10 research outputs found

    Parametrization Study of Electrospun Nanofiber Including LiCl Using Response Surface Methodology (RSM) for Water Treatment Application

    No full text
    The influence of the electrospinning parameters on the diameter of the polyethersulfone (PES) nanofibers was demonstrated using response surface methodology. The electrospinning parameters studied were lithium chloride (LiCl) concentration, PES concentration, feed rate, and tip-to-collector distance. The average fiber diameter was correlated to these factors by using a second-order polynomial function at a 95% confidence level. The statistical analysis indicated that LiCl concentration, PES concentration, and feed rate had the significant connection with the fiber diameter, and LiCl concentration was the most important factor in determining the fiber diameter. When LiCl concentration increased, the fiber diameter decreased, because with more LiCl that is added, more applied voltage is needed to overcome the electrostatic attractions. The interactive effect between PES concentration and feed rate, the interactive effect between PES concentration and tip-to-collector distance, and the quadratic coefficients of LiCl concentration were also found to be significant. The adjusted determination coefficient (Radj2) of the model was calculated to be 0.9106. The water flux measurements showed that the decrease in the fiber diameter of the membrane caused the decrease in the initial pure water flux. The retention tests with 0.6 μm polystyrene (PS) suspension indicated that as the fiber diameter decreased, the pore sizes decreased and the particle removal efficiency increased

    Synthesis of Fe<sub>2</sub>O<sub>3</sub>/Mn<sub>2</sub>O<sub>3</sub> Nanocomposites and Impregnated Porous Silicates for Dye Removal: Insights into Treatment Mechanisms

    No full text
    Fe2O3/Mn2O3 nanocomposites and impregnated porous silicates (Fe2O3/Mn2O3@SiO2 [FMS]) were prepared and investigated as catalytic adsorbents. The catalysts were applied for cationic and anionic dye pollutants in the adsorption, Fenton reaction, and photocatalysis processes at a pH of 7. Fe2O3/Mn2O3 nanoparticles (FM-NPs) were prepared using the co-precipitation method and were impregnated in SiO2 by the sol–gel process. The synthesized materials were characterized using various sophisticated techniques. Results indicated that the impregnation of bi-metallic NPs in SiO2 increased the surface area, and the function of the adsorbent also improved. FMS showed a significant adsorption effect, with 79.2% rhodamine B removal within 15 min. Fenton and photocatalyst reaction showed removal rates of 85.3% and 97.9%, respectively, indicating that negatively charged porous silicate attracts cationic pollutants. In the case of the anionic pollutant, Congo red, the adsorption reaction of FMS did not occur, and the removal rate of the photocatalyst reaction was 79%, indicating the repulsive force between the negatively charged silica and the anionic dye. Simultaneously, bi-metal-bonded FM-NPs facilitated the photocatalytic reaction, reducing the recombination of electron-hole pairs. This study provides new insights into the synthesis of FM-NPs and FMS as photocatalytic adsorbents and their photocatalytic mechanisms based on reaction conditions and contaminant characteristics. The developed materials have potential applications for environmental mitigation

    Correlation between nitrite accumulation and the concentration of AOB in a nitritation reactor

    No full text
    Nitritation is an innovative biological nitrogen removal method in wastewater, and it has the advantages of energy and economy. The correlation between a nitrite conversion rate and the gene copy numbers of ammonia oxidizing bacteria (AOB) in a nitritation reactor was examined to measure the effectiveness of removing a nitrogen content in a biological nitrogen removal process, using a biological process of nitritation. A laboratory scale reactor was prepared and operated for over a year, using digester supernatant to induce a stable nitritation, and to optimize the operational conditions by adjusting various operating factors. The relationship between operational results of nitritation reactor and the AOB gene copies was approximated through identification and quantitative analysis of AOB. A stable nitritation can be artificially led with the control of SRT, while treating anaerobic digester supernatant from MWTPs. And AOB gene copies showed a correlation with free ammonia (FA) inhibition and performance of nitritation, and AOB activity. Thus, AOB gene copies were found important when it comes to analyzing nitritation

    Effect of UV Irradiation on the Structural Variation of Metal Oxide-Silica Nanocomposites for Enhanced Removal of Erythromycin at Neutral pH

    No full text
    In this study, the effect of UV treatment on the physicochemical properties and structural variation of metal oxide-silica nanocomposites (Mn2O3-Fe2O3@SiO2) has been investigated. Based on the results, UV irradiation significantly affects the nanocomposite structure, where SiO2 network reconfiguration, change in surface OH group density, and surface area were observed. Erythromycin (ERY) has been chosen as a module pollutant to compare the performance of the pristine and UV-treated nanocomposites. The pristine nanocomposite had a high adsorption efficiency (99.47%) and photocatalytic activity (99.57%) at neutral pH for ERY in the first cycle, and this efficiency decreased significantly for the multiple cycles. However, different results have been observed for the UV-treated nanocomposite, where it retained its performance for ten consecutive cycles. This enhanced performance is attributed to the structural modifications after UV exposure, where increased surface area, pore volume, and OH group density resulted in an increased number of the possible mechanisms responsible for the adsorption/oxidation of ERY. Moreover, oxidation of adsorbed molecules by UV light after each cycle can also be another reason for enhanced removal. For the first time, the fate of ERY is studied using regenerated nanocomposites after the last cycle. LC/MS/MS results showed that ERY degraded in 20 min, and the produced reaction by-products were adsorbed by nanocomposites. This study could be a foundation research for the practical approaches for the regeneration of nanomaterials and the successful removal of organic pollutants from aquatic environments

    Effect of UV Irradiation on the Structural Variation of Metal Oxide-Silica Nanocomposites for Enhanced Removal of Erythromycin at Neutral pH

    No full text
    In this study, the effect of UV treatment on the physicochemical properties and structural variation of metal oxide-silica nanocomposites (Mn2O3-Fe2O3@SiO2) has been investigated. Based on the results, UV irradiation significantly affects the nanocomposite structure, where SiO2 network reconfiguration, change in surface OH group density, and surface area were observed. Erythromycin (ERY) has been chosen as a module pollutant to compare the performance of the pristine and UV-treated nanocomposites. The pristine nanocomposite had a high adsorption efficiency (99.47%) and photocatalytic activity (99.57%) at neutral pH for ERY in the first cycle, and this efficiency decreased significantly for the multiple cycles. However, different results have been observed for the UV-treated nanocomposite, where it retained its performance for ten consecutive cycles. This enhanced performance is attributed to the structural modifications after UV exposure, where increased surface area, pore volume, and OH group density resulted in an increased number of the possible mechanisms responsible for the adsorption/oxidation of ERY. Moreover, oxidation of adsorbed molecules by UV light after each cycle can also be another reason for enhanced removal. For the first time, the fate of ERY is studied using regenerated nanocomposites after the last cycle. LC/MS/MS results showed that ERY degraded in 20 min, and the produced reaction by-products were adsorbed by nanocomposites. This study could be a foundation research for the practical approaches for the regeneration of nanomaterials and the successful removal of organic pollutants from aquatic environments

    Sustainable Removal of BTEX Gas Using Regenerated Metal Containing SiO2

    No full text
    In the last decades, the removal of benzene, toluene, ethylbenzene, and xylene (BTEX) has been considered a major environmental crisis. In this study, two novel nanocomposite materials (Fe2O3/SiO2 and Fe2O3-Mn2O3/SiO2) that have regeneration ability by UV irradiation have been fabricated to remove BTEX at ambient temperature. This research revealed that both nanocomposites could remove more than 85% of the BTEX in the first cycle. The adsorption capacities followed the order of ethylbenzene &gt; m-xylene &gt; toluene &gt; benzene as in the molecular weight order. The reusability test using UV irradiation showed that the performance of Fe2O3/SiO2 decreased drastically after the fifth cycle for benzene. On the other hand, when Mn is located in the nanocomposite structure, Fe2O3-Mn2O3/SiO2 could maintain its adsorption performance with more than 80% removal efficiency for all the BTEX for ten consecutive cycles. The difference in the reusability of the two nanocomposites is that the electron energy (from the valence band to the conduction band) for BTEX decomposition is changed due to the presence of manganese. This study provides a promising approach for designing an economical reusable nanomaterial, which can be used for VOC-contaminated indoor air
    corecore