glass fibers into other elements with increased mechanical properties is evaluated. Future recommendations for the recycling of glass fiber and its commercialization are made.publishersversionpublishe

    Electromagnetic dual Einstein-Maxwell-scalar models

    Full text link
    Electromagnetic duality is discussed in the context of Einstein-Maxwell-scalar (EMS) models including axionic-type couplings. This family of models introduces two non-minimal coupling functions f(ϕ)f(\phi) and g(ϕ)g(\phi), depending on a real scalar field ϕ\phi. Interpreting the scalar field as a medium, one naturally defines constitutive relations as in relativistic non-linear electrodynamics. Requiring these constitutive relations to be invariant under the SO(2)SO(2) electromagnetic duality rotations of Maxwell's theory, defines 1-parameter, closed duality orbits\textit{duality orbits} in the space of EMS models, connecting different electromagnetic fields in "dual" models with different coupling functions, but leaving both the scalar field and the spacetime geometry invariant. This mapping works as a solution generating technique, extending any given solution of a specific model to a (different) solution for any of the dual models along the whole duality orbit. We illustrate this technique by considering the duality orbits seeded by specific EMS models wherein solitonic and black hole solutions are known. For dilatonic models, specific rotations are equivalent to SS-duality.Comment: 18 pages, 1 figur

    Algorithm of dynamic programming for optimization of the global matching between two contours defined by ordered points

    Get PDF
    This paper presents a new assignment algorithm with order restriction. Our optimization algorithm was developed using dynamic programming. It was implemented and tested to determine the best global matching that preserves the order of the points that define two contours to be matched. In the experimental tests done, we used the affinity matrix obtained via the method proposed by Shapiro, based on geometric modeling and modal matching. \newline The proposed algorithm revealed an optimum performance, when compared with classic assignment algorithms: Hungarian Method, Simplex for Flow Problems and LAPm. Indeed, the quality of the matching improved when compared with these three algorithms, due to the disappearance of crossed matching, which is allowed by the conventional assignment algorithms. Moreover, the computational cost of this algorithm is much lower than the ones of other three, leading to enhanced execution times

    Optimization of the global matching between two contours defined by ordered points using an algorithm based on dynamic programming

    Get PDF
    This paper presents a new assignment algorithm with order restriction, developed using the paradigm of dynamic programming. The algorithm was implemented and tested to determine the best global matching between two sets of points that represent the contours to be matched. In the experimental tests done, we used the affinity matrix obtained via the method proposed by Shapiro based on geometric modeling and modal matching.The proposed algorithm revealed an optimum performance, when compared with the classic assignment algorithms considered in this work: Hungarian method, Simplex for Flow Problems and LAPm. Indeed, the quality of the matching improved when compared with these three algorithms, because the crossed matching, allowed by the conventional assignment algorithms, disappeared. Besides, the computational cost of our algorithm is very low in comparison with the other three, resulting in lesser execution times

    Unlocking the in vitroanti- inflammatory and antidiabetic potential of Polygonum maritimum

    Get PDF
    Context: Several Polygonum species (Polygonaceae) are used in traditional medicine in Asia, Europe and Africa to treat inflammation and diabetes. Objective: Evaluate the in vitro antioxidant, anti-inflammatory and antidiabetic potential of methanol and dichloromethane extracts of leaves and roots of the halophyte Polygonum maritimum L. Material and methods: Antioxidant activity was determined (up to 1mg/mL) as radical-scavenging activity (RSA) of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), copper (CCA) and iron (ICA) chelating activities and iron reducing power (FRAP). NO production was measured in lipopolysaccharide (LPS)-stimulated macrophages for 24 h at concentrations up to 100 mu g/mL and antidiabetic potential was assessed by alpha-amylase and alpha-glucosidase inhibition (up to 10 g/mL) assays. The phytochemical composition of the extracts was determined by gas chromatography-mass spectrometry (GC-MS). Results: The methanol leaf extract had the highest activity against DPPH center dot (IC50 = 26 mu g/mL) and ABTS1(+)center dot (IC50 = 140 mu g FRAP (IC50 = 48 mu g/mL) and CCA (IC50 = 770 mu g/mL). Only the dichloromethane leaf extract (LDCM) showed anti-inflammatory activity (IC50 = 48 mu g/mL). The methanol root (IC50 = 19 mu g/mL) and leaf (IC50 = 29 mu g/mL) extracts strongly inhibited baker's yeast alpha-glucosidase, but LDCM had higher rat's alpha-glucosidase inhibition (IC50 = 2527 mu g/mL) than acarbose (IC50 = 4638 mu g/mL). GC-MS analysis identified beta-sitosterol, stigmasterol, 1-octacosanol and linolenic acid as possible molecules responsible for the observed bioactivities. Conclusions: Our findings suggest P. maritimum as a source of high-value health promoting commodities for alleviating symptoms associated with oxidative and inflammatory diseases, including diabetes.XtremeBio project - Foundation for Science and Technology (FCT) [PTDC/MAR-EST/4346/2012]; Portuguese National Budget; FCT [CCMAR/Multi/04326/ 2013, IF/00049/2012, SFRH/BPD/86071/2012, UID/Multi/00612/2013

    Virial identities in relativistic gravity: 1D effective actions and the role of boundary terms

    Get PDF
    Virial (aka scaling) identities are integral identities that are useful for a variety of purposes in nonlinear field theories, including establishing no-go theorems for solitonic and black hole solutions, as well as for checking the accuracy of numerical solutions. In this paper, we provide a pedagogical rationale for the derivation of such integral identities, starting from the standard variational treatment of particle mechanics. In the framework of one-dimensional (1D) effective actions, the treatment presented here yields a set of useful formulas for computing virial identities in any field theory. Then, we propose that a complete treatment of virial identities in relativistic gravity must take into account the appropriate boundary term. For General Relativity this is the Gibbons-Hawking-York boundary term. We test and confirm this proposal with concrete examples. Our analysis here is restricted to spherically symmetric configurations, which yield 1D effective actions (leaving higher-D effective actions and in particular the axially symmetric case to a companion paper). In this case, we show that there is a particular “gauge” choice, i.e. a choice of coordinates and parametrizing metric functions, that simplifies the computation of virial identities in General Relativity, making both the Einstein-Hilbert action and the Gibbons-Hawking-York boundary term noncontributing. Under this choice, the virial identity results exclusively from the matter action. For generic “gauge” choices, however, this is not the case.publishe

    Estimation of energy consumption on the tire-pavement interaction for asphalt mixtures with different surface properties using data mining techniques

    Get PDF
    The energy or fuel consumption of the millions of vehicles that daily operate in road pavements has a significant economic and environmental impact on the use phase of road infrastructures regarding their life cycle analysis. Therefore, new solutions should be studied to reduce the vehicles energy consumption, namely due to the tire-pavement interaction, and contribute towards the sustainable development. This study aims at estimating the energy consumption due to the rolling resistance of tires moving over pavements with distinct surface characteristics. Thus, different types of asphalt mixtures were used in the surface course to determine the main parameters influencing the energy consumption. A laboratory scale prototype was developed explicitly for this evaluation. Data mining techniques were used to analyze the experimental results due to the complex correlation between the data collected during the tests, providing meaningful results. In particular, the artificial neural network allowed to obtain models with excellent capacity to estimate energy consumption. A sensitive analysis was carried out with a five input parameter model, which showed that the main parameters controlling the energy consumption are the vehicle speed and the mean texture depth.ERDF funds, through the Competitivity Factors Operational Programme – COMPETE, and by national funds, through FCT – Foundation for Science and Technology, within the scope of the Strategic Project UID/ECI/04047/2013 and the project POCI-01-0145-FEDER-007633info:eu-repo/semantics/publishedVersio

    Germanium-rich chalcopyrite from the Barrigão remobilised vein deposit, Iberian Pyrite Belt, Portugal

    Get PDF
    Anomalously high germanium contents have been detected by means of whole-rock trace element analysis in remobilised vein type copper ores from the abandoned Barrigão mine, located in the Iberian Pyrite Belt, southern Portugal. The late-Variscan brecciated copper ores consist manly of chalcopyrite, with minor tennantite, rare pyrite and arsenopyrite. The ores, investigated for elements increasingly used in several thin-film and other semiconductor high-technology applications (e.g. indium, selenium, tellurium and germanium), show germanium contents up to 280 ppm, with an average of 61 ppm from 10 samples. Electron Probe Microanalysis of Barrigão ore samples revealed that germanium is contained in chalcopyrite, with a range of 0.1 to 0.4 wt% (0.23 wt% average). High germanium contents seem to be linked to "dirty" chalcopyrite phases, showing irregular patchy zoning under the microscope and on back-scattered electron images

    Tissue engineering and regenerative medicine strategies in meniscus lesions

    Get PDF
    Purpose: The aim of this systematic review was to address tissue engineering and regenerative medicine (TERM) strategies applied to the meniscus, specifically (1) clinical applications, indications, results, and pitfalls and (2) the main trends in research assessed by evaluation of preclinical (in vivo) studies. Methods: Three independent reviewers performed a search on PubMed, from 2006 to March 31, 2011, using the term “meniscus” with all of the following terms: “scaffolds,” “constructs,” “cells,” “growth factors,” “implant,” “tissue engineering,” and “regenerative medicine.” Inclusion criteria were English language–written, original clinical research (Level of Evidence I to IV) and preclinical studies of TERM application in knee meniscal lesions. Reference lists and related articles on journal Web sites of selected articles were checked until prepublication for potential studies that could not be identified eventually by our original search. The modified Coleman Methodology score was used for study quality analysis of clinical trials. Results: The PubMed search identified 286 articles (a similar search from 2000 to 2005 identified 161 articles). Non–English-language articles (n 9), Level V publications (n 19), in vitro studies (n 118), and 102 studies not related to the topic were excluded. One reference was identified outside of PubMed. Thirty-eight references that met the inclusion criteria were identified from the original search. On the basis of our prepublication search, 2 other references were included. A total of 9 clinical and 31 preclinical studies were selected for further analysis. Of the clinical trials, 1 was classified as Level I, 2 as Level II, and 6 as Level IV. Eight referred to acellular scaffold implantation for partial meniscal replacement, and one comprised fibrin clot application. The mean modified Coleman Methodology score was 48.0 (SD, 15.7). Of the preclinical studies, 11 original works reported on studies using large animal models whereas 20 research studies used small animals. In these studies the experimental design favored cell-seeded scaffolds or scaffolds enhanced with growth factors (GFs) in attempts to improve tissue healing, as opposed to the plain acellular scaffolds that were predominant in clinical trials. Injection of mesenchymal stem cells and gene therapy are also presented as alternative strategies. Conclusions: Partial meniscal substitution using acellular scaffolds in selected patients with irreparable loss of tissue may be a safe and promising procedure. However, there is only 1 randomized controlled study supporting its application, and globally, many methodologic issues of published trials limit further conclusions. We registered a different trend in preclinical trials, with most considering augmentation of scaffolds by cells and/or GFs, as opposed to the predominantly acellular approach in clinical trials. Different TERM approaches to enhance meniscal repair or regeneration are in preclinical analysis, such as the use of mesenchymal stem cells, gene therapy, and GFs alone or in combination, and thus could be considered in the design of subsequent trials. Level of Evidence: Level IV, systematic review of Level I to IV studies
    corecore