13 research outputs found

    Low Gradient Magnetic Separation Of Microalgae From Fish Farm Water

    Get PDF

    Thioflavin dye degradation by using magnetic nanoparticles augmented PolyvinylideneFlouride (PVDF) microcapsules / Mohamed Syazwan Osman ... [et al.]

    Get PDF
    Microcapsule has remarkable advantages in engineering application for pollutants removal and biomedical field for transportation. It has obviously drawn attention from the research community. Undeniably, it does have shortages but the key is to balance both the advantages and limitations to enhance microcapsule benefits. In environmental engineering applications, microcapsules could serve as encapsulation agents of nanoparticles (NPs) to drastically reduce the risk associated to nano-toxicity when it is indirect contact with surroundings. In addition, this technique could improve the physical contact and promote catalytic degradations of pollutants while exhibit better recyclability without loss of activity after multiple catalytic degradation cycles. Even though magnetic responsiveness of capsules can be used for ease of separation, one of the constraints is that the encapsulated particles will restrict the performance of capsules materials in pollutants removal. However, encapsulated magnetite particles interact with polymeric matrix chains and thus tying up the chains as knot which can restrict the expansions of whole capsules. Some-times, capsules shell is designated to remove certain target contaminants and so does for encapsulated particles. This may possibly reduce or increase the removal performance of integrated capsules which depends on the target contaminants and the underlying mechanism involved in pollutant removal. Hence, this work primarily focuses on the synthesis of magnetic nanoparticles augmented microcapsule with dual functionalities namely adsorptive and catalytic activities using membrane material, PolyvinylideneFlouride (PVDF). Feasibility study using Thioflavin dye as the representable model system for degradation will be explored

    Advances in Liquid Absorbents for CO2 Capture: A Review

    Get PDF
    The emission of greenhouse gases, especially carbon dioxide (CO2) has been a major concern worldwide for several years now, as it causes global warming. Even though various CO2 capture technologies have been researched, liquid absorption is widely considered a popular and effective method for the removal of CO2. For this reason, the choice of absorbent used to absorb the greenhouse gas is of vital importance. This article provides a brief overview of various liquid absorbents that have been investigated for this purpose, both in absorption columns and membrane contactor settings. Research journals currently available show that the usage of common amines and their combinations have been investigated, as well as several alternatives, additions and enhancements to existing liquid absorbents to improve the capture of CO2 and these are discussed in this article

    Gold nanoparticles conjugated with anti-CD133 monoclonal antibody and 5-fluorouracil chemotherapeutic agent as nanocarriers for cancer cell targeting

    Get PDF
    The enhanced permeability and retention effect allows for passive targeting of solid tumours by nanoparticles carrying anticancer drugs. However, active targeting by incorporation of various ligands onto nanoparticles can provide for a more selective and enhanced chemotherapeutic effect and complement the deficiencies of the passive targeting approach. Here we report on the design of the carboxyl-terminated PEGylated gold nanoparticles (AuNPs), their functionalization with anti-CD133 monoclonal antibody (mAb) via a crosslinking reaction, and subsequent 5-fluorouracil (5-FU) drug loading. The synthesized products in the form of stable colloids were characterised using a range of physicochemical techniques, including X-ray diffraction (XRD), UV-Vis spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Conjugation of anti-CD133 mAb onto PEGylated AuNPs was confirmed with the use of UV-Vis, BCA protein assay and fluorescence microscopy. HCT116 colorectal cancer cells abundantly expressed CD133: 92.4 ± 1.3%, as measured by flow cytometry. Whereas PEGylated AuNPs not conjugated with anti-CD133 mAb accumulated mainly at the cellular membrane, nanoparticles conjugated with anti-CD133 mAb were contained within the nuclear region of the cells. Anti-CD133 mAb conjugation facilitated the specific intracellular uptake due to specific antigen–antibody binding interaction. In vitro cytotoxicity studies on HCT116 cells showed that PEGylated AuNPs and PEGylated AuNPs-CD133 did not elicit any toxicity at any of the tested concentrations. Meanwhile, 5-FU-PEGylated AuNPs-CD133 significantly reduced the cell viability relative to the treatment with 5-FU-PEGylated AuNPs without anti-CD133 mAb conjugates (p < 0.0001). This study shows that the conjugation of nanocarriers with the anti-CD133 antibody improves the specific targeting of 5-FU against colorectal cancer cells. These results demonstrate that simultaneous functionalisation of PEGylated AuNPs with antibodies and chemotherapeutic drugs is a viable strategy to combat cancer through targeted drug delivery

    Coupled Oxides/LLDPE Composites for Textile Effluent Treatment: Effect of Neem and PVA Stabilization

    No full text
    The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Neem and PVA stabilized particles showed high zeta potential and dispersed homogeneously in water. The stabilization process altered the shape of the particles due to plane growth along the (002) polar direction. The stabilizers acted as capping agents and initiated the one-dimensional growth. The alkyl chain groups from PVA increased the polarity of the LLDPE/3ZT-CO/PVA and played a dominant role in the water adsorption process to activate the photocatalytic activity. This was further enhanced by the homogeneous distribution of the particles and low degree of crystallinity (20.87%) of the LLDPE composites. LLDPE/3ZT-CO/PVA exhibited the highest photodegradation (93.95%), which was better than the non-stabilized particles. Therefore, the photocatalytic activity of a polymer composite can be enhanced by grafting PVA and neem onto couple oxides. The LLDPE/3ZT-CO/PVA composite was further used to treat textile effluent. The results showed the composite was able to remove dye color by 93.95% and to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 99.99%

    Toxicity of bare and surfaced functionalized iron oxide nanoparticles towards microalgae

    No full text
    <p>This study investigates the toxicity of bare iron oxide nanoparticles (IONPs) and surface functionalization iron oxide nanoparticles (SF-IONPs) to the growth of freshwater microalgae <i>Chlorella</i> sp. This study is important due to the increased interest on the application of the magnetic responsive IONPs in various fields, such as biomedical, wastewater treatment, and microalgae harvesting. This study demonstrated that the toxicity of IONPs was mainly contributed by the indirect light shading effect from the suspending nanoparticles which is nanoparticles concentration-dependent, direct light shading effect caused by the attachment of IONPs on cell and the cell aggregation, and the oxidative stress from the internalization of IONPs into the cells. The results showed that the layer of poly(diallyldimethylammonium chloride) (PDDA) tended to mask the IONPs and hence eliminated oxidative stress toward the protein yield but it in turn tended to enhance the toxicity of IONPs by enabling the IONPs to attach on cell surfaces and cause cell aggregation. Therefore, the choice of the polymer that used for surface functionalize the IONPs is the key factor to determine the toxicity of the IONPs.</p
    corecore