205 research outputs found

    GSK3 Inhibitor-BIO Regulates Proliferation of Immortalized Pancreatic Mesenchymal Stem Cells (iPMSCs)

    Get PDF
    <div><h3>Background</h3><p>The small molecule 6-bromoindirubin-30-oxime (BIO), a glycogen synthase kinase 3 (GSK3) inhibitor, is a pharmacological agent known to maintain self-renewal in human and mouse embryonic stem cells (ESCs). However, the precise role of GSK3 in immortalized pancreatic mesenchymal stem cells (iPMSCs) growth and survival is not completely understood at present.</p> <h3>Results</h3><p>To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effect of BIO on iPMSCs. We found that the inactivation of GSK3 by BIO can robustly stimulate iPMSCs proliferation and mass formation as shown by QRT-PCR, western blotting, 5-Bromo-2-deoxyuridine (BrdU) immunostaining assay and tunel assay. However, we did not find the related roles of BIO on β cell differentiation by immunostaining, QRT-PCR assay, glucose-stimulated insulin release and C-peptide content analysis.</p> <h3>Conclusions</h3><p>These results suggest that BIO plays a key role in the regulation of cell mass proliferation and maintenance of the undifferentiated state of iPMSCs.</p> </div

    Enhanced Anaerobic Biodegradation of Benzoate Under Sulfate-Reducing Conditions With Conductive Iron-Oxides in Sediment of Pearl River Estuary

    Get PDF
    Anaerobic biodegradation of aromatic compounds under sulfate-reducing conditions is important to marine sediments. Sulfate respiration by a single bacterial strain and syntrophic metabolism by a syntrophic bacterial consortium are primary strategies for sulfate-dependent biodegradation of aromatic compounds. The objective of this study was to investigate the potential of conductive iron oxides to facilitate the degradation of aromatic compounds under sulfate-reducing conditions in marine sediments, using benzoate as a model aromatic compound. Here, in anaerobic incubations of sediments from the Pearl River Estuary, the addition of hematite or magnetite (20 mM as Fe atom) enhanced the rates of sulfate-dependent benzoate degradation by 81.8 and 91.5%, respectively, compared with control incubations without iron oxides. Further experiments demonstrated that the rate of sulfate-dependent benzoate degradation accelerated with increased magnetite concentration (5, 10, and 20 mM). The detection of acetate as an intermediate product implied syntrophic benzoate degradation pathway, which was also supported by the abundance of putative acetate- or/and H2-utilizing sulfate reducers from microbial community analysis. Microbial reduction of iron oxides under sulfate-reducing conditions only accounted for 2–11% of electrons produced by benzoate oxidation, thus the stimulatory effect of conductive iron oxides on sulfate-dependent benzoate degradation was not mainly due to an increased pool of terminal electron acceptors. The enhanced rates of syntrophic benzoate degradation by the presence of conductive iron oxides probably resulted from the establishment of a direct interspecies electron transfer (DIET) between syntrophic partners. In the presence of magnetite, Bacteroidetes and Desulfobulbaceae with potential function of extracellular electron transfer might be involved in syntrophic benzoate degradation. Results from this study will contribute to the development of new strategies for in situ bioremediation of anaerobic sediments contaminated with aromatic compounds, and provide a new perspective for the natural attenuation of aromatic compounds in iron-rich marine sediments

    Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals

    Get PDF
    It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals

    Monitoring the Process of Endostar-Induced Tumor Vascular Normalization by Non-contrast Intravoxel Incoherent Motion Diffusion-Weighted MRI

    Get PDF
    Tumor vascular normalization has been proposed as a new concept in anti-tumor angiogenesis, and the normalization window is considered as an opportunity to increase the effect of chemoradiotherapy. However, there is still a lack of a non-invasive method for monitoring the process of tumor vascular normalization. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM DW-MRI) is an emerging approach which can effectively assess microperfusion in tumors, without the need for exogenous contrast agents. However, its role in monitoring tumor vascular normalization still needs further study. In this study, we established a tumor vascular normalization model of CT26 colon-carcinoma-bearing mice by means of Endostar treatment. We then employed IVIM DW-MRI and immunofluorescence to detect the process of tumor vascular normalization at different times after treatment. We found that the D* values of the Endostar group were significantly higher than those of the control group on days 4, 6, 8, and 10 after treatment, and the f values of the Endostar group were significantly higher than those of the control group on days 6 and 8. Furthermore, we confirmed through analysis of histologic parameters that Endostar treatment induced the CT26 tumor vascular normalization window starting from day 4 after treatment, and this window lasted for 6 days. Moreover, we found that D* and f values were well correlated with pericyte coverage (r = 0.469 and 0.504, respectively; P &lt; 0.001, both) and relative perfusion (r = 0.424 and 0.457, respectively; P &lt; 0.001, both). Taken together, our findings suggest that IVIM DW-MRI has the potential to serve as a non-invasive approach for monitoring Endostar-induced tumor vascular normalization

    Improvement of resistance to rice blast and bacterial leaf streak by CRISPR/Cas9-mediated mutagenesis of Pi21 and OsSULTR3;6 in rice (Oryza sativa L.)

    Get PDF
    Rice (Oryza sativa L.) is a staple food in many countries around the world, particularly in China. The production of rice is seriously affected by the bacterial leaf streak and rice blast, which can reduce rice yield or even cause it to fail to be harvested. In this study, susceptible material 58B was edited by CRISPR/Cas9, targeting a target of the Pi21 gene and a target of the effector-binding element (EBE) of the OsSULTR3;6 gene, and the mutants 58b were obtained by Agrobacterium-mediated method. The editing efficiency of the two targets in the T0 generation was higher than 90.09%, the homozygous mutants were successfully selected in the T0 generation, and the homozygous mutation rate of each target was higher than 26.67%. The expression of the edited pi21 and EBE of Ossultr3;6 was significantly reduced, and the expression of defense responsive genes was significantly upregulated after infected with rice blast. The lesion areas of rice blast and bacterial leaf streak were significantly reduced in 58b, and the resistance of both was effectively improved. Furthermore, the gene editing events did not affect the agronomic traits of rice. In this study, the resistance of 58b to rice blast and bacterial leaf streak was improved simultaneously. This study provides a reference for using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas9) to accelerate the improvement of rice varieties and the development of new materials for rice breeding

    Genomic selection analysis of morphological and adaptation traits in Chinese indigenous dog breeds

    Get PDF
    The significant morphological differences and abundant germplasm resources of Chinese indigenous dog breeds can be attributed to the diverse geographical environment, including plateaus, mountains, and a long history of raising dogs. The combination of both natural and artificial selection during the past several thousand years has led to hundreds of dog breeds with distinct morphological traits and environmental adaptations. China is one of the earliest countries to domesticate dogs and there are more than 50 ancient indigenous dog breeds. In this study, the run of homozygosity (ROH) and proportion of the autosomal genome covered by ROHs (FROH) were calculated for 10 dog breeds that are the most representative Chinese indigenous dogs based on 170K SNP microarray. The results of FROH showed that the Chuandong hound dogs (HCSSC) have the highest level of inbreeding among the tested breeds. The inbreeding in HCSSC occurred more recently than the Liangshan dogs (SCLSQ) dogs because of more numbers of long ROHs in HCSSC dogs, and the former also have higher inbreeding degree. In addition, there are significant differences in the inbreeding degree among different subpopulations of the same breed, such as the Thin dogs from Shaanxi and Shandong province. To explore genome-wide selection signatures among different breeds, including coat color, ear shape, and altitude adaptability, we performed genome selection analyses of FST and cross population extended haplotype homozygosity (XP-EHH). For the coat color, the FST analysis between Xiasi dogs (XSGZ) and HCSSC dogs was performed and identified multiple genes involved in coat color, hair follicle, and bone development, including MC1R, KITLG, SOX5, RSPO2, and TBX15. For the plateau adaptability, we performed FST and XP-EHH analyses between dogs from Tibet (Tibetan Mastiffs and Nyingchi dogs) and plain regions (Guangxi Biwei dogs GXBWQ and Guandong Sharpei dogs). The results showed the EPAS1 gene in dogs from Tibet undergo strong selection. Multiple genes identified for selection signals based on different usage of dogs. Furthermore, the results of ear shape analyses showed that MSRB3 was likely to be the main gene causing the drop ear of domestic dogs. Our study provides new insights into further understanding of Chinese indigenous dogs

    Dynamics of human replication factors in the elongation phase of DNA replication

    Get PDF
    In eukaryotic cells, DNA replication is carried out by coordinated actions of many proteins, including DNA polymerase δ (pol δ), replication factor C (RFC), proliferating cell nuclear antigen (PCNA) and replication protein A. Here we describe dynamic properties of these proteins in the elongation step on a single-stranded M13 template, providing evidence that pol δ has a distributive nature over the 7 kb of the M13 template, repeating a frequent dissociation–association cycle at growing 3′-hydroxyl ends. Some PCNA could remain at the primer terminus during this cycle, while the remainder slides out of the primer terminus or is unloaded once pol δ has dissociated. RFC remains around the primer terminus through the elongation phase, and could probably hold PCNA from which pol δ has detached, or reload PCNA from solution to restart DNA synthesis. Furthermore, we suggest that a subunit of pol δ, POLD3, plays a crucial role in the efficient recycling of PCNA during dissociation–association cycles of pol δ. Based on these observations, we propose a model for dynamic processes in elongation complexes

    Epigenetic Remodeling in Male Germline Development

    No full text
    In mammals, germ cells guarantee the inheritance of genetic and epigenetic information across generations and are the origin of a new organism. During embryo development, the blastocyst is formed in the early stage, is comprised of an inner cell mass which is pluripotent, and could give rise to the embryonic stem cells (ESCs). The inner cell mass undergoes demethylation processes and will reestablish a methylated state that is similar to that of somatic cells later in epiblast stage. Primordial germ cells (PGCs) will be formed very soon and accompanied by the process of genome-wide demethylation. With the input of male sex determination genes, spermatogonial stem cells (SSCs) are generated and undergo the process of spermatogenesis. Spermatogenesis is a delicately regulated process in which various regulations are launched to guarantee normal mitosis and meiosis in SSCs. During all these processes, especially during spermatid development, DNA methylation profile and histone modifications are of crucial importance. In this review, we will discuss the epigenetic modifications from zygote formation to mature sperm generation and their significance to these development processes
    corecore