109 research outputs found

    Study of the intentional replantation procedure used to treat a tooth with a palatogingival groove : a case report

    Get PDF
    In order to clarify the prognosis of intentional replantation used for palatogingival groove treatment for long-term follow-up observation, the case of a patient with a maxillary lateral incisor with palatogingival groove was investigated. The intentiona

    Discovery of mammalian genes that participate in virus infection

    Get PDF
    BACKGROUND: Viruses are obligate intracellular parasites that rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. RESULTS: Candidate genes required for lytic reovirus infection were identified by tagged sequence mutagenesis, a process that permits rapid identification of genes disrupted by gene entrapment. One hundred fifty-one reovirus resistant clones were selected from cell libraries containing 2 × 10(5 )independently disrupted genes, of which 111 contained mutations in previously characterized genes and functionally anonymous transcription units. Collectively, the genes associated with reovirus resistance differed from genes targeted by random gene entrapment in that known mutational hot spots were under represented, and a number of mutations appeared to cluster around specific cellular processes, including: IGF-II expression/signalling, vesicular transport/cytoskeletal trafficking and apoptosis. Notably, several of the genes have been directly implicated in the replication of reovirus and other viruses at different steps in the viral lifecycle. CONCLUSIONS: Tagged sequence mutagenesis provides a rapid, genome-wide strategy to identify candidate cellular genes required for virus infection. The candidate genes provide a starting point for mechanistic studies of cellular processes that participate in the virus lifecycle and may provide targets for novel anti-viral therapies

    Mutations in the IGF-II pathway that confer resistance to lytic reovirus infection

    Get PDF
    BACKGROUND: Viruses are obligate intracellular parasites and rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies. RESULTS: A gene entrapment approach was used to identify candidate cellular genes that affect reovirus infection or virus induced cell lysis. Four of the 111 genes disrupted in clones selected for resistance to infection by reovirus type 1 involved the insulin growth factor-2 (IGF-II) pathway, including: the mannose-6-phosphate/IGF2 receptor (Igf2r), a protease associated with insulin growth factor binding protein 5 (Prss11), and the CTCF transcriptional regulator (Ctcf). The disruption of Ctcf, which encodes a repressor of Igf2, was associated with enhanced Igf2 gene expression. Plasmids expressing either the IGF-II pro-hormone or IGF-II without the carboxy terminal extension (E)-peptide sequence independently conferred high levels of cellular resistance to reovirus infection. Forced IGF-II expression results in a block in virus disassembly. In addition, Ctcf disruption and forced Igf2 expression both enabled cells to proliferate in soft agar, a phenotype associated with malignant growth in vivo. CONCLUSION: These results indicate that IGF-II, and by inference other components of the IGF-II signalling pathway, can confer resistance to lytic reovirus infection. This report represents the first use of gene entrapment to identify host factors affecting virus infection. Concomitant transformation observed in some virus resistant cells illustrates a potential mechanism of carcinogenesis associated with chronic virus infection

    A Functional Role for ADAM10 in Human Immunodeficiency Virus Type-1 Replication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene trap insertional mutagenesis was used as a high-throughput approach to discover cellular genes participating in viral infection by screening libraries of cells selected for survival from lytic infection with a variety of viruses. Cells harboring a disrupted <it>ADAM10 </it>(A Disintegrin and Metalloprotease 10) allele survived reovirus infection, and subsequently ADAM10 was shown by RNA interference to be important for replication of HIV-1.</p> <p>Results</p> <p>Silencing ADAM10 expression with small interfering RNA (siRNA) 48 hours before infection significantly inhibited HIV-1 replication in primary human monocyte-derived macrophages and in CD4<sup>+ </sup>cell lines. In agreement, ADAM10 over-expression significantly increased HIV-1 replication. ADAM10 down-regulation did not inhibit viral reverse transcription, indicating that viral entry and uncoating are also independent of ADAM10 expression. Integration of HIV-1 cDNA was reduced in ADAM10 down-regulated cells; however, concomitant 2-LTR circle formation was not detected, suggesting that HIV-1 does not enter the nucleus. Further, ADAM10 silencing inhibited downstream reporter gene expression and viral protein translation. Interestingly, we found that while the metalloprotease domain of ADAM10 is not required for HIV-1 replication, ADAM15 and γ-secretase (which proteolytically release the extracellular and intracellular domains of ADAM10 from the plasma membrane, respectively) do support productive infection.</p> <p>Conclusions</p> <p>We propose that ADAM10 facilitates replication at the level of nuclear trafficking. Collectively, our data support a model whereby ADAM10 is cleaved by ADAM15 and γ-secretase and that the ADAM10 intracellular domain directly facilitates HIV-1 nuclear trafficking. Thus, ADAM10 represents a novel cellular target class for development of antiretroviral drugs.</p

    Small-Molecule RORγt Antagonists Inhibit T Helper 17 Cell Transcriptional Network by Divergent Mechanisms

    Get PDF
    SummaryWe identified three retinoid-related orphan receptor gamma t (RORγt)-specific inhibitors that suppress T helper 17 (Th17) cell responses, including Th17-cell-mediated autoimmune disease. We systemically characterized RORγt binding in the presence and absence of drugs with corresponding whole-genome transcriptome sequencing. RORγt acts as a direct activator of Th17 cell signature genes and a direct repressor of signature genes from other T cell lineages; its strongest transcriptional effects are on cis-regulatory sites containing the RORα binding motif. RORγt is central in a densely interconnected regulatory network that shapes the balance of T cell differentiation. Here, the three inhibitors modulated the RORγt-dependent transcriptional network to varying extents and through distinct mechanisms. Whereas one inhibitor displaced RORγt from its target loci, the other two inhibitors affected transcription predominantly without removing DNA binding. Our work illustrates the power of a system-scale analysis of transcriptional regulation to characterize potential therapeutic compounds that inhibit pathogenic Th17 cells and suppress autoimmunity

    Gene-Trap Mutagenesis Identifies Mammalian Genes Contributing to Intoxication by Clostridium perfringens ε-Toxin

    Get PDF
    The Clostridium perfringens ε-toxin is an extremely potent toxin associated with lethal toxemias in domesticated ruminants and may be toxic to humans. Intoxication results in fluid accumulation in various tissues, most notably in the brain and kidneys. Previous studies suggest that the toxin is a pore-forming toxin, leading to dysregulated ion homeostasis and ultimately cell death. However, mammalian host factors that likely contribute to ε-toxin-induced cytotoxicity are poorly understood. A library of insertional mutant Madin Darby canine kidney (MDCK) cells, which are highly susceptible to the lethal affects of ε-toxin, was used to select clones of cells resistant to ε-toxin-induced cytotoxicity. The genes mutated in 9 surviving resistant cell clones were identified. We focused additional experiments on one of the identified genes as a means of validating the experimental approach. Gene expression microarray analysis revealed that one of the identified genes, hepatitis A virus cellular receptor 1 (HAVCR1, KIM-1, TIM1), is more abundantly expressed in human kidney cell lines than it is expressed in human cells known to be resistant to ε-toxin. One human kidney cell line, ACHN, was found to be sensitive to the toxin and expresses a larger isoform of the HAVCR1 protein than the HAVCR1 protein expressed by other, toxin-resistant human kidney cell lines. RNA interference studies in MDCK and in ACHN cells confirmed that HAVCR1 contributes to ε-toxin-induced cytotoxicity. Additionally, ε-toxin was shown to bind to HAVCR1 in vitro. The results of this study indicate that HAVCR1 and the other genes identified through the use of gene-trap mutagenesis and RNA interference strategies represent important targets for investigation of the process by which ε-toxin induces cell death and new targets for potential therapeutic intervention

    COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data

    Get PDF
    Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package
    corecore