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Estimation of energy consumption on the tire-pavement interaction for asphalt 22 

mixtures with different surface properties using data mining techniques 23 

Abstract 24 

The energy or fuel consumption of the millions of vehicles that daily operate in road 25 

pavements has a significant economic and environmental impact on the use phase of road 26 

infrastructures regarding their life cycle analysis. Therefore, new solutions should be 27 

studied to reduce the vehicles energy consumption, namely due to the tire-pavement 28 

interaction, and contribute towards the sustainable development. This study aims at 29 

estimating the energy consumption due to the rolling resistance of tires moving over 30 

pavements with distinct surface characteristics. Thus, different types of asphalt mixtures 31 

were used in the surface course to determine the main parameters influencing the energy 32 

consumption. A laboratory scale prototype was developed explicitly for this evaluation. 33 

Data mining techniques were used to analyze the experimental results due to the complex 34 

correlation between the data collected during the tests, providing meaningful results. In 35 

particular, the artificial neural network allowed to obtain models with excellent capacity 36 

to estimate energy consumption. A sensitive analysis was carried out with a five input 37 

parameter model, which showed that the main parameters controlling the energy 38 

consumption are the vehicle speed and the mean texture depth. 39 

Keywords: road pavements; surface characteristics; energy consumption; rolling 40 

resistance; tire-pavement interaction; data mining techniques  41 



1. Introduction 42 

This work presents a new approach to evaluate energy consumption in the tire-pavement 43 

interaction and applies data mining techniques in an unexplored research area to study 44 

solutions for sustainable roads. No other work has been identified in the literature for 45 

evaluation of energy consumption in the tire-pavement interaction based on a purpose-46 

built laboratory prototype. In the future, this approach will allow the study of the energy 47 

consumption of different surface materials in their design phase, with clear advantages 48 

for developing sustainable solutions for road paving surface layers. 49 

The environmental consequences resulting from road pavement construction and 50 

maintenance during its life cycle are not yet fully known, although some authors (Ozer et 51 

al., 2017) have tried to quantify sustainable strategies for these activities. Santero et al. 52 

(2011) analyzed several Life Cycle Assessment (LCA) methodologies for road 53 

pavements, concluding that among five life cycle phases (raw materials and production, 54 

construction, use, maintenance, and end of life) only a few include the use phase in the 55 

analysis, and in a noticeably incomplete way. Those studies mainly focused on the 56 

extraction, production, transportation, and application of materials. However, depending 57 

on the traffic volume during the lifetime of a road, its energy consumption can be around 58 

95% to 98% of the total energy consumption, while the energy used for production, 59 

construction, and maintenance of the road represents less than 2% to 5% 60 

(EAPA/Eurobitume, 2004). Therefore, the use phase is predominant regarding the energy 61 

(fuel) consumption and resulting greenhouse gas emissions of the road (Huang et al., 62 

2009; Mohd Hasan and You, 2015; Pérez-Martínez and Miranda, 2014). 63 

Moreover, according to Pérez-Martínez (2012), road transport is one of the highest 64 

sources of emissions among the different economic sectors, accounting for up to 30% of 65 



the total energy consumption and CO2 emissions. Taking this into account, the importance 66 

of investigating energy consumption estimation during the road pavement use phase 67 

becomes evident. 68 

Currently, some factors are still not taken into account when assessing energy 69 

consumption on roads, namely the quality of road pavement surfaces. That property is 70 

mainly associated with safety and comfort of road users, but also closely related to the 71 

rolling resistance (Mclean and Foley, 1998; Schmidt and Ullidtz, 2010; Willis et al., 2014) 72 

and therefore with the environment and sustainability. In fact, some pavement structures 73 

or layers, namely the surface course can have a significant influence on the rolling 74 

resistance or energy consumption. Some studies indicate that stiffer (Taylor and Patten, 75 

2006; Wathne, 2010) and smoother (Bryce et al., 2014) pavements require a lower fuel 76 

consumption. 77 

Some variables, such as pavement texture and skid resistance, influence the rolling 78 

resistance (Rajaei et al., 2016) and, consequently, the energy consumption (Wang et al., 79 

2012; Zaabar and Chatti, 2010). Thus, the present work aims at evaluating the influence 80 

of different pavement surface courses on the energy consumption required for a tire to 81 

continuously travel over them, based on laboratory tests. Those tests were conducted 82 

under controlled conditions (e.g., speed and load) using a purpose-built laboratory scale 83 

prototype, to select surfaces originating lower energy consumption for similar test 84 

circumstances which may indicate a similar trend for real pavement and traffic conditions. 85 

Several works have been carried out in the last few years to assess the energy/fuel 86 

consumption of vehicles or the rolling resistance of tires, which demonstrates the 87 

importance of this topic on the research activity carried out nowadays. Accordingly, 88 

MIRIAM (Bergiers et al., 2011) and ROSANNE (Anfosso-Ledee et al., 2016; Zöller and 89 



Haider, 2014) can be highlighted as two of the leading research projects recently 90 

concluded in Europe related to this subject, although other researchers in Northern Europe 91 

have also been dedicated to that (Andersen, 2015; Karlsson et al., 2011). In the United 92 

States, the University of California and Caltrans (Wang et al., 2012), the Michigan State 93 

University and the Transportation Research Board (Chatti and Zaabar, 2012; Rajaei et al., 94 

2016), and the Minnesota State University and the Minnesota DoT (Ejsmont et al., 2012; 95 

Ejsmont et al., 2014) have also carried out important research in this topic.  96 

The main types of tests used to evaluate the road surface influence on rolling resistance, 97 

as stated in the previously mentioned works, were: a) measurements on drums in 98 

laboratories; b) specially equipped trailers for measurements on roads; c) coast down 99 

measurements on roads. Among these, the last two types of tests cannot be carried out in 100 

laboratories, while the first is more suitable for comparing the performance of different 101 

tires instead of assessing the influence of road surface characteristics on rolling resistance 102 

(Karlsson et al., 2011). The purpose-built laboratory prototype developed in this work 103 

presents a new approach to evaluate the energy consumption of a rolling tire on different 104 

pavement surfaces. This method can be used to study innovative materials for road 105 

surface layers in their design phase, with clear advantages for developing sustainable 106 

solutions for road paving. 107 

The results of the test developed in this work may be used together with existing models 108 

to predict vehicles consumption. Among those, the models established under the 109 

MIRIAM project, as described in Hammarström et al. (2012), or in the NCHRP report 110 

720 (Chatti and Zaabar, 2012), which is based on the HDM-4 model, may be highlighted. 111 

Ultimately, these may be used in the scope of Life Cycle Analysis (LCA) methods that 112 

incorporate the road pavement use phase, like those developed by Araújo et al. (2014) 113 

and Bryce et al. (2014). 114 



Taking the accumulated effect of millions of vehicles passing over the pavement surface 115 

during its life cycle into consideration, a small reduction in each vehicle energy 116 

consumption on the tire-pavement interaction, as a result of improving the pavement 117 

characteristics, could have a significant effect on the sustainability of the paving solution. 118 

Thus a considerable reduction in the fossil fuels consumption and on the respective user 119 

costs, and consequently on the amount of exhaust emissions may be obtained. 120 

The development of a rational and reliable method to accurately estimate the energy 121 

consumption on the tire-pavement interaction becomes relevant, due to its influence on 122 

the transportation system sustainability. That method should be able to deal with a 123 

significant amount of data collected during the experimental tests using the purpose-built 124 

laboratory scale prototype and the tests carried out to characterize the studied surface 125 

materials. Therefore, knowledge discovery techniques in databases, using a modeling 126 

process known as data mining (DM), were applied in this study to predict the energy 127 

consumption due to the rolling resistance that takes place on the tire-pavement interaction. 128 

Data mining is generally used to obtain patterns or models from databases applying 129 

specific algorithms to retrieve useful knowledge from data, in this case, collected during 130 

the tests with the prototype. There are many regression methods that can be employed in 131 

data mining, among which artificial neural networks (ANN) (Androjić and Dolaček-132 

Alduk, 2018; Basheer and Hajmeer, 2000), support vector machines (SVM) (Burges, 133 

1998; Naseri et al., 2017), k-nearest neighbors (Aksoy et al., 2012; Seidl and Kriegel, 134 

1998) and regression trees (Chou et al., 2014; Loh, 2011) can be mentioned. 135 

The use of data mining techniques in the field of road pavements is not original, but it has 136 

not yet been applied to predict the energy consumption of motor vehicles due to the road-137 

pavement interaction. Nevertheless, data mining was already used to predict the rolling 138 



resistance of an agricultural tractor tire moving over a clay loam soil (Taghavifar et al., 139 

2013), and to forecast energy consumption in asphalt plants during hot mix asphalt 140 

production (Androjić and Dolaček-Alduk, 2018). Furthermore, this work has also based 141 

its development on examples of other data mining applications in road pavements, such 142 

as those presented in the following paragraphs. 143 

Asadi et al. (2014) used data mining techniques, namely artificial neural networks and 144 

neuro-fuzzy models, to predict NOx concentration in the air as a function of traffic 145 

volumes (Tr) and weather conditions including humidity, temperature, solar radiation, and 146 

wind speed before and after the application of TiO2 on the pavement surface. Artificial 147 

neural networks and genetic algorithms have also been used to define a procedure to make 148 

use of the available economic resources in the best way possible for flexible pavement 149 

maintenance operations (Bosurgi and Trifirò, 2005). 150 

Ceylan et al. (2008) developed an approach based on artificial neural networks for non-151 

destructive estimation of rigid airfield pavement stiffness properties, subjected to full-152 

scale dynamic traffic testing, namely by using simulated new generation aircraft gears. 153 

Examples of artificial neural networks use in road infrastructures can also be found in 154 

other works. Commuri et al. (2011) used ANN to design an intelligent asphalt compaction 155 

analyzer. Fakhri and Ghanizadeh (2014) modeled the 3D response pulse at the bottom of 156 

an asphalt layer with ANN. Gajewski and Sadowski (2014) carried out a sensitivity 157 

analysis to crack propagation of an asphalt pavement layered structure using ANN and 158 

the finite element method. Hamad et al. (2017) modeled traffic noise in a hot climate 159 

using ANN. Zhang et al. (2015) compared in situ and lab simulated asphalt aging with 160 

ANN. 161 



Gopalakrishnan et al. (2013) used data mining tools to predict the non-linear layer moduli 162 

of asphalt road pavement structures based on the deflection profiles obtained from non-163 

destructive deflection testing, while Saltan et al. (2011) have used data mining techniques 164 

for back-calculating pavement layer moduli and Poisson’s ratio based on the results of 165 

similar tests. 166 

Soltani et al. (2015) estimated the stiffness of polyethylene terephthalate (PET) modified 167 

asphalt mixtures using support vector machine-firefly algorithm (SVM-FFA), genetic 168 

programming, artificial neural network and support vector machine. The last method 169 

(SVM) was also used for modelling the mechanical behavior of hot-mix asphalt 170 

(Gopalakrishnan and Kim, 2011), predicting the performance of stabilized aggregate 171 

bases subjected to wet-dry cycles (Maalouf et al., 2012), classifying vehicles into five 172 

types using embedded strain gauge sensors (Zhang et al., 2008), and for developing an 173 

aggregated CO2 emission model for light-duty cars (Zeng et al., 2017). 174 

The techniques used in this work were the ANN (a simplified model of the biological 175 

structure of the human brain) and the SVM (used as an alternative method). In fact, these 176 

two methods were those most commonly used in the previous examples of data mining 177 

application to road pavement engineering studies. They are both highly nonlinear and do 178 

not need prior knowledge about the nature of relationships among the data (Stulp and 179 

Sigaud, 2015), thus being suitable to define new models for data measured with the new 180 

prototype used in the experimental phase of this work. In fact, they can capture complex 181 

interactions among a significant amount of data (Nguyen, 2018) that are difficult to model 182 

with the traditional statistical methods. 183 



2. Materials and methods 184 

2.1. Materials 185 

During this work, four pavement surfaces were tested to evaluate their influence on the 186 

energy consumption on the tire-pavement interaction. Thus, paving materials with 187 

significantly different surface characteristics were selected to represent a wide range of 188 

road pavements. 189 

One of the selected materials was a conventional asphalt concrete mixture (AC 14), the 190 

most common surface course used in Portuguese roads. The second surface was a slurry 191 

seal bituminous material with a 4 mm maximum aggregate size. This surface was selected 192 

as a solution generally used for pavement maintenance operations. A porous asphalt (PA 193 

12.5) was tested as the third surface material, representing a mixture with a rougher 194 

surface texture used in highways located in warm and rainy areas. Finally, a grouted 195 

macadam was used to test a stiffer and smoother material for pavement surface courses. 196 

All these surfaces were characterized, according to several methods presented in Section 197 

2.3, and their energy consumption evaluated in a purpose-built prototype described in the 198 

following section. 199 

2.2. Purpose-built prototype 200 

The laboratory prototype (Fig. 1) specially developed for the present work is a piece of 201 

equipment comprising a central element (shaft), which holds the prototype to the floor 202 

and assures the necessary stability of the system, and two symmetrical arms provided 203 

with wheels at the outer ends. One of the wheels (driving wheel) is engaged to an electric 204 

motor, which controls the movement of the prototype around the central element. The 205 



choice of electric power was imposed by the use of the motor in closed spaces (laboratory) 206 

but also resulted from the better control in energy consumption data acquisition with this 207 

system (which is essential to evaluate how it is influenced by surface characteristics). The 208 

motor is a fundamental component and was equipped with a reduction gearbox and a 209 

variable frequency controller to allow slow starting movements and avoid sudden stops. 210 

A third arm, perpendicular to the other two, is also coupled to the central shaft and is 211 

provided with a laser to evaluate the pavement surface profile. A specific software 212 

program was created using LabVIEW to control the electric motor (e.g., the speed) and 213 

to collect data from the prototype, with special consideration to the motor energy 214 

consumption and laser readings. 215 

 216 

Fig. 1. Prototype developed for energy consumption evaluation. 217 

The arms have a length of 1.25 meters between the rotation shaft and the center of the 218 

wheels. Spherical plain bearings connect the arms to the central part to ensure permanent 219 

contact between the tires and the pavement, and to minimize undesirable effects of 220 

pavement unevenness. The prototype speed may vary between 0 and 20 km/h. 221 



In a base scenario, each wheel represents a 700 N force. However, additional weights can 222 

be added to each arm to simulate different wheel loads, up to a maximum value of 1000 N. 223 

Even though the prototype has some limitations regarding the maximum speed and load 224 

(mainly due to safety reasons and space availability), the study of the energy consumption 225 

in different surfaces (which is the primary goal of this work) is still possible. 226 

The tires chosen for the prototype (195/50 R15 82V) are commonly available on the 227 

market and used in several car models with 15-inch wheel rims. The temperature of any 228 

tire generally increases after starting its movement, stabilizing after a certain period. As 229 

the tire temperature increases, the rolling resistance (and consequent energy 230 

consumption) decreases. According to the ISO 18164 standard, a period of 30 minutes 231 

should be enough to stabilize tire temperature for passenger cars.  232 

The testing speed of the rolling wheels and the corresponding energy consumption, 233 

measured through a multimeter installed in the electrical cable, were acquired with the 234 

abovementioned software. 235 

2.3. Methods 236 

2.3.1. Energy consumption measurement on the tire-pavement interaction 237 

The experiments carried out to measure the energy consumption consist in rolling the 238 

wheels of the prototype over selected pavement surfaces during some time, at a preset 239 

constant speed, while measuring the electric energy consumption of the motor with the 240 

multimeter. Some of the conditions used in the tests that were carried out with the 241 

prototype are different from those specified in ISO 18164 standard for determining the 242 

rolling resistance of passenger car tires. Thus, some preliminary tests were carried out to 243 

assess the time required to stabilize the energy consumption measured in the prototype 244 



(corresponding to the rolling resistance stabilization). From these preliminary tests, it was 245 

possible to conclude that a 60-minute warming-up period was necessary for the first 246 

testing speed before collecting the energy consumption data. For the other testing speeds 247 

(increased at 5 km/h intervals), a 20-minute warming-up period was enough for 248 

stabilizing the energy consumption. 249 

The differences in the energy consumption measurements obtained in this work can be 250 

related to the tire-pavement interactions because all testing conditions were the same for 251 

the different pavement surface materials. Furthermore, as the test speed is limited to 20 252 

km/h, the influence of variables such as the air resistance is considerably reduced. 253 

The influence of pavement surface characteristics on the prototype energy consumption 254 

was modeled using data mining techniques. However, to obtain the necessary data, 255 

several tests were carried out to evaluate the pavement skid resistance, texture, and the 256 

surface profile. Skid resistance and pavement texture were estimated using the Pendulum 257 

Test Value (PTV) and the sand patch test (Mean Texture Depth or MTD). The surface 258 

profile was measured using the prototype's laser device (to obtain the Mean Profile Depth 259 

or MPD). The Estimated Texture Depth (ETD) was also calculated using the MPD values. 260 

2.3.2. Evaluation of pavement skid resistance properties 261 

The PTV value was obtained using the pendulum test according to the EN 13036-4 262 

standard. This method used to determine the slip/skid resistance of a surface comprises a 263 

device which remains stationary at the test location and a pendulum arm including a 264 

standard rubber coated slider assembly. The PTV corresponds to the loss of energy of the 265 

rubber assembly sliding across the test surface and provides a standardized value of 266 

slip/skid resistance. 267 



2.3.3. Evaluation of pavement surface texture 268 

EN 13036-1 standard specifies a method for determining the average depth of pavement 269 

surface macrotexture (mean texture depth, MTD). This test (known as the “volumetric 270 

patch method”), uses a predetermined volume of calibrated glass spheres dropped on the 271 

pavement surface, and calculates the resulting area. 272 

This method was designed to provide an average depth value of the pavement 273 

macrotexture. The mean texture depth (MTD, in millimeters) is calculated using the Eq. 274 

(1), where, V is the sample volume, expressed in cubic millimeters (mm3), and D is the 275 

average diameter of the area covered by the material, expressed in millimeters (mm). 276 

𝑴𝑻𝑫
𝟒 𝑽

𝝅 𝑫𝟐 (1) 

 277 

2.3.4. Evaluation of pavement surface profile 278 

ISO 13473-1 sets the procedure to determine the mean profile depth (MPD). This test 279 

method calculates the average surface macrotexture depth, by measuring its profile and 280 

converting it to texture depth. The technique is considered insensitive to pavement 281 

microtexture and unevenness. The MPD values are calculated using Eq. (2), based on the 282 

concepts presented in Fig. 2. 283 

𝑴𝑷𝑫
𝑷𝒆𝒂𝒌 𝒍𝒆𝒗𝒆𝒍 𝟏𝒔𝒕 𝑷𝒆𝒂𝒌 𝒍𝒆𝒗𝒆𝒍 𝟐𝒏𝒅

𝟐
𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒍𝒆𝒗𝒆𝒍 (2) 

This method also allows estimating the surface texture depth (ETD) from MPD values 284 

using Eq. (3), specified in ISO 13473-1, where ETD and MPD are in millimeters (mm). 285 



ETD mm   0.2  0.8  MPD (3) 

 286 

Fig. 2. Illustration of concepts used in the MPD calculation (ISO 13473-1). 287 

2.3.5. Data mining methods 288 

The data mining process was used in this study to model the energy consumption. The R 289 

environment and a previously developed RMiner library were the tools used for the 290 

necessary computations using (Cortez, 2010). 291 

A brief explanation of ANN and SVM tools used in this work is given in the next 292 

paragraphs. However, further details can be found in previous works related to ANN 293 

(Aleksander and Morton, 1990; Ilonen et al., 2003) or to SVM (Cristianini and Shawe-294 

Taylor, 2000; Dibike et al., 2001; Vapnik, 1998). Simpler methods for data analysis, like 295 

multiple regressions (MR), can be used in data mining (Awang et al., 2012). However, 296 

they were not included in this study since they showed a poor performance in comparison 297 

with ANN and SVM (i.e., MR models presented higher errors than ANN and SVM, which 298 

may indicate that they are unable to capture the nonlinear relationships between the 299 

variables used in this work). 300 

Baseline

(First half of baseline) (Second half of baseline)

Average level

Peak level (2nd)

Peak level (1st)
Mean Profile Depth (MPD)Profile Depth (PD)



Eq. (4) shows the general model used in the artificial neural network (ANN) process 301 

(Hastie et al., 2001), where xi are the input parameters or nodes, I is the number of input 302 

parameters, and o is the output parameter. 303 

𝒚 𝒘𝒐,𝟎 𝒇 𝒙𝒊 𝒘𝒋,𝒊 𝒘𝒋,𝟎

𝑰

𝒊 𝟏

𝒘𝒐,𝒊

𝒐 𝟏

𝒋 𝑰 𝟏

 (4) 

The multilayer perceptron architecture (Haykin, 1998) used in this work (Fig. 3) is 304 

composed by three layers with HN nodes in the hidden layer and adopted the logistic 305 

activation function 1 1 𝑒⁄ . The number of hidden nodes was optimized through a 306 

grid search HN ∈  0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 . 307 

 308 

Fig. 3. Scheme of the multilayer perceptron used in this work. 309 

The application of SVM techniques (Cortes and Vapnik, 1995) to regression tasks only 310 

became possible with the introduction of the ε-insensitive loss function (Smola and 311 

Schölkopf, 2004), based on a nonlinear mapping transformation of the input data into a 312 

multidimensional feature space. 313 

After this transformation, the SVM finds the best hyperplane inside the feature space. The 314 

nonlinear mapping depends on a kernel function k(x,x’), where γ is the kernel parameter. 315 
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MTD
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j
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In this work, the Gaussian kernel function presented in Eq. (5) was adopted, because it 316 

presents fewer hyperparameters and numerical difficulties then those of other kernels 317 

(e.g., polynomial) (Cortez, 2010). 318 

𝒌 𝒙, 𝒙 𝒆 𝜸∙‖𝒙 𝒙 ‖𝟐
, 𝜸 𝟎 (5) 

The performance of the regression is affected not only by the kernel parameter, γ, but also 319 

by a penalty parameter, C, and the width of the ε-insensitive zone. Taking the large size 320 

of the search space of these parameters into account, the search performed in this work 321 

was limited to the γ parameter. Thus, a value of C = 3 and the heuristic model 𝜀 𝜎 √𝑁⁄  322 

(Cherkassky and Ma, 2004) were considered in this study, where 𝜎 1.5323 

∑ 𝑦 𝑦 , 𝑦  is the value predicted by a 3-nearest neighbor algorithm and N the 324 

number of examples. Then, the grid used for γ search was 325 

2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 . 326 

The dataset was divided randomly into two subsets, the training and the testing sets 327 

(respectively, 144 and 72 records), to assess the predictive capacity of the DM techniques. 328 

The model was trained using a cross-validation procedure, fitting it with data from nine 329 

subsets and testing it with the remaining subset, repeating the process for all subsets. 330 

The model with the best performance in the training process (loaded with the 144 records) 331 

was tested later with the 72 testing records not used in the training process. 332 

The coefficient of determination (R2), the root mean square error (RMSE), and the mean 333 

absolute deviation (MAD) results were used to assess the models' performance. The 334 

higher the R2, the better the performance of the model is. The lower the values of RMSE 335 

and MAD, the better the predictive capacity of the model is. 336 



Finally, a sensitivity analysis method was used to measure the importance of each 337 

parameter (Kewley et al., 2000). This analysis is designed to evaluate the model's 338 

response to the change of each of the input parameters. The importance of a given input 339 

parameter may be assessed by changing its value from a minimum to a maximum, 340 

maintaining the average values of the remaining input parameters. Thus, the consequent 341 

variance induced in the model output represents the importance of the input parameter. 342 

2.3.6. Research outline 343 

In order to summarize the relationship between the data processing and analysis methods 344 

involved in this paper, the research outline followed in this work is schematically 345 

represented in Fig. 4. 346 

 347 

Fig. 4. Schematic representation of research outline used in this work. 348 



3. Results and discussion 349 

In this work, the energy consumption on the tire-pavement interaction was measured 350 

using a laboratory scale prototype, by adopting different testing conditions (wheel load 351 

and speed) and surface pavement characteristics (PTV, ETD, and MTD). The results 352 

obtained were analyzed using data mining techniques to evaluate the possibility of 353 

estimating the energy consumption from the previously mentioned testing conditions 354 

(input variables). 355 

Table 1 shows the statistical assessments of the parameters measured during the 356 

laboratory tests carried out with the prototype, for different pavement surfaces, as 357 

described in Section 2. The database obtained with these results was then evaluated using 358 

data mining techniques. 359 

Table 1. Statistic assessment of the used parameters. 360 

Parameter Minimum Mean Maximum 
Standard 
deviation 

Coefficient of 
variation 

PTV 23 45.94 68 15.99 34.81 

ETD 0.505 0.854 2.441 0.536 62.75 

MTD 0 0.615 2.529 0.778 126.56 

Speed (m/s) 5 11.67 20 5.28 45.28 

Load (kN) 0.7 0.85 1 0.103 12.08 

Energy (J/s) 3.11 7.42 19.64 3.61 48.61 

 361 

Since the objective of this work is to analyze the influence of different parameters on the 362 

measured energy consumption, the range of those parameter values should be as extensive 363 

as possible to represent a higher number of scenarios. The variation of some parameter 364 



values fulfills that objective (Table 1), while others present a smaller difference (e.g., 365 

load), as a consequence of laboratory testing limitations. 366 

Two data mining techniques (ANN and SVM) were tested using up to five input variables 367 

(PTV, ETD, MTD, speed, and load) to predict the energy consumption. The models 368 

obtained with both techniques were labeled M#, where # represents the number of input 369 

parameters used in the model (5, 3 and 1). Some metrics (MAD, RMSE and R2) were 370 

used to evaluate the quality or performance of the different models obtained with ANN 371 

and SVM techniques, as presented in Table 2. 372 

Both data mining techniques have presented predictive models with a good performance, 373 

despite the complex and previously unknown relationships between the variables. In fact, 374 

these results were only possible because both methods are highly nonlinear and do not 375 

need prior knowledge about the nature of relationships among the data. However, and 376 

regardless of the number of input variables used, the ANN technique showed lower values 377 

of MAD and RMSE and higher values of R2, in comparison with the SVM models. Thus, 378 

further analysis of data mining results will only be carried out for ANN models. There is 379 

an explicit dependence of DM model performance on the number of input variables. The 380 

higher the number of input variables, the higher the quality of the DM model, but its 381 

complexity also increases. Thus, the minimum number of input variables needed to assure 382 

adequate performance of the DM model must be determined, as subsequently discussed. 383 

This problem may be particularly relevant when input data requires complex and time-384 

consuming tests that stakeholders may not have conditions to carry out. 385 



Table 2. Cross-validation scheme results obtained in the training process. 386 

Metric 
M5 M3 M1 

ANN SVM ANN SVM ANN SVM 

MAD 0.112 0.180 0.217 0.240 0.992 1.001 

RMSE 0.162 0.303 0.337 0.410 1.341 1.389 

R2 0.998 0.996 0.990 0.986 0.836 0.832 

Note: MAD – Mean Absolute Deviation; RMSE – Root Mean Square Error; 387 
R2 – Coefficient of determination 388 

Initially, the whole training set was used to fit the ANN model with five input variables 389 

(M5), as presented in Fig. 5. Fig. 6 shows the values obtained in similar conditions but 390 

with the testing set. Both results confirm the high predictive capacity of the ANN model, 391 

even though the testing set is unknown for the DM models. 392 

 393 

Fig. 5. Performance of five input variable ANN model (M5) using the training dataset. 394 
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Fig. 6. Performance of five input variable ANN model (M5) using the testing dataset. 396 

A sensitivity analysis was performed to obtain the relative importance given by the ANN 397 

technique to each one of the five input parameters used in the model, as shown in Fig. 7. 398 

 399 

Fig. 7. Importance of each parameter in the ANN model with five input variables (M5). 400 
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The strong influence of the wheel speed in the predicted energy consumption during the 401 

laboratory test is evident. However, the MTD value (surface texture) has also a significant 402 

influence on the energy consumption. The other input variables have a negligible impact 403 

on the ANN model. 404 

The high influence of speed on the energy consumption corroborates the practical 405 

knowledge (Freitas Salgueiredo et al., 2017; Suyabodha, 2017), as well as the 406 

observations carried out during the laboratory tests. However, a higher influence of the 407 

load in the energy consumption was expected (Hernandez et al., 2017), but not observed 408 

due to the limited variation of this parameter during the tests (as previously mentioned). 409 

ANN model selected mean texture depth as the second most influencing parameter in the 410 

energy consumption. In fact, it is recognized that the rolling resistance is influenced by 411 

pavement macrotexture (Ejsmont et al., 2017), with higher energy consumption in smooth 412 

than in rough surfaces. Both MTD and ETD values are related to texture, thus justifying 413 

the strong correlation observed between these parameters (R2=0.981). This fact may also 414 

explain the low importance given by the ANN model to ETD variable, since texture 415 

influence may be already considered in the model by MTD parameter. Although MTD 416 

and ETD are well correlated, the first is used to measure the pavement surface texture 417 

properties based on an area, while the latter infers the texture characteristics of the 418 

corresponding area based on a single profile of the surface (which may be less accurate). 419 

It is also clear that fuel consumption is not significantly affected by skid resistance (PTV 420 

value). 421 

The accumulated importance of speed, MTD, and load in the ANN model with five input 422 

variables, used for energy consumption prediction, is greater than 95 percent. Therefore, 423 

a second data mining analysis was carried out with only three input parameters (M3). 424 

Table 2 already presented the metrics obtained in the cross-validation scheme of this 425 



simplified model M3. The analysis of those metrics pointed out increased errors in the 426 

M3 model in comparison with the DM analysis with five input parameters. However, the 427 

results predicted with M3 model remain good, and the best results were obtained using 428 

the ANN technique. 429 

The ANN models with three input variables (M3) were fitted with the training set (Fig. 430 

8a) and with the testing set (Fig. 8b). Both results confirm the high predictive capacity of 431 

the ANN model M3 to predict the energy consumption. Although there is a negligible 432 

decrease in the accuracy of this model in comparison with the ANN model with five input 433 

variables, the simplified ANN model with three variables (M3) maintains an excellent 434 

performance. 435 

 436 

 (a) (b) 437 

Fig. 8. Performance of the ANN model with three input variables (M3) using (a) the 438 

training dataset or (b) the testing dataset. 439 

Finally, and taking into account the high influence of speed variable on the predicted 440 

energy consumption, a data mining analysis using speed as the single input parameter 441 
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(M1) was also performed. The metrics obtained during the validation of this single 442 

variable model M1 were presented previously in Table 2. Those metrics showed 443 

unacceptable errors for this M1 model, significantly higher than those observed in the 444 

DM analyses with five or three input parameters. Thus, the prediction performance of M1 445 

models obtained with both DM techniques (ANN or SVM) cannot be considered 446 

satisfactory. 447 

Nevertheless, Figs. 9a and 9b present the ANN models fitted with a single input variable 448 

(M1), respectively for the training set and the testing set.  449 

 450 

 (a) (b) 451 

Fig. 9. Performance of ANN model with a single input variable (M1) using (a) the 452 

training dataset or (b) the testing dataset. 453 

The results obtained confirm the low predictive capacity of the ANN model with a single 454 

input variable (M1), especially when using testing data unknown by the model. Thus, 455 

although the DM models used for this specific work can be simplified using a lower 456 
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number of input variables, the accuracy of the models reduces and becomes unacceptable 457 

for models with less than three input variables. 458 

4. Conclusions 459 

The results obtained in this work highlight the importance of the pavement characteristics 460 

for the energy consumption estimation. In fact, the tire-pavement interaction influences 461 

the vehicle energy consumption and should be considered to assess the sustainability of 462 

pavement construction/maintenance techniques. The purpose-built laboratory prototype 463 

and the use of data mining techniques were essential to understanding the relationships 464 

between the measured variables and their relative importance for the energy consumption 465 

estimation. The main conclusions to be drawn from this work are: 466 

 A new laboratory test is proposed in this work to assess energy consumption on 467 

the tire-pavement interaction, with the possibility of controlling the load and speed 468 

conditions while measuring the surface characteristics (e.g., surface 469 

profile/texture) and the energy consumed for operating the prototype. 470 

 Two DM techniques were successfully used, namely ANN and SVM, and have 471 

provided predictive models with meaningful results, while multiple regression 472 

models were unable to capture the nonlinear relationships between variables. 473 

 ANN proved to be the technique with the best performance for energy 474 

consumption estimation. 475 

 Data from a group of variables were collected during the experimental tests to 476 

feed the database, and their variation proved to influence the results obtained for 477 

energy consumption prediction with the developed data mining models. 478 



 Models developed with five (PTV, ETD, MTD, speed, and load), three (MTD, 479 

speed, and load) and a single input parameter (speed) were tested, to evaluate the 480 

variables relative importance. The prediction performance decreased with a 481 

reduction in the number of variables, although models with at least three input 482 

parameters maintain the prediction quality. 483 

 For the model with five input parameters, a sensitivity analysis was carried out, 484 

showing that the main parameters controlling the energy consumption are speed 485 

and surface texture (MTD). 486 

 The purpose-built laboratory prototype presented in this paper is a new approach 487 

that can prospectively contribute to study innovative materials for road surface 488 

layers in their design phase, with clear advantages for developing sustainable 489 

solutions for road paving. 490 
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