626 research outputs found

    Electronic Raman scattering and photoluminescence from La0.7_{0.7}Sr0.3_{0.3}MnO3_3 exhibiting giant magnetoresistance

    Full text link
    Raman and Photoluminescence (PL) experiments on correlated metallic La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} have been carried out using different excitation wavelengths as a function of temperature from 15 K to 300 K. Our data suggest a Raman mode centered at 1800 cm1^{-1} and a PL band at 2.2 eV. The intensities of the two peaks decrease with increasing temperature. The Raman mode can be attributed to a plasmon excitation whose frequency and linewidths are consistent with the measured resistivities. The PL involves intersite electronic transitions of the manganese ions.Comment: 10 pages + 4 eps figures, Revtex 3.0, figures available on reques

    Apparent giant dielectric constants, dielectric relaxation, and ac-conductivity of hexagonal perovskites La1.2Sr2.7BO7.33 (B = Ru, Ir)

    Full text link
    We present a thorough dielectric investigation of the hexagonal perovskites La1.2Sr2.7IrO7.33 and La1.2Sr2.7RuO7.33 in a broad frequency and temperature range, supplemented by additional infrared measurements. The occurrence of giant dielectric constants up to 10^5 is revealed to be due to electrode polarization. Aside of dc and ac conductivity contributions, we detect two intrinsic relaxation processes that can be ascribed to ionic hopping between different off-center positions. In both materials we find evidence for charge transport via hopping of localized charge carriers. In the infrared region, three phonon bands are detected, followed by several electronic excitations. In addition, these materials provide further examples for the occurrence of a superlinear power law in the broadband ac conductivity, which recently was proposed to be a universal feature of all disordered matter.Comment: 8 pages, 7 figure

    Charged Higgs Boson Production in Bottom-Gluon Fusion

    Full text link
    We compute the complete next-to-leading order SUSY-QCD corrections for the associated production of a charged Higgs boson with a top quark via bottom-gluon fusion. We investigate the applicability of the bottom parton description in detail. The higher order corrections can be split into real and virtual corrections for a general two Higgs doublet model and into additional massive supersymmetric loop contributions. We find that the perturbative behavior is well under control. The supersymmetric contributions consist of the universal bottom Yukawa coupling corrections and non-factorizable diagrams. Over most of the relevant supersymmetric parameter space the Yukawa coupling corrections are sizeable, while the remaining supersymmetric loop contributions are negligible.Comment: 18 pages, v2: some discussions added, v3: published versio

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Melting of Charge/Orbital Ordered States in Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3: Temperature and Magnetic Field Dependent Optical Studies

    Full text link
    We investigated the temperature (T=T= 15 \sim 290 K) and the magnetic field (H=H= 0 \sim 17 T) dependent optical conductivity spectra of a charge/orbital ordered manganite, Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3. With variation of TT and HH, large spectral weight changes were observed up to 4.0 eV. These spectral weight changes could be explained using the polaron picture. Interestingly, our results suggested that some local ordered state might remain above the charge ordering temperature, and that the charge/orbital melted state at a high magnetic field (i.e. at H=H= 17 T and % T= 4.2 K) should be a three dimensional ferromagnetic metal. We also investigated the first order phase transition from the charge/orbital ordered state to ferromagnetic metallic state using the TT- and HH% -dependent dielectric constants ϵ1\epsilon_1. In the charge/orbital ordered insulating state, ϵ1\epsilon_1 was positive and dϵ1/dω0d\epsilon_1/d\omega \approx 0. With increasing TT and HH, ϵ1\epsilon_1 was increased up to the insulator-metal phase boundaries. And then, ϵ1\epsilon_1 abruptly changed into negative and dϵ1/dω>0d\epsilon_1/d\omega >0, which was consistent with typical responses of a metal. Through the analysis of ϵ1% \epsilon_1 using an effective medium approximation, we found that the melting of charge/orbital ordered states should occur through the percolation of ferromagnetic metal domains.Comment: submitted to Phys. Rev.

    On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites

    Full text link
    Employing a variational approach that takes into account electron-phonon and magnetic interactions in La1xAxMnO3La_{1-x}A_xMnO_3 perovskites with 0<x<0.50<x<0.5, the effects of the magnetic field and the oxygen isotope substitution on the phase diagram, the electron-phonon correlation function and the infrared absorption at x=0.3x=0.3 are studied. The lattice displacements show a strong correlation with the conductivity and the magnetic properties of the system. Then the conductivity spectra are characterized by a marked sensitivity to the external parameters near the phase boundary.Comment: 10 figure

    S-system theory applied to array-based GNSS ionospheric sensing

    Get PDF
    The GPS carrier-phase and code data have proven to be valuable sources of measuring the Earth’s ionospheric total electron content (TEC). With the development of new GNSSs with multi frequency data, many more ionosphere-sensing combinations of different precision can be formed as input of ionospheric modelling. We present the general way of interpreting such combinations through an application of S-system theory and address how their precision propagates into that of the unbiased TEC solution. Presenting the data relevant to TEC determination, we propose the usage of an array of GNSS antennas to improve the TEC precision and to expedite the rather long observational time-span required for high-precision TEC determination

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
    corecore