1,005 research outputs found

    Microsatellites reveal a strong subdivision of genetic structure in Chinese populations of the mite Tetranychus urticae Koch (Acari: Tetranychidae)

    Get PDF
    Contact: [email protected] audienceBACKGROUND: Two colour forms of the two-spotted spider mite (Tetranychus urticae Koch) coexist in China: a red (carmine) form, which is considered to be native and a green form which is considered to be invasive. The population genetic diversity and population genetic structure of this organism were unclear in China, and there is a controversy over whether they constitute distinct species. To address these issues, we genotyped a total of 1,055 individuals from 18 red populations and 7 green populations in China using eight microsatellite loci. RESULTS: We identified 109 alleles. We found a highly significant genetic differentiation among the 25 populations (global F-ST = 0.506, global F-ST({ENA}) = 0.473) and a low genetic diversity in each population. In addition, genetic diversity of the red form mites was found to be higher than the green form. Pearson correlations between statistics of variation (AR and H-E) and geographic coordinates (latitude and longitude) showed that the genetic diversity of the red form was correlated with latitude. Using Bayesian clustering, we divided the Chinese mite populations into five clades which were well congruent with their geographic distributions. CONCLUSIONS: Spider mites possess low levels of genetic diversity, limit gene flow between populations and significant and IBD (isolation by distance) effect. These factors in turn contribute to the strong subdivision of genetic structure. In addition, population genetic structure results don't support the separation of the two forms of spider mite into two species. The morphological differences between the two forms of mites may be a result of epigenetic effects

    DifferSketching: How Differently Do People Sketch 3D Objects?

    Full text link
    Multiple sketch datasets have been proposed to understand how people draw 3D objects. However, such datasets are often of small scale and cover a small set of objects or categories. In addition, these datasets contain freehand sketches mostly from expert users, making it difficult to compare the drawings by expert and novice users, while such comparisons are critical in informing more effective sketch-based interfaces for either user groups. These observations motivate us to analyze how differently people with and without adequate drawing skills sketch 3D objects. We invited 70 novice users and 38 expert users to sketch 136 3D objects, which were presented as 362 images rendered from multiple views. This leads to a new dataset of 3,620 freehand multi-view sketches, which are registered with their corresponding 3D objects under certain views. Our dataset is an order of magnitude larger than the existing datasets. We analyze the collected data at three levels, i.e., sketch-level, stroke-level, and pixel-level, under both spatial and temporal characteristics, and within and across groups of creators. We found that the drawings by professionals and novices show significant differences at stroke-level, both intrinsically and extrinsically. We demonstrate the usefulness of our dataset in two applications: (i) freehand-style sketch synthesis, and (ii) posing it as a potential benchmark for sketch-based 3D reconstruction. Our dataset and code are available at https://chufengxiao.github.io/DifferSketching/.Comment: SIGGRAPH Asia 2022 (Journal Track

    Coupling nitrate capture with ammonia production through bifunctional redox-electrodes

    Get PDF
    Nitrate is a ubiquitous aqueous pollutant from agricultural and industrial activities. At the same time, conversion of nitrate to ammonia provides an attractive solution for the coupled environmental and energy challenge underlying the nitrogen cycle, by valorizing a pollutant to a carbon-free energy carrier and essential chemical feedstock. Mass transport limitations are a key obstacle to the efficient conversion of nitrate to ammonia from water streams, due to the dilute concentration of nitrate. Here, we develop bifunctional electrodes that couple a nitrate-selective redox-electrosorbent (polyaniline) with an electrocatalyst (cobalt oxide) for nitrate to ammonium conversion. We demonstrate the synergistic reactive separation of nitrate through solely electrochemical control. Electrochemically-reversible nitrate uptake greater than 70 mg/g can be achieved, with electronic structure calculations and spectroscopic measurements providing insight into the underlying role of hydrogen bonding for nitrate selectivity. Using agricultural tile drainage water containing dilute nitrate (0.27mM), we demonstrate that the bifunctional electrode can achieve a 8-fold up-concentration of nitrate, a 24-fold enhancement of ammonium production rate (108.1 ug h−1 cm−2), and a \u3e10-fold enhancement in energy efficiency when compared to direct electrocatalysis in the dilute stream. Our study provides a generalized strategy for a fully electrified reaction-separation pathway for modular nitrate remediation and ammonia production

    Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna

    Get PDF
    Active phased array antennas (APAAs) can suffer from the effects of harsh thermal environments, which are caused by the large quantity of power generated by densely packed T/R modules and external thermal impacts. The situation may be worse in the case of limited room and severe thermal loads, due to heat radiation and a low temperature sink. The temperature field of the antenna can be changed. Since large numbers of temperature-sensitive electronic components exist in T/R modules, excitation current output can be significantly affected and the electromagnetic performance of APAAs can be seriously degraded. However, due to a lack of quantitative analysis, it is difficult to directly estimate the effect of temperature on the electromagnetic performance of APAAs. Therefore, this study investigated the electromagnetic performance of APAAs as affected by two key factors—the uniformly distributed temperature field and the temperature gradient field—based on different antenna shapes and sizes, to provide theoretical guidance for their thermal design

    catena-Poly[[(5-carb­oxy-2H-1,2,3-triazole-4-carboxyl­ato-Îș2 N 3,O 4)sodium]-di-ÎŒ-aqua-Îș4 O:O]

    Get PDF
    In the title coordination polymer, [Na(C4H2N3O4)(H2O)2]n, the NaI atom is six-coordinated by one O atom and one N atom from a 2H-1,2,3-triazole-4-carb­oxy-5-carboxyl­ate ligand and four O atoms from four water mol­ecules, forming a distorted octa­hedal geometry. The NaI atoms are bridged by water mol­ecules into a chain structure along [100]. Inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds connect the chains. An intra­molecular O—H⋯O hydrogen bond between the carboxyl­ate groups is observed
    • 

    corecore