1,095 research outputs found

    Isotropic photonic band gap and anisotropic structures in transmission spectra of two-dimensional 5-fold and 8-fold symmetric quasiperiodic photonic crystals

    Get PDF
    We measured and calculated transmission spectra of two-dimensional quasiperiodic photonic crystals (PCs) based on a 5-fold (Penrose) or 8-fold (octagonal) symmetric quasiperiodic pattern. The photonic crystal consisted of dielectric cylindrical rods in air placed normal to the basal plane on vertices of tiles composing the quasiperiodic pattern. An isotropic photonic band gap (PBG) appeared in the TM mode, where electric fields were parallel to the rods, even when the real part of a dielectric constant of the rod was as small as 2.4. An isotropic PBG-like dip was seen in tiny Penrose and octagonal PCs with only 6 and 9 rods, respectively. These results indicate that local multiple light scattering within the tiny PC plays an important role in the PBG formation. Besides the isotropic PBG, we found dips depending on the incident angle of the light. This is the first report of anisotropic structures clearly observed in transmission spectra of quasiperiodic PCs. Based on rod-number and rod-arrangement dependence, it is thought that the shapes and positions of the anisotropic dips are determined by global multiple light scattering covering the whole system. In contrast to the isotropic PBG due to local light scattering, we could not find any PBGs due to global light scattering even though we studied transmission spectra of a huge Penrose PC with 466 rods.Comment: One tex file for manuscript and 12 PNG files for figures consisting of Fig.1a-d, 2,3, ...

    Improvement of Switching Speed of a 600-V Nonpunch-through Insulated Gate Bipolar Transistor Using Fast Neutron Irradiation

    Get PDF
    AbstractFast neutron irradiation was used to improve the switching speed of a 600-V nonpunch-through insulated gate bipolar transistor. Fast neutron irradiation was carried out at 30-MeV energy in doses of 1 × 108 n/cm2, 1 × 109 n/cm2, 1 × 1010 n/cm2, and 1 × 1011 n/cm2. Electrical characteristics such as current–voltage, forward on-state voltage drop, and switching speed of the device were analyzed and compared with those prior to irradiation. The on-state voltage drop of the initial devices prior to irradiation was 2.08 V, which increased to 2.10 V, 2.20 V, 2.3 V, and 2.4 V, respectively, depending on the irradiation dose. This effect arises because of the lattice defects generated by the fast neutrons. In particular, the turnoff delay time was reduced to 92 nanoseconds, 45% of that prior to irradiation, which means there is a substantial improvement in the switching speed of the device

    A Theoretical Framework for the Analysis of Physical Unclonable Function Interfaces and its Relation to the Random Oracle Model

    Get PDF
    Analysis of advanced Physical Unclonable Function (PUF) applications and protocols rely on assuming that a PUF behaves like a random oracle, that is, upon receiving a challenge, a uniform random response with replacement is selected, measurement noise is added, and the resulting response is returned. In order to justify such an assumption, we need to rely on digital interface computation that to some extent remains confidential -- otherwise, information about PUF challenge response pairs leak with which the adversary can train a prediction model for the PUF. We introduce a theoretical framework that allows the adversary to have a prediction model (with a typical accuracy of 75% for predicting response bits for state-of-the-art silicon PUF designs). We do not require any confidential digital computing or digital secrets while we can still prove rigorous statements about the bit security of a system that interfaces with the PUF. In particular, we prove the bit security of a PUF-based random oracle construction; this merges the PUF framework with fuzzy extractors.</p

    Utilizing PCL microcarriers for high-purity isolation of primary endothelial cells for tissue engineering

    Get PDF
    Endothelial cells (ECs) are widely used in research, both for fundamental vascular biology research and for exploring strategies to create engineered vascularized tissues. Primary isolation often results in contamination from fibroblasts and vascular smooth muscle cells that can potentially affect function, particularly during the initial expansion period needed to establish the cell culture. In the current study, we explored the use of microcarriers to selectively isolate ECs from the lumen of intact vessels to enhance the purity during the isolation procedure. First, rat aortic explant culture was performed and after 2 weeks of culture, flow cytometry revealed that only 60% of the expanded cell population was positive for the endothelial marker CD31. Then, we employed a strategy to selectively isolate ECs and improve their purity by introducing microcarriers to the lumen of intact aorta. After 10 days, microcarriers were carefully removed and placed in cell culture dishes and at 15 days, a large near confluent layer of primary ECs populated the dish. Flow cytometry revealed that >90% of the expanded cells expressed CD31. Moreover, the cells were capable of forming tubule-like structures when plated onto Matrigel, confirming their function also. The highly modular and transportable nature of microcarriers has significant potential for isolating ECs at high purity, with minimal contamination

    Electronic structure, magnetism and superconductivity of MgCNi3_{3}

    Full text link
    The electronic structure of the newly discovered superconducting perovskite MgCNi3_3 is calculated using the LMTO and KKR methods. The states near the Fermi energy are found to be dominated by Ni-d. The Stoner factor is low while the electron-phonon coupling constant is estimated to be about 0.7, which suggests that the material is a conventional type of superconductor where TC_C is not affected by magnetic interactions. However, the proximity of the Fermi energy to a large peak in the density of states in conjunction with the reported non-stoichiometry of the compound, has consequences for the stability of the results.Comment: 3 pages, 4 figure

    Self-consistent quantum effects in the quark meson coupling model

    Full text link
    We derive the equation of state of nuclear matter including vacuum polarization effects arising from the nucleons and the sigma mesons in the quark-meson coupling model which incorporates explicitly quark degrees of freedom with quark coupled to the scalar and vector mesons. This leads to a softer equation of state for nuclear matter giving a lower value of incompressibility than would be reached without quantum effects. The {\it in-medium} nucleon and sigma meson masses are also calculated in a self-consistent manner.Comment: 10 pages, latex, 5 figure

    Relativistic versus Nonrelativistic Optical Potentials in A(e,e'p)B Reactions

    Full text link
    We investigate the role of relativistic and nonrelativistic optical potentials used in the analysis of (e,epe,e'p) data. We find that the relativistic calculations produce smaller (e,epe,e'p) cross sections even in the case in which both relativistic and nonrelativistic optical potentials fit equally well the elastic proton--nucleus scattering data. Compared to the nonrelativistic impulse approximation, this effect is due to a depletion in the nuclear interior of the relativistic nucleon current, which should be taken into account in the nonrelativistic treatment by a proper redefinition of the effective current operator.Comment: Added one new figure, the formalism section has been enlarged and the list of references updated. Added one appendix. This version will appear in Phys. Rev. C. Revtex 3.0, 6 figures (not included). Full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints

    Programmable access-controlled and generic erasable PUF design and its applications

    Get PDF
    Physical unclonable functions (PUFs) have not only been suggested as a new key storage mechanism, but—in the form of so-called strong PUFs—also as cryptographic primitives in advanced schemes, including key exchange, oblivious transfer, or secure multi-party computation. This notably extends their application spectrum, and has led to a sequence of publications at leading venues such as IEEE S&P, CRYPTO, and EUROCRYPT in the past. However, one important unresolved problem is that adversaries can break the security of all these advanced protocols if they gain physical access to the employed strong PUFs after protocol completion. It has been formally proven that this issue cannot be overcome by techniques on the protocol side alone, but requires resolution on the hardware level—the only fully effective known countermeasure being so-called erasable PUFs. Building on this work, this paper is the first to describe a generic method of how any given silicon strong PUF with digital CRP-interface can be turned into an erasable PUF. We describe how the strong PUF can be surrounded with a trusted control logic that allows the blocking (or “erasure”) of single CRP. We implement our approach, which we call “GeniePUF,” on FPGA, reporting detailed performance data and practicality figures. Furthermore, we develop the first comprehensive definitional framework for erasable PUFs. Our work so re-establishes the effective usability of strong PUFs in advanced cryptographic applications, and in the realistic case, adversaries get access to the strong PUF after protocol completion. As an extension to earlier versions of this work, we also introduce a generalization of erasable PUFs in this paper, which we call programmable access-controlled PUFs (PAC PUFs). We detail their definition, and discuss various exemplary applications of theirs

    Excluded Volume Effects in the Quark Meson Coupling Model

    Full text link
    Excluded volume effects are incorporated in the quark meson coupling model to take into account in a phenomenological way the hard core repulsion of the nuclear force. The formalism employed is thermodynamically consistent and does not violate causality. The effects of the excluded volume on in-medium nucleon properties and the nuclear matter equation of state are investigated as a function of the size of the hard core. It is found that in-medium nucleon properties are not altered significantly by the excluded volume, even for large hard core radii, and the equation of state becomes stiffer as the size of the hard core increases.Comment: 14 pages, revtex, 6 figure

    Modelling of strain effects in manganite films

    Full text link
    Thickness dependence and strain effects in films of La1xAxMnO3La_{1-x}A_xMnO_3 perovskites are analyzed in the colossal magnetoresistance regime. The calculations are based on a generalization of a variational approach previously proposed for the study of manganite bulk. It is found that a reduction in the thickness of the film causes a decrease of critical temperature and magnetization, and an increase of resistivity at low temperatures. The strain is introduced through the modifications of in-plane and out-of-plane electron hopping amplitudes due to substrate-induced distortions of the film unit cell. The strain effects on the transition temperature and transport properties are in good agreement with experimental data only if the dependence of the hopping matrix elements on the MnOMnMn-O-Mn bond angle is properly taken into account. Finally variations of the electron-phonon coupling linked to the presence of strain turn out important in influencing the balance of coexisting phases in the filmComment: 7 figures. To be published on Physical Review
    corecore