
Springer Nature 2021 LATEX template

Programmable Access Controlled and Generic Erasable PUF

Design and Its Applications

Chenglu Jin1*, Wayne Burleson2, Marten van Dijk1,3 and Ulrich Rührmair4,3

1CWI Amsterdam, Amsterdam, 1098 XG, Netherlands.
2University of Massachusetts Amherst, Amherst, 01003, Massachusetts, USA.

3University of Connecticut, Storrs, 06269, Connecticut, USA.
4LMU München, München, 80539, Germany.

*Corresponding author(s). E-mail(s): chenglu.jin@cwi.nl;
Contributing authors: burleson@umass.edu; marten.van.dijk@cwi.nl; ruehrmair@ilo.de;

Abstract

Physical Unclonable Functions (PUFs) have not only been suggested as a new key storage mech-
anism, but — in the form of so-called “Strong PUFs” — also as cryptographic primitives in
advanced schemes, including key exchange, oblivious transfer, or secure multi-party computation.
This notably extends their application spectrum, and has led to a sequence of publications at lead-
ing venues such as IEEE S&P, CRYPTO, and EUROCRYPT in the past. However, one important
unresolved problem is that adversaries can break the security of all these advanced protocols if
they gain physical access to the employed Strong PUFs after protocol completion. It has been for-
mally proven that this issue cannot be overcome by techniques on the protocol side alone, but
requires resolution on the hardware level — the only fully effective known countermeasure being
so-called Erasable PUFs . Building on this work, this paper is the first to describe a generic
method of how any given silicon Strong PUF with digital CRP-interface can be turned into an
Erasable PUF. We describe how the Strong PUF can be surrounded with a trusted control logic
that allows the blocking (or “erasure”) of single CRP. We implement our approach, which we
call “GeniePUF”, on FPGA, reporting detailed performance data and practicality figures. Fur-
thermore, we develop the first comprehensive definitional framework for Erasable PUFs. Our work
so re-establishes the effective usability of Strong PUFs in advanced cryptographic applications,
and in the realistic case, adversaries get access to the Strong PUF after protocol completion.
As an extension to earlier versions of this work , we also introduce a generalization of
Erasable PUFs in this paper, which we call Programmable Access Controlled PUFs (PAC
PUFs). We detail their definition, and discuss various exemplary applications of theirs.

Keywords: Physical Unclonable Functions (PUFs), PUF Re-Use Model, Erasable PUFs, Reconfigurable
PUFs, GeniePUFs, Programmable Access Controlled PUFs

1 Introduction and Overview

The last years have witnessed an increasing inter-
est in directly leveraging the physical properties of

computer hardware for cryptographic and security
purposes. One prime example is so-called Physical
Unclonable Functions (PUFs), which exploit the

1

Springer Nature 2021 LATEX template

2 Article Title

natural manufacturing variations arising in most
modern hardware systems [1–3].

In their early days, PUFs were predominantly
seen as a novel tool for physical key storage
and system identification. To start with, so-called
Weak PUFs [4] (for example SRAM PUFs [5],
transistor-based PUFs [1], diode-based PUFs [6],
or DRAM PUFs [7]) were suggested as source of
system-specific keys in hardware that had no non-
volatile memory (NVM) on board. This succes-
sively established Weak PUFs as viable, arguably
more secure alternative to classical NVMs in key
storage applications [8–12].

In addition, so-called Strong PUFs [4] (such
as Arbiter PUFs [13] and optical PUFs [3]), were
proposed for new types of remote identification
protocols [3]. In these schemes, a randomly chosen
subset of PUF Challenge Response Pairs (CRPs)
is directly sent in the clear and unencrypted in
each protocol run, proving the identity of the
PUF-holder to a remote party. Fresh CRPs have
to be employed in each execution, necessitating a
large CRP-space of the underlying Strong PUF.
Interestingly, the use of Strong PUFs here leads to
new hardware and new cryptographic protocols.
In both cases, Weak and Strong PUFs empower
electronic systems to identify themselves without
having classical, permanent digital keys on board.
This notable fact has created sustainable research
interest in the security community ever since.

In recent years, an important second research
strand on PUFs has evolved, however, which
reaches strictly beyond the above key storage or
identification scenarios. In this second avenue,
solely Strong PUFs [4] 1 are employed as “cryp-
tographic primitive” in advanced schemes like key
exchange (KE), bit commitment (BC), oblivious
transfer (OT), or secure multi-party computation
(SMC) [14–17]. It has been proved in universal
composition framework that all these tasks can
solely be built on Strong PUFs and their features,
assuming physical unclonability of the PUFs and
numeric unpredictability of their CRPs [15, 16].
This makes Strong PUFs a novel, independent

1Weak PUFs [4] are not suited for the application as
cryptographic primitive in advanced protocols in the above
sense: This scenario inevitably requires a large, inexhaustible
CRP space with many possible challenges, numerically unpre-
dictable responses, and a publicly accessible CRP-interface of
the PUF, where every protocol participant and also adversaries
can apply challenges and read-out responses freely [14–16] —
or, in one term, a Strong PUF [4].

1/47

110100101

EVE

Strong
PUF

Fig. 1: The most general setting for the applica-
tion of Strong PUFs in cryptographic protocols:
All participants are connected pairwise via a
binary channel, and via a separate physical chan-
nel over which physical objects like Strong PUFs
can be sent. Eve can access both the physical and
binary channels alike.

fundament for cryptography: Their security is not
based on the purported intractability of number
theoretic problems, such as the factoring or dis-
crete logarithm problems. The resulting Strong
PUF protocols are hence not a direct target of
a potential advent of quantum computing, and
so in line with recent efforts in post-quantum
cryptography [18].

The communication scenario of said protocols
is similar to classical, token-based cryptography
[19], as depicted in Figure 1: Several parties are
connected via (i) a digital channel, over which
binary messages can be sent, and (ii) a physi-
cal channel, over which real, physical objects (like
Strong PUFs) can be transferred. The adversary
Eve has potential access to both channels. Since
a Strong PUF’s challenge-response interface is by
definition publicly accessible [4], Eve and all other
protocol participants can query the Strong PUF
for any CRPs of their choice during their respec-
tive access periods to the PUF — while not being
able to read out the Strong PUF’s CRP-space
completely, as it is too large [4]. We stress that
the physical transfer of Strong PUFs can often
be accomplished naturally and with surprisingly
little effort: Whenever a customer carries a bank
card plus Strong PUF from terminal to terminal
in his wallet; whenever an electronic hardware is
shipped from a manufacturer to an end consumer;

Springer Nature 2021 LATEX template

Article Title 3

or when a mobile device such as a laptop or smart-
phone is carried around and connects to different
base stations; an automatic and implicit physical
transfer of objects (and potentially of PUFs) takes
place. Taken together, the future of Strong PUFs
as cryptographic primitive seemed bright both in
practice and theory, promising a broad spectrum
of applications.

1.1 PUF Re-Use and Relevance of
Erasable PUFs

These bright hopes were partly dashed when a
class of simple, yet efficient attacks on advanced
Strong PUF protocols was discovered: The so-
called “PUF Re-Use Model” or “Post-Protocol
Access Model” [20]. It realistically assumes that
in almost all practical use cases, the same Strong
PUF will be re-employed in more than one proto-
col run. Adversaries may thus gain physical access
to the PUF not just during a run, but also after the
run has been completed. As Strong PUFs by def-
inition possess a publicly accessible, unprotected
CRP-interface [4], such ”post-protocol access”
allows the read-out of any CRPs of the adver-
sary’s choice. This potentially includes CRPs that
had been employed earlier by other parties, pro-
vided that the respective challenges are, or have
become, known to the adversary. Post-protocol
access can hence retrospectively allow attacks on
previous protocol executions. Unfortunately, this
simple attack method has proven effective on all
currently known Strong PUF based KE, OT, or
SMC schemes [20, 21].

We would like to stress that the PUF Re-
Use Model differs fundamentally from the triv-
ial case of a Weak PUF whose responses have
been exposed to the adversary. Please recall the
strict differences between Weak PUFs and Strong
PUFs [4] in this context: Weak PUFs inherently
are based on the hypothesis that their responses
remain internal and unknown to adversaries for-
ever. Exposing these responses hence trivially
breaks security. With Strong PUFs, more or less
the converse holds: Their CRP-interface by defini-
tion is designed to be public from the start. They
should hence intuitively withstand any adversarial
access to their CRP-interface, including the post-
protocol access assumed in the PUF Re-Use Model
— but actually cannot, as it turns out [20–22].

This leads to the question whether new proto-
cols for KE, OT, or SMC could be designed that
evade the above issues. Unfortunately, it was for-
mally proven [21] that any standard Strong PUFs,
whose responses are unaltered and can still be
read out during post-protocol access, are not use-
ful in building secure KE, OT, or SMC schemes.
This implies that the problems arising from post-
protocol access must be solved on a hardware level
— not on a protocol level. They must be overcome
by devising novel physical types of PUFs, which
can alter some of their CRPs for good [21].

The above discussion could be interpreted as
suggesting so-called Reconfigurable PUFs [23–26]
in order to resolve the issues of post-protocol
access. Please recall that by definition [23], all of
their responses can be randomly altered in one
single step by a simple reconfiguration operation.
However, complete, general, and non-selective
reconfigurability is not what we need in our con-
text: For illustration, consider the setting depicted
in Figure 1. Let us assume that different crypto-
graphic protocols are being run between multiple
parties in this setting, using the same PUF. Some
of these parties will have measured CRP-lists of
this PUF earlier. Fully reconfiguring the entire
PUF implies that all of these lists become obsolete,
however. They would have to be measured anew.
This implies that the reconfigured PUF needs to
physically return to all respective parties, which is
highly inefficient and impractical.

In sum, this renders Erasable PUFs (and their
finegrained, granular erasability on a single CRP-
level) the only known possibility [21] to fully
restore the usability of Strong PUFs in advanced
cryptographic protocols (such as KE, OT, or
SMC) in the most general usage scenarios [20, 22].

1.2 Fundamental Challenges

Despite their abovementioned relevance, no fully
viable Erasable PUF candidates have been devised
to this date. The deeper reasons are some non-
trivial, quite fundamental challenges in Erasable
PUF design: Recall that Erasable PUFs are a sub-
class of Strong PUFs, i.e., they must possess a very
large number of possible inputs, and a complex,
numerically hard-to-predict input-output behav-
ior [4]. However, essentially all known Strong PUF
architectures, such as Arbiter PUFs [13] and opti-
cal PUFs [3], realize this feature by a complex

Springer Nature 2021 LATEX template

4 Article Title

interplay of many system-internal components in
the response generation. If a single response shall
be altered irrecoverably in such a construction, at
least one of these internal components must be
modified. This will alter the targeted response; but
it will also inevitably affect many other responses
as well! For example, modifying a single scattering
element in an optical PUF, or changing a single
runtime delay in an Arbiter PUF, will necessar-
ily influence many CRPs — not just one. This
complicates or even disables fine-grained erasure
operations on a single CRP level.

1.3 Our Contributions

Within the above research landscape, we make the
following novel contributions:2

• We develop a formal, but easily comprehensible
new framework for PUF definitions in general,
and give the first formal definition of Erasable
PUFs in particular. We hope that our treat-
ment could potentially help coining a novel,
easily accessible, yet precise style in future
PUF-related definitions. We also lead some first
proofs on the exact relation between Strong
PUFs and Erasable PUFs in our framework.

• We suggest the first viable Erasable PUF
design. It is generic in the sense that it can
turn an arbitrary given integrated Strong PUF
with a digital challenge-response interface into
an Erasable PUF (this motivated the name
“GeniePUF” for Generic Erasable PUF).

• On the technical side, the GeniePUF approach
uses red-black tree and authenticated search
tree techniques in untrusted memory, while stor-
ing a public, i.e., non-secret, but authenticated
root hash inside its Trusted Computing Base
(TCB). The root hash’s length is independent of
the number of already erased CRPs. This min-
imizes the TCB required for our construction.

• Furthermore, we prove that our “GeniePUF”
construction leads to a secure Erasable PUF,
given that its underlying PUF is a secure Strong
PUF.

• We implement our approach on Zynq FPGA,
reporting detailed performance and practicality

2We would like to mention that this article is a journal ver-
sion of an earlier publication at the ASHES workshop [27].
Together with several smaller adaptions, the concept of a Pro-
grammable Access Controlled PUF has been added to this
work; Section 6 and 7 are completely new.

figures. We show that a CRP erasure operation
takes no more than 18 µs and 10 µs for the
hardware TCB and software interface, respec-
tively, even if 100,000 CRPs have been erased
previously as an example case. This time only
rises mildly even for larger erased CRP sets.

• In the second part of the paper, we further gen-
eralize the concept of Erasable PUFs to the
more powerful concept of Programmable Access
Controlled PUFs (PAC PUFs), which allows a
PUF to incorporate any access control policy to
its challenge-response mechanism.

• Finally, we present three examples of Pro-
grammable Access Controlled PUFs. They show
how a PAC PUF can, in principle, evolve from
its simplest form (the above GeniePUF) to a
more complex construction that uses general
access control policies, such as password control.

1.4 Organization of This Paper

Section 2 surveys the prior works related to
this paper. Section 3 presents a novel defini-
tional framework for Erasable PUFs and the first
formal Erasable PUF definitions. Our Generic
Erasable PUFs (GeniePUFs), which are based on
programmable logic and authenticated tree struc-
tures, are discussed in Section 4. Section 5 shows
the security and practicality of the GeniePUF
construction, with a concrete cryptographic appli-
cation (i.e., their use on bank cards/smart cards
in communication terminals). Section 6 introduces
Programmable Access Controlled PUFs (PAC
PUFs), which generalize the idea of Erasable
PUFs. Section 7 provides examples for implemen-
tations and applications of PAC PUFs. Finally,
the paper concludes in Section 8.

2 Related Work

The only known Erasable PUF candidate prior
to our work was based on a large, monolithic
crossbar architecture [22]. It carries diodes with
random current-voltage characteristics at each of
its nanoscale crosspoints [22]. This design, known
as SHIC PUF [28], leads to a very large num-
ber of completely and information-theoretically
independent CRPs. By intentionally overloading a
selected diode, a breakthrough could be induced
at any given crosspoint, effectively “erasing” the

Springer Nature 2021 LATEX template

Article Title 5

PUF-response deduced from this crosspoint with-
out affecting other responses [22].

However, one substantial problem with this
existing construction, which the authors of [22] did
not mention, is that after breakthrough, the rec-
tification rates of the broken diodes are not high
enough to guarantee a fully functional read-out
procedure in the large monolithic crossbar in the
future. Concretely, it is reported [22] that the rec-
tification rates drop from 107 to as low as 102

after breakthrough. This means that additional
parasitic paths will arise in the large monolithic
structures with every new breakdown, quickly dis-
abling exact future read-out operations after an
increasing number of erased responses.

In contrast to the design goal of erasable
PUFs, the aforementioned Reconfigurable PUFs
[23–26] pursue a reconfiguration of the entire PUF
with all its CRPs. This global reconfigurability
leads to the protocol and efficiency issues that
we described already in Section 1.1. This renders
Reconfigurable PUFs not well applicable in our
situation.

Controlled PUFs [29, 30] have some aspects
in common with our architectures, as they also
employ a trusted logic around a standard PUF
in order to realize novel security features. How-
ever, their design goals and envisaged applications
vastly differ from ours [29, 30]: For example, stan-
dard Controlled PUFs assume the secret storage
and error correction of several earlier response
values inside the trusted computing base (TCB)
of the Controlled PUF. This is contrary to our
approach, which does not induce any secrets inside
the TCB and surrounding control logic of our
Erasable PUF constructions.

Using trusted logic around a PUF, Rostami
et al. introduced a PUF-based authentication and
key exchange protocol in a different setting from
our work [31]. The protocol is executed between
a prover with physical access to a PUF, and a
verifier who has a simulation model of the PUF.
A random substring of the PUF responses is
extracted by the prover, and the verifier checks the
substring by comparing it against the full response
string derived from the simulation model. When
the indices of the random substring are interpreted
as a secret key, the prover effectively shares the
secret key with the verifier stealthily. The work
relies on the trusted logic around the PUF to

extract the substring randomly, and it needs a sim-
ulation model of the underlying PUF, which is not
required in our generic approach.

Moreover, control logic or PUF interfaces can
be used to limit the number of CRPs accessible by
adversaries [32], such that it forces the adversaries
to work with a limited amount of CRPs in machine
learning attacks. PUF interfaces can also improve
the statistical metrics of a PUF. For example, an
input network and an output network were intro-
duced in [33] to make the overall PUF behavior
satisfy the strict avalanche criterion.

We also stress that the PUF Re-Use Model
is not the only attack that has been reported on
advanced PUF-protocols; for example, quadratic
attacks on the OT-protocol of [15] have been dis-
cussed in [34]. They can thwart the security of
said OT-scheme if an optical PUF is used in them,
or an electrical PUF with a comparably small
challenge space such as 64 bits.

3 A Formal Framework for
Erasable PUFs

3.1 Basic Aspects of (Strong) PUFs

While their challenge-response behavior can be,
and actually often is, modeled mathematically,
PUFs in the end are physical objects. It thus
makes sense to start our definitional framework by
a few basic, mostly physical aspects.

Definition 1 (PUFs) A PUF P is a physical sys-
tem that can be stimulated with so-called challenges
ci from a challenge set CP ⊆ {0, 1}k, upon which it
reacts by producing corresponding responses ri from
a response set RP ⊆ {0, 1}m. Each response ri shall
depend on the applied challenge, but also on manufac-
turing variations in P that are practically unclonable
with currently existing technology. The tuples (ci, ri)
are usually called the challenge-response pairs (CRPs)
of P . If required, we explicitly write rPci or rPi for
denoting the response of P to challenge ci. ■

We comment that it seems necessary to stipu-
late that PUF-responses must depend on unclon-
able manufacturing variations in the PUF: Only
this feature distinguishes PUFs from a piece
of standard, digital hardware implementing a
pseudo-random function, say. Furthermore, the
definition implicitly assumes that any potentially

Springer Nature 2021 LATEX template

6 Article Title

noisy PUF-responses can be stabilized via suitable
error-correcting means. This allows regarding the
PUF’s behavior as a function FP mapping chal-
lenges to responses, and to consider fixed CRPs
(ci, ri), with ri = FP (ci). Making this assumption
is in accordance with the PUF-literature, and also
strongly simplifies our later treatment: It allows us
to talk about a single, fixed response (after error
correction) to a given challenge.

Let us next define secure Strong PUFs, one
of the main PUF-subtypes. For simplicity, here-
inafter, we will use “strong PUF” to represent
“secure strong PUF” defined in Definition 2.

Definition 2 (Secure Strong PUFs) Let P be a PUF
and A be an adversary. P is called a (k, tatt, ϵ)-secure
Strong PUF with respect to A if A has a probability
of at most ϵ to “win” the following security game:

SecGameStrong (P,A, k, tatt):

1. The PUF P is handed over to A, starting the
game. 3

2. A is allowed to conduct physical actions and
to carry out numeric computations, potentially
exploiting his physical access to P . These actions
and computations are limited by the laws of
physics and by A’s individual capabilities and
equipment.

3. At an adaptive point in time of A’s choice, A
hands back P (or whatever physically remains of
it). 3, 4

4. Then for j = 1, . . . , k, the following loop is
repeated:

(a) A challenge cj from P ’s challenge space CP

is chosen uniformly at random.
(b) P and cj are handed over to A. 3

(c) A is allowed further physical actions and
numeric computations, with the exception of
asking P for the response of ci for 1 ≤ i ≤ j.
These actions and computations are again
limited by the laws of physics and by A’s
capabilities and equipment.

5. A chooses to guess a response for one of the chal-

lenges cj , i.e., he outputs a tuple (j∗, rj
∗

guess), with

1 ≤ j∗ ≤ k and rj
∗

guess ∈ RP , and the game ends.
3

3 We assume that the physical handover procedures in Step
1 and Step 3, as well as the choice and presentation of cj in
Step 4, are carried out in negligible time compared to the rest
of the security game, i.e., we model them to take time of 0 sec,
not causing any additional delays.

4 Note that A may have potentially physically altered or
even destroyed P .

A “wins” the game if:

• A has made an output (j∗, rj
∗

guess) and rj
∗

guess is
equal to the correct response of P on challenge
cj

∗
, i.e.,

rj
∗

guess = rPcj∗ .

• The cumulative time that has elapsed in Step 2
and in the k repetitions of Step 44c within the
loop does not exceed tatt.

In all of this, the probability ϵ is taken over the random
choice of all the cj

∗
, and over all random procedures

that A employs in the security game. ■

Notice that adversary A may have been lucky
in that A queried PUF P for some challenge cj

before it was given to A in Step 4b (after which
A is not allowed to query cj any more). Let α
be the fraction of all challenge-response pairs that
can be retrieved from P within time tatt in Step
2 (we choose A not to do anything in Step 4c for
each iteration). Then, the probability that one of
cj corresponds to one of the retrieved challenge-
response pairs in Step 2 is equal to 1 − (1 − α)k.
If this happens, then A wins the game, since he
knows the response and therefore can predict the
response. This shows that ϵ ≥ 1 − (1 − α)k. For
large challenge-response spaces, α is small such
that 1− (1− α)k ≈ α · k and ϵ ≥ α · k.

Proposition 1 (Strong PUFs for Different Sizes
of k). Let P be a PUF and k ≤ k′. For every
A that wins SecGameStrong (P,A, k, tatt),
there is another adversary A′ who per-
forms the same actions as A (plus some
dummy waiting operations) and that wins
SecGameStrong (P,A′, k′, t′att), where t′att is
equal to tatt plus the time cost for the dummy
waiting operations.

Proof. Without adding extra adversarial capabil-
ities or time complexity, any adversary A can be
modified to an adversary A′ who is like A but
does not to do anything in Step 4c for itera-
tions j = k + 1, . . . , k′ and chooses to select j∗

in the range 1 ≤ j∗ ≤ k in Step 5. This rea-
soning reduces SecGameStrong (P,A, k, tatt) to
SecGameStrong (P,A′, k′, t′att).

Springer Nature 2021 LATEX template

Article Title 7

Our definition is a simplified, perhaps more
easily accessible version of the existing, game-
based Strong PUF definitions [35–37]. These usu-
ally employ multiple parameters to define Strong
PUF security [36, 37]; we reduce this to merely
three characteristic figures, namely the attack
time tatt, the size k of the subset of challenges
for which an adversary needs to predict one of its
responses, and the adversarial guessing probabil-
ity ϵ. We do not employ physical Turing machines
as the formal model of computation for the adver-
sary, since this can lead to intricate definitions
[38]. Furthermore, we do not consider infinite fam-
ilies of PUFs as in [15, 37], avoiding an asymptotic
treatment with its associated pitfalls and issues
[35, 36]. Instead, we assume that one specific
adversary A with certain (assumed) abilities is
under consideration. Finally, our definition does
not suppose an information-theoretic security of
the Strong PUF, as some earlier works did [15]:
The reason is that most Strong PUFs (such as
the Arbiter PUF and variants thereof) do not
possess information-theoretic, but only computa-
tional security, as all the existing modeling attacks
show in passing [39]. (Recall that in these mod-
eling atacks, a small set of CRPs is collected
in order to extrapolate the PUF’s behavior on
other CRPs; this would be provably impossible
if all CRPs were information-theoretically inde-
pendent.) Overall, we hope that our definition
strikes a good balance between formal rigour and
accessibility.

3.2 Erasable PUFs

Loosely speaking, Erasable PUFs are Strong PUFs
(see Definition 2 and [4, 40]) with one extra
property: Users can select an arbitrary challenge
cerase ∈ CP , and apply a “secure erasure oper-
ation” ER for this challenge to the PUF. This
operation shall irrecoverably “erase” the single
CRP (cerase, rerase) from the PUF, without affect-
ing any other CRPs. More precisely speaking, the
erasure operation should affect or alter the origi-
nal response rerase in such a way that adversaries
later cannot recover rerase with a probability better
than random guessing, while all other responses
shall remain unchanged. The erasability operation
shall be applicable k times, ideally for values of k
that reach up to the size of the entire challenge
space CP of the Erasable PUF.

This leads to the following two definitions.

Definition 3 (Erasure Operations for PUFs) An era-
sure operation ER for a PUF P is a specific physical
or logical process that takes as input the PUF P and
a challenge cerase ∈ CP , and produces as output a
related PUF P ′ with the following properties:

• P ′ has the same challenge set as P .
• For all challenges c ̸= cerase, P

′ has a functional
challenge-response behavior, and the responses
of P and P ′ to c are equal, i.e., rP

′

c = rPc .
• The response of P ′ to challenge cerase is altered
or affected in a certain fashion that is specific to
ER; for example, ER may routinely overwrite
the original response rerase by a “0”, a “1”, or
by a fault symbol “⊥”.

Any PUF P to which its erasure operation ER has
been applied k times may be denoted as P (k), with
P (0) being the original PUF P . For any PUF P (k),
the set of challenges for which the erasure operation
has been applied to P since its fabrication, is denoted
by E(P (k)). ■

Note that the above definition does not say
anything about dedicated security aspects, such
as the irrecoverability of erased responses; this is
taken care of next.

Definition 4 (Secure Erasable PUFs) Let P be a
PUF with erasure operation ER, k be a positive
integer, and A be an adversary. P is called a (k, tatt, ϵ)-
secure Erasable PUF with respect to A if A has a
probability of at most ϵ to “win” the following security
game:

SecGameErasable (P,A, k, tatt):

1. The PUF P is handed over to A, starting the
game. 3

2. A is allowed to conduct physical actions and
to carry out numeric computations, potentially
exploiting his physical access to P . These actions
and computations are limited by the laws of
physics and by A’s individual capabilities and
equipment.

3. At an adaptively selected point in time of A’s
choice, he hands back P (= P (0), see Definition
3). 3

4. Then for j = 1, . . . , k, the following loop is
repeated:

(a) A challenge cjerase is chosen uniformly at ran-

dom from CP , and the CRP (cjerase, r
j
erase) is

Springer Nature 2021 LATEX template

8 Article Title

erased from the PUF P (j−1). This creates a
PUF P (j). 3

(b) P (j) and cjerase are handed over to A. 3

(c) A is allowed to conduct physical actions and
to carry out numeric computations, possibly
exploiting his physical access to P (j). These
actions and computations are again limited
by the laws of physics and by A’s individual
capabilities and equipment.

5. A chooses to guess one of the previously erased

responses, i.e., he outputs a tuple (j∗, rj
∗

guess),

with 1 ≤ j∗ ≤ k and rj
∗

guess ∈ RP , and the game

ends.3

A “wins” the game if:

• A has made an output (j∗, rj
∗

guess) and rj
∗

guess is
equal to the original response of P on challenge
cj

∗

erase, i.e., if
rj

∗

guess = rP
cj

∗
erase

.

• The cumulative time that has elapsed in Steps
2 and in the k repetitions of Step 4c within the
loop does not exceed tatt.

In all of this, the probability ϵ is taken over the random

choice of all the cj
∗

erase, and over all random procedures
that A employs in the security game. ■

The security game of Definition 4 specifies
a rather strong attack scenario: Overall k ran-
domly chosen CRPs are successively erased from
the PUF, while the adversary has access for time
periods of his adaptive choice before any erasures
have taken place, and also once after every single
erasure operation was conducted.

Similar to Definition 2, Definition 4 delib-
erately is non-asymptotic, and considers only a
single PUF with respect to a given adversary A
and its capabilities (please compare the discussion
following Definition 2). Similar to Proposition 1,
we can prove:

Proposition 2 (Erasable PUFs for Dif-
ferent Sizes of k). Let P be a PUF with
erasure operation and let k ≤ k′. For every
A that wins SecGameErasable (P,A, k, tatt),
there is another adversary A′ who per-
forms the same actions as A (plus some
dummy waiting operations) and that wins
SecGameErasable (P,A′, k′, t′att), where t′att is
equal to tatt plus the time cost for the dummy
waiting operations.

This implies that in order to be a (k, tatt, ϵ)-
secure Erasable PUF, the erasure operation must
work securely for any i-element subset E ⊆ CP of
size smaller than or equal to k. k so becomes one of
several quality measure of Erasable PUFs — the
larger k, the better. As before, the definition was
designed in order to strike a good balance between
accessibility and formal rigor.

As already mentioned, Erasable PUFs are a
sub-class of Strong PUFs, i.e., every Erasable PUF
is also a Strong PUF automatically. This intuitive
fact is in agreement with our above framework, as
proven formally in the next theorem. It tells us
that every Erasable PUF (according to Definition
4) is also a Strong PUF (according to Definition
2) with respect to the same adversary.

Theorem 1 (Erasable PUFs are Strong PUFs).
Let P be a (k, tatt, ϵ)-secure Erasable PUF with
respect to some adversary A. Then P is a
(k, tatt, ϵ)-secure Strong PUF with respect to the
same adversary A.

The proof of Theorem 1 is given in
Appendix C.1. This concludes our formal def-
initional framework and treatment of Erasable
PUFs. The next section will deal with the first
practically viable and also generic silicon imple-
mentation strategy for Erasable PUFs.

4 Generic Erasable PUF
Design

4.1 Basic Idea and Overview

The most straightforward approach for imple-
menting Erasable PUFs would presumably consist
of the following steps: (i) Take an arbitrary silicon
Strong PUF with digital challenge-response inter-
face. (ii) Surround it by a trusted control logic
that guards the application of challenges and the
collection of responses. (iii) Keep a public, but
authenticated LIST of all CRPs that have been
declared “erased” earlier. (iv) Whenever a new
challenge ci is applied, the control logic compares
c to LIST, and blocks it from application if ci has
been declared “erased” earlier.

There is one obvious issue with the above
implementation strategy, though: The entire LIST
needs to be an authenticated part of the TCB, in
the sense that it must be unalterable for external

Springer Nature 2021 LATEX template

Article Title 9

adversaries. At the same time, however, LIST will
grow larger, as more CRPs are declared erased.
This implies that the size of the TCB grows
with the number of declared CRPs, with the
latter potentially growing rather large over the
lifetime of the Erasable PUF. This is obviously
undesirable.

In this section, we therefore devise and imple-
ment a construction that keeps the size of the
TCB constant over the lifetime of the Erasable
PUF, regardless of how many CRPs have already
been erased. We show that by combining authen-
ticated search trees [41] and red-black trees [42],
LIST can be authenticated by a public, merely
constant-length string RootHash, which does not
grow as more CRPs are erased. RootHash is stored
inside the TCB of the Erasable PUF, where it
does not need to be kept secret, but only needs
to be protected against adversarial manipulation
of its value (i.e., it merely needs to be authentic,
not secret). At the same time, LIST may be stored
in public, untrusted memory. We also describe
how LIST and RootHash can be updated efficiently
whenever new challenges are declared “erased”.
Our basic approach of read-out and erasure are
illustrated in Figure 2 and 3, respectively.

The described approach has several upsides:
Firstly, it transforms any given Strong PUF into
an Erasable PUF, being “generic” in this sense.
Secondly, its assumption of a public, but authen-
ticated piece of data is long established in the
PUF area, being similar to the authenticated, pub-
lic helper data required in the error correction
of Weak PUFs [4]. Thirdly, also the presumption
of a surrounding, trusted control logic (or TCB)
is long accepted in the field: Please recall that
it is a standard ingredient of Controlled PUFs
[29, 30]. Finally, as already indicated, our con-
struction does not require any digital secret keys in
the TCB. This makes it an advantageous, generic
method for Erasable PUF design. We will unfold
its full details over the next subsections, calling it
Generic Erasable PUF (GeniePUF).

4.2 Read-Out Mechanism of the
GeniePUF

Given the basic approach of Figure 2, we need to
describe two operations in order to fully specify
our GeniePUF construction: Firstly, how CRPs
can be read out from the GeniePUF; secondly,

how CRPs can be erased from it. Both will be
accomplished in this and the next subsection. We
emphasize that our read-out and erasure proce-
dures heavily rely on authenticated red-black trees
[42]; readers who are not familiar with these tech-
niques can turn to Appendix A and B to obtain
all relevant knowledge in a compact form.

Let us then turn to the read-out mechanism
of the GeniePUF. As mentioned above, the LIST
that contains all CRPs that have been declared
“erased” earlier is implemented by a RBT, and
is stored in public, untrusted memory (see Figure
2). The much shorter RootHash of the RBT, on
the other hand, is stored within the Trusted Com-
puting Based (TCB) of the GeniePUF in order to
authenticate the entire RBT. If some USER wants
to obtain CRPs from the GeniePUF, the following
steps are executed:

Scheme 1: Reading CRPs from
GeniePUFs (Figure 2)
1. The USER sends a challenge ci to the Control

Logic (CL) of the GeniePUF, which is part
of the GeniePUF’s TCB.

2. The CL passes on ci to the RBT inter-
face, which belongs to the public, untrusted
system part.

3. The RBT interface checks if ci is in the RBT,
and generates a PROOF whether ci is in the
RBT (“proof of existence”) or whether it is
not in the RBT (“proof of non-existence”).
Subsequently, PROOF is sent over from the
RBT to the CL. The detailed procedure
of proof generation and the format of the
PROOF is given in Scheme 4 in the Appendix.

4. The CL verifies the PROOF of existence or
non-existence. The procedure of proof ver-
ification is presented in Scheme 5 in the
Appendix.

• If the PROOF is a valid proof of non-
existence, the CL applies ci to the Strong
PUF, which is part of its TCB. It passes
the obtained response ri on to the USER.

• If the PROOF is a valid proof of existence,
then CL denies access to the PUF and
outputs “ERASED” to the USER.

• If the PROOF (either non-existence proof
or existence proof) is invalid, then CL
outputs “⊥” to the USER.

Springer Nature 2021 LATEX template

10 Article Title

1/47

Challenge ci

Response ri
or “ERASED”
or “ ”

Red-Black-Tree
(RBT)

Red-Black Tree
Interface PROOF

ci

Trusted Computing Base
of GeniePUF

Public, Untrusted
System Part

Underlying
Strong PUF

USER

Control Logic.
Stores RootHash

Fig. 2: Schematic illustration of the read-out
mechanism of GeniePUFs (compare Scheme 1),
differentiating between the public, untrusted sys-
tem part (blue) and the trusted computing base
of the GeniePUF (green).

4.3 Erasure Mechanism of the
GeniePUF

The mechanism for Erasing CRPs in the
GeniePUF is again built on the basic functional-
ity of our underlying authenticated data structure,
namely red-black trees (RBTs). In a nutshell,
anyone can erase CRPs from the GeniePUF, by
sending an “Erase ci” command to the Control
Logic (CL) of the GeniePUF. Subsequently, the
challenge ci is added to the LIST, or in our case,
to the RBT, thus declaring it “ERASED”. More
precisely, the following procedure takes place:

Scheme 2: Erasing CRPs from
GeniePUFs (Figure 3)

1. The USER sends an “Erase ci” command to
the CL.

2. The CL passes on this command to the RBT
interface.

3. The RBT interface performs the same oper-
ations as step 3 in Scheme 1. Besides, if ci is
not in the RBT, the interface will also attach
the information about how the RBT might
rotate its structure (denoted as RotInfo). Rot-
Info will be sent over together with PROOF
to the CL. Notice that this computation does
not include computing updated hashes which
RBT will receive from CL in Step 5. 5

5As a self-balancing binary search tree, a RBT will adjust
(rotate) its tree structure to maintain the balance of itself,

1/47

Red-Black-Tree
(RBT)

RBT
Interface

PROOF, RotInfo
Erase ci

Trusted Computing Base
of GeniePUF

Public, Untrusted
System Part

Underlying
Strong PUF

Control Logic.
Stores RootHash

Update RBT

Challenge ci
“Ok”
or “ ”

USER

NewHash

Fig. 3: Schematic illustration of the erasure mech-
anism of GeniePUFs (compare Scheme 2), dif-
ferentiating between the public, untrusted sytem
part (blue) and the trusted computing base of the
GeniePUF (green).

4. Similar to step 4 in Scheme 1, the CL first
verifies the PROOF.

• If the PROOF is a valid proof of non-
existence, the CL starts performing the
erasure operation for ci. All necessary tree
structure updates, if happen in the RBT,
can be replicated by CL with RotInfo.
Knowing the updated tree structure and
the hash values of all the nodes that require
an updated hash, which are all contained
in PROOF, the CL is able to compute the
new hash values of all the nodes in PROOF,
including a new RootHash. The CL updates
the RootHash in the TCB, sends the USER
an “OK” message, replies all the NewHash
to the RBT interface.

• If the PROOF is a valid proof of existence,
the CL replies “OK” to the USER.

• If the PROOF is invalid, then CL outputs
“⊥” to the USER.

5. Upon receiving the NewHash, the RBT inter-
face updates the hashes in the RBT and
completes an erasure request to GeniePUF.

when it is unbalanced. Detailed description of the rotations can
be found in [42], and examples can be found in Appendix B.

Springer Nature 2021 LATEX template

Article Title 11

5 Security and Practicality of
Our Design

5.1 Security of Our Construction

Informally speaking, and in a nutshell, the security
of Scheme 1 depends on the following assumptions:

• Adversaries cannot circumvent the Control
Logic (CL), applying their own challenges
directly to the underlying Strong PUF, reading
out the corresponding responses ri.

• Adversaries cannot modify the CL, for example
such that it cannot correctly verify the validity
of PROOF. In particular, the implementation of
the hash function FHash must remain correct and
unchanged.

• Adversaries may read the stored RootHash, but
not modify it. It is public, but authentic.

• The employed hash function FHash must be
collision resistant.

Under these prerequisites, adversaries can-
not read out CRPs that have successfully been
declared “ERASED” earlier, and which are part
of the LIST (i.e., of our RBT).

Furthermore, the required security feature of
the “Erase” command is that a malicious RBT
interface, or an adversary who intercepts the com-
munication between the RBT interface and the
CL, cannot send a Proof that is accepted by the
CL, while it does not relate to an updated RBT
that contains all previously erased challenges. As
before, this is achieved by the collision resistance
of the employed hash function FHash.

Note that all the digital states (inputs/outputs
and intermediate states) in GeniePUF are open
for adversaries to observe/read. In other words, no
digital states need to remain secret in GeniePUF,
and it is not feasible in a secret-key-based crypto-
graphic system.

Let us start our more formal analysis of the
GeniePUF construction with stipulating some ter-
minology.

Definition 5 (GeniePUFs Based on a Given PUF
P) Let P be a PUF with a digital challenge-response
interface. Then we use the term GeniePUF(P) to
denote the Erasable PUF that is obtained by utiliz-
ing P within the construction detailed in Section 4.
That is, briefly speaking, GeniePUF(P) denotes the
PUF obtained from P by:

• Surrounding P with some trusted logic that
guards access to P ’s CRP-interface, and that
implements the operations of the TCB, includ-
ing the verification of PROOF and the access
control of P .

• Storing RootHash inside this trusted logic.
• Storing LIST outside the trusted logic.

It is inherently assumed in the GeniePUF(P) construc-
tion that:

• The adversary can access LIST and can actively
overwrite and modify it.

• The adversary can read RootHash, but cannot
modify it.

• The adversary cannot tamper with the func-
tionality of the PUF-surrounding trusted logic.
E.g., he cannot access the CRP-interface of
the PUF P directly, circumventing the control
logic. Or he cannot modify the erasure or read-
out functionalities implemented by the trusted
logic.

• The employed hash function is collision resis-
tant. ■

The next theorem states and proves the secu-
rity of this construction under the above assump-
tions.

Theorem 2 (Security of GeniePUF(P)). Let P
be a PUF with challenge set CP . Let A be an
adversary for GeniePUF(P) who is modeled by
Definition 5. Then GeniePUF(P) is (k, tatt, ϵ + ρ)-
secure Erasable PUF with respect to A if the
following two conditions hold:
1. A cannot compute in time tatt with probabil-

ity ≥ ρ a collision (x1, x2) for the employed
hash function FHash, i.e., FHash(x1) =
FHash(x2) and x1 ̸= x2 (ρ is called the
collision probability).

2. PUF P is a (k, tatt, ϵ)-secure Strong PUF
with respect to adversary A’ that is con-
structed from A in the following fashion: A’
acts exactly like A, but (i) all requested era-
sure operations are discarded, (ii) whenever
a PROOF is computed, then such a PROOF
is ignored (and not communicated to P), and
(iii) any attempt by A to read state in RBT
or control logic CL is replaced by dummy
observations.

Springer Nature 2021 LATEX template

12 Article Title

The proof sketch of Theorem 2 is presented in
Appendix C.2.

Security against Physical Attacks. The fol-
lowing analysis builds on the taxonomy of secrets
in security hardware introduced in [43]. Firstly,
using the nomenclature of [43], there obviously are
no “permanent” or “non-volatile” digital secrets
inside the TCB or the RBT interface. This implies
that the GeniePUF design is immune to any
attacks stealing such digital secrets, including side
channels [44] or probing attacks [45]. Depending
on the employed underlying Strong PUF, other
secrets may be contained in the GeniePUF: If
an iPUF is used, as in our example, the phys-
ical runtime delays in the iPUF will constitute
“permanent physical secrets”, again using the lan-
guage of [43]. Furthermore, the digital values in
the latches at the end of the single Arbiter PUFs
within the iPUFs will constitute so-called “volatile
digital secrets” [43]. Finally, the digital signals
entering the XOR gate in the lower layer of the
iPUF will constitute “transient digital secrets”
according to [43]: Knowing the value of these
signals, the attackers can successively learn the
individual, single Arbiter PUFs in the structure,
and subsequently break the entire iPUF.

Still, these permanent physical and volatile
and transient digital secrets will arguably be
harder to extract from hardware than standard,
permanently stored digital keys. To start with,
if the used iPUF is made large enough, it will
be practically infeasible to extract these runtimes
via machine learning techniques. To this end,
please compare [46], where the limit of successful
machine learning is found to be around 10 paral-
lel, XORed Arbiter PUF of length 64 in the lower
iPUF layer. Furthermore, it will be very difficult
to physically extract the runtime delays physically
in practice, albeit not impossible [47]. Also reading
out the content of the latches or the transient sig-
nals entering the XOR gate during the operation
of the iPUF appears complicated and more intri-
cate than reading out a standard, permanently
stored digital key from NVM.

Considering active attacks, launching fault
injection attacks on control logic or RootHash [48]
could possibly attack our GeniePUF construction.
Still, it would violate one of our security assump-
tions, which assumes the RootHash and the control
logic are tamper resistant.

Fig. 4: Latency of the software interface (SW) and
hardware TCB (HW) of GeniePUF for a reading
or erasure operation.

Denial of Service Attacks. By manipulating
the RBT (LIST) or a PROOF, an attacker can
launch denial of service attacks to our GeniePUF.
However, we would like to argue in this case that
as a physical object defined in Definition 1, a
PUF just like any other piece of hardware can
never be secure against physical denial of service
attacks: The adversary can always physically alter
or damage the PUF or hardware under consid-
eration when he holds physical possession of it.
One more subtle attack can be to act as a nor-
mal user and erase a large number of challenges
from the GeniePUF, in the hope that a large RB
tree can make a legitimate user’s evaluation over-
whelmingly slow. However, thanks to our red black
tree structure, this attack can never be efficient
and effective, because the attacker has to erase N
challenges to slow down the evaluation process by
log(N) times.

5.2 Practicality and Performance
Figures of Our Construction

Our above GeniePUF architecture has been imple-
mented on Xilinx Zynq FPGA with a so-called
Interpose PUF or iPUF [49] as its underly-
ing PUF. Interpose PUFs are constructed from
Arbiter PUFs of variable length, and consist of
several parallel layers of these Arbiter PUFs, sim-
ilar to the well-known XOR Arbiter PUF archi-
tectures [13]. The 64-bit Interpose PUF chosen
for our specific implementation contains a 64-bit

Springer Nature 2021 LATEX template

Article Title 13

Arbiter PUF in its top layer and a 65-bit 9-XOR
Arbiter PUF in its lower layer. 6 Due to the fixed
length of the inputs to the hash function of the
resulting GeniePUF, we decided to build a hash
function from AES-128 in the Davies-Meyer con-
struction [53, 54] with 64-bit collision resistance
for the GeniePUF.

We measured the performance of our proof-of-
concept implementation for reading and erasing
CRPs. Figure 4 shows how the latency of hardware
TCB and software interface grow with respect to
the number of previously erased CRPs (the size of
LIST). The frequency of the ARM processor and
the FPGA fabric in the Zynq system are 666 MHz
and 100 MHz, respectively. In Figure 4, it clearly
shows that the latency grows logarithmically with
respect to the number of previously erased CRPs.
This is consistent with the complexity analysis of
the search operation in a red-black tree. In con-
crete numbers, the latency is on the order of a
few ten microseconds for both software interface
and hardware verifier, even if the size of LIST has
grown above 100,000, which is far beyond its prac-
tical need. In case multiple CRPs are needed in
one authentication, one can divide the entire chal-
lenge space into disjoint subsets, and implement
a challenge expansion function to derive all chal-
lenges in one subset from one seed challenge. After
verifying that the seed challenge is not erased, the
TCB can allow the whole challenge subset to be
queried to the PUF. This method avoids repeated
RB tree insertions for single authentication, and
this also enables the erasure of multiple challenges
by erasing one seed challenge.

5.3 Typical Application Scenario of
Erasable PUFs

Let us now briefly illustrate the usage of
GeniePUFs in a concrete, exemplary application
scenario. As depicted in Figure 5, we choose a
bank card like scenario for this purpose, in which

6At the time of our implementational work, this size of the
iPUF was considered secure; we remark that this no longer
holds due to some recent advances in iPUF modeling attacks
[46, 50]. However, this does not affect our evaluation results, as
we are mainly evaluating the interface design, not the under-
lying PUF. Since our GeniePUF technique is generic, it could
also be implemented with larger iPUF sizes that are secure,
PUFs whose security can be reduced to computational hard-
ness assumptions [51, 52], or with alternative future secure
implementations of Strong PUFs, of course.

GeniePUF

GeniePUF

GeniePUF

Fig. 5: A typical application scenario of
GeniePUFs: A user Alice carries around a token
with a GeniePUF, employing it in k potentially
untrusted terminals. This allows identification
(ID), key exchange (KE) and oblivious transfer
(OT) protocols between the terminals or PUF/to-
ken on the one hand, and the central authority on
the other hand. After any KE and OT protocols,
the erasure functionality of the GeniePUF must
be used in order to prevent attacks [20].

a token carrying a GeniePUF is used in k termi-
nals in sequence. We imagine that between the
terminals or the PUF/token on the one hand, and
some central authority (CA) or bank headquarters
(HQ) on the other hand, cryptographic protocols
are run, which are all based on this PUF.

We stress that structurally similar communi-
cation settings would occur in many other con-
ceivable application scenarios: For example, if
payments are made at various shop terminals by
a consumer’s smart phones; if access cards are
used in order to gain entry to different facilities;
or if smart phones enroll in different cells of a
network, just to name a few. In all of these sce-
narios, Erasable PUFs might be used beneficially
in token-style cryptographic protocols. We stress
that some of the terminals may be controlled by
the adversary (while it is not known, of course,
which of them are infiltrated and which are not).
This means that adversaries can realistically gain
access to the PUF between protocol runs, and
after the completion of earlier protocol runs [20].

It is suggestive to imagine that in this scenario,
different PUF-protocols such as simple, plain
CRP-based identification [2, 3], KE [15, 38, 55],
and OT [14, 15], are executed between the card,
the terminals, and/or the central authority/bank
headquarters. Generally speaking, these proto-
cols will enable mutual identification and secure

Springer Nature 2021 LATEX template

14 Article Title

communication between the terminals and PUF-
carrying token on the one hand, and the CA/bank
HQ on the other hand. We remind readers in this
context that OT allows any secure-two party com-
putations or zero-knowledge proofs between the
abovementioned parties, as it is long known [56].

Now, one core observation is that if secure
standard Strong PUFs (without erasability func-
tionality) are used in the described scenario, the
resulting protocols nevertheless are insecure [20]:
Any adversarial access to the used Strong PUF
between protocol runs, and after the completion
of a protocol, breaks all earlier OT, KE, or SMC
protocols [20]. In brief, the reason is that such
post-protocol access allows adversaries to query
the PUF for unknown CRPs that have been used
in earlier protocol runs [20].

Erasable PUFs give users the possibility to
overcome this problem. Their fine-grained abil-
ity to erase single CRP (without affecting other
CRPs, such as a global reconfiguration operation
would) guarantees two things: First of all, the
simple post-protocol attacks of [20] are no longer
applicable. Secondly, essentially all other CRPs
and CRP-lists collected by other parties remain
valid, and do not need to be collected anew (as in
the case of complete reconfiguration of the PUF).

Adaption of the protocols to the case of
Erasable PUFs is rather simple: The identifica-
tion, KE and OT schemes based on Erasable PUFs
to be used in this context are exactly like the
existing Strong PUF based ID [3], KE [15, 38, 55]
or OT [14, 15] schemes from the literature —
merely with one twist: At the end of the KE and
OT scheme, all CRPs employed in the protocol
must be erased from the PUF in a final step.
This ensures the long-term security of KE and OT
[20, 21]. As before, we stress that at the end of
any identification protocols, no further steps need
to be added, since no long-term confidentiality is
required there. Overall, this hopefully illustrates
how Erasable PUFs can guarantee secure protocol
execution in the described, realistic scenario.

We notice that Fischlin and Mazaheri intro-
duced a self-guarding PUF-based key exchange
protocol that is secure against substituted PUF
attacks in the bad/encapsulated PUF model [17].
The protocol can be applied to any strong PUFs,
including stateful PUFs, so using GeniePUF in the
protocol can result in a PUF-based key exchange
protocol that is secure against both the PUF

Re-Use model and the bad PUF model defined
in [20].

6 A Conceptual Extension:
Programmable Access
Controlled PUFs (PAC
PUFs)

As a conceptual extension of Erasable PUFs, we
introduce Programmable Access Controlled PUFs
(PAC PUFs) in this section. In a nutshell, PAC
PUFs have a general access control policy that
stores a code snippet and/or state. A policy
checker uses this to decide whether permission to
the response of the challenge is allowed in future
requests (or not). This generalization allows quite
powerful constructs besides Erasable PUF, such
as count-limited objects and password controlled
PUFs. They are given as examples in sections 7.2
and 7.3.

In greater detail, PAC PUFs generalize the
concept of Erasable PUFs by allowing a more
general access control policy to decide whether
permission is allowed to access a response given
a challenge. The access control policy maintains
a state which allows us to move beyond Erasable
PUFs:

Definition 6 (Access Control Policy Operation) We
associate with PUF P a challenge set CP and a
canonical set of responses {rPc }c∈CP

.
An access control policy Policy(SP , c, x) for PUF

P takes a policy state SP , a challenge c, and user
supplied x as input. It outputs whether P should be
allowed to reveal its canonical response corresponding
to c or not. By abuse of notation we write SP (x) to
denote the set of challenges c for which Policy(SP , c, x)
gives permission.

An access control policy operation ACP(y) for a
PUF P with policy state SP is a specific physical or
logical process that takes as input the PUF P and a
user input y, and produces as output a related PUF P ′

with an updated policy state SP ′ with the following
properties:

• P ′ has the same challenge set CP and the same
canonical set of responses {rPc }c∈CP

as P . That
is, CP ′ = CP and rP

′

c = rPc .
• If y includes a challenge input pair (c, x), then
ACP also outputs rP

′

c if c ∈ SP ′(x) and outputs
⊥ if c ̸∈ SP ′(x). ■

Springer Nature 2021 LATEX template

Article Title 15

As an example,ACP(y) may have the effect of
removing c from SP (x) (i.e., c ̸∈ SP ′(x)) implying
that given user input x the response of c appears
to be “erased” since only the⊥ symbol is returned.
In reverse, it may also be possible that c is added
to SP (x) such that user input x “gains” access to
the response of c (which previously the user had
no permission to have access to).

Note that the access control policy
Policy(SP , c, x) can be generalized as a universal
Turing machine (where SP is a collection of code
snippets that can be executed by Policy), and
it can run multiple rounds of interactions with
the user or even other entities (e.g., other PUFs
or servers) to determine the permission of the
response requested. Here, we collectively denote
all the interactions with the user and possibly
other entities as x. Also, simply checking the
access control policy may update its state as
well; e.g., in a count-limited PUF, every time a
challenge is evaluated, its associated counter will
decrease by one until its limited usage is depleted.
A detailed example will be given later.

The definition of ACP states that, besides
outputting an adapted P ′ and policy state SP ′ ,
ACP(y) may also output a canonical response rPc
for some challenge c. Which response is revealed
depends on input y, which in turn may depend on
secret information such as a password which hash
is checked in Policy. This means that a legitimate
user who has auxiliary information in the form of
this password can use ACP to reveal responses
that cannot be obtained by an adversary who has
no knowledge of the password. A detailed example
will be given later. The following definition formal-
izes which responses can be revealed to an entity
who knows certain auxiliary information and only
uses the ACP interface in the way it is specified
by Definition 6.

Definition 7 (Accessible Responses) Let ACP be an
access control policy operation for PUF P with policy
state SP . Let aux be auxiliary information and let L
be an algorithm that takes aux and SP as input and
interacts through ACP with PUF P in the following
way:

1. Let P (0) = P and SP (0) = SP . Choose an integer
k > 0.

2. For j = 1, . . . , k, the following loop is repeated:

• Based on SP (j−1) together with aux and its
current state, algorithm L computes yj .

• Execute ACP(yj) which outputs P (j) and
SP (j)

3. L outputs the last response it received during
the previous loop together with its corresponding
challenge.

Summarizing, based on aux and SP , algorithm L
outputs a canonical challenge response pair (c, rPc)
based on a sequence y1, y2, . . ., ym with (c, x) included
in ym and such that applying ACP(yj) in sequence
for j = 1 to m gives rise to a PUF P ′ and policy state
SP ′ with c ∈ SP ′(x) (hence, ACP(ym) also outputs

rPc = rP
′

c). By treach we denote the cumulative time
that has elapsed in the repetitions of Step 2 within the
loop.

We define Reach(aux, SP , treach) as the set of all
canonical challenge response pairs (c, rPc) for which
there exists an algorithm L as defined above which
outputs rPc within time treach (by legitimate interac-
tion with the PUF through ACP). ■

Now we are ready to define the security of a
Programmable Access Controlled PUF. The above
definition explains which responses can be learned
from legitimate interaction with the PUF. The
definition below defines the difficulty of guessing
other responses that an adversary should not be
able to learn.

Definition 8 (Secure Programmable Access Con-
trolled PUFs) Let P be a PUF with access control
state SP and policy Policy, k be a positive integer,
andA(aux) be an adversary with auxiliary information
aux. Furthermore let B represents other parties who
interact with PUF P . P is called a (k, tatt, ϵ)-secure
Programmable Access Controlled PUF with respect to
A if for all (B, aux) adversary A has a probability of
at most ϵ to “win” the following security game with B
based on auxiliary information aux:

SecGameAccessControl (P,A, k, tatt):

1. The PUF P is handed over to A, starting the
game. 3

2. A is allowed to conduct physical actions and
to carry out numeric computations, potentially
exploiting his physical access to P . These actions
and computations are limited by the laws of
physics and by A’s individual capabilities and
equipment. Note that A is also allowed to per-
form ACP(.). However, he cannot update (tam-
per with) SP to regain access to any challenges
he has no permission to access.

Springer Nature 2021 LATEX template

16 Article Title

3. At an adaptively selected point in time of A’s
choice, he hands P back to B (P = P (0), see
Definition 3). 3

4. Then for j = 1, . . . , k, the following loop is
repeated:

(a) B selects an input yj and ACP(yj) is exe-
cuted, but none of its output is revealed to
adversary A. This creates a PUF P (j) with
policy state SP (j) . 3

(b) P (j) and SP (j) are handed over to A. 3

(c) A is allowed to conduct physical actions
and to carry out numeric computations and
access control operations ACP(.), possibly

exploiting his physical access to P (j). These
actions and computations are again limited
by the laws of physics and by A’s individ-
ual capabilities and equipment. Notice that
access control operationsACP(.)may mod-

ify PUF P (j) with policy state SP (j) . The
resulting PUF with policy state is handed
over to B.

5. A chooses to guess one of the responses that he
has no permission to access after the above loop,

i.e., he outputs a tuple (j∗, c∗, rj
∗

guess), with 1 ≤
j∗ ≤ k, and rj

∗

guess ∈ RP such that

(c∗, rj
∗

guess) ̸∈ Reach(aux, SP (j∗) , tatt).

This ends the game.3

A “wins” the game if:

• A has made an output (j∗, c∗, rj
∗

guess) and rj
∗

guess

is equal to the canonical response of P on
challenge c∗, i.e., if

rj
∗

guess = rPc∗ .

• The cumulative time that has elapsed in Steps
2 and in the k repetitions of Step 4c within the
loop does not exceed tatt.

In all of this, the probability ϵ is taken over the random
choice of challenge c∗, and over all random procedures
that A employs in the security game. ■

7 Examples and First
Applications of PAC PUFs

7.1 Example 1: GeniePUF

To start our list of examples, our earlier GeniePUF
is probably among the simplest conceivable PAC
PUFs. Its policy state SP is the authenticated

search tree which is used (by Policy) to decide
whether a response for a challenge is erased or not.
Based on input x being equal to either ‘erased’ or
‘read’, the GeniePUF erases a response or reads
a response for a challenge c. The set of challenges
that is not erased, that is the set of challenges for
which permission is granted, is denoted by SP (x).

We notice that the security game of an
Erasable PUF is a simplification of the secu-
rity game of a PAC PUF. First, cjerase represents
challenges for which responses are erased; these
challenge response pairs are the ones that are out-
side Reach. Second, the loop selects a random
challenge that will be erased while for PAC PUFs
B selects the challenge that will be erased. This
changes the game from an average case analysis
to a worst-case analysis because we require the
probability of winning to be at most ϵ for all B.
In the case of Erasable PUFs where responses for
different challenges are statistically independent,
the average and worst-case analysis are the same.
In practice, there can be a statistical correlation,
especially if, in certain PUF designs, the Hamming
distance between challenges is small. For a worst-
case security analysis to hold, one may preprocess
challenges by means of a one-way function (this
maps the worst-case analysis to an average case
analysis).

7.2 Example 2: Count-limited access
PUF

A more complex structure of PAC PUF can be a
count-limited access PUF. Every CRP of a count-
limited access PUF can only be accessed a certain
number of times (denoted as T), after which the
CRP will be permanently erased.

To design such a count-limited access PUF,
one can create a counter associated with every
challenge that has been queried. The counter indi-
cates how many times the associated challenge can
still be accessed. For all the challenges that have
not been accessed before, its counter is implic-
itly defined in the Policy as T , so we can avoid
explicitly managing individual counters for every
challenge. All the individual counters that corre-
spond to challenges that have been accessed can
be managed in an authenticated search tree like
the one used in GeniePUF. If a challenge c is
given as input for the first time, then the authen-
ticated search tree is extended with a node that

Springer Nature 2021 LATEX template

Article Title 17

corresponds to c and its counter set to a maxi-
mum value T − 1. Every subsequent access to c
will decrease the counter by one until it equals 0
after which the corresponding response is erased.
In this way, we can still use constant-sized trusted
storage to efficiently manage an arbitrarily large
query history (state). In this implementation, the
access control state SP will be updated every time
the PUF is queried unless the queried CRP has
been permanently erased.

Count-limited access PUFs can be used in
authentication protocols to limit the reliability
information leakage from CRPs to mitigate reli-
ability based attacks [57]. For example, if every
challenge of a PUF can only be accessed at
most two times (one for enrollment and the other
for verification), then an attacker will need to
collect more CRPs to gather enough challenge-
reliability information pairs to launch a successful
reliability-based attack [57] 7.

In addition, count-limited access PUFs can
also be used in digital right management [58],
and more broadly in count-limited object [59]. For
example, one can build a T -time usage secret key
from the construction of a count-limited access
PUFs, and the usage of digital contents (e.g.,
movies, video games) can be strictly enforced by
the T -time usage secret key as explained in [59].

7.3 Example 3: Password controlled
PUF

As we are moving towards more general access
control policies, we can build a password con-
trolled PUF fitting the general definition of
Programmable Access Controlled PUFs as well.
A password controlled PUF only returns the
response of a queried challenge if the user also
provides a correct password.

To implement a coarse-grained password con-
trolled PUF, we can simply store the hash values
of all the passwords in the state of the PUF. If
a user provided password’s hash value matches a
stored hash value, then any CRP the user asks
will be allowed. Also, in this type of password con-
trolled PUFs, we need an administrative role who

7Count-limited access PUFs alone do not solve the
reliability-based attacks on XOR PUFs, due to the existence
of correlated CRPs in XOR PUFs.

can edit the passwords (the hash values of pass-
words) in the state, so that the administrator has
the highest privilege level to edit other user’s per-
mission. This administrative role can be controlled
by a master password in practice.

Of course, we can also create fine-grained con-
trol on CRPs, i.e., we assign a unique password
for accessing individual CRPs or a set of CRPs.
Obviously, the state of the PUF will grow with the
number of unique passwords in the system. Hence,
we can reuse the idea of the authenticated search
tree in GeniePUF to manage the state. However,
the challenges of the PUF will no longer be the
keys of each node in the tree; we can use the hash
values of passwords as the keys to construct the
tree. In each node, we can store the hash value of
a valid password and all the challenges that the
password owner can access. Clearly, an adminis-
trative password is needed again to update the
state of the PUF.

A password controlled PUF can have vari-
ous applications. Its most important application
is to construct a key management scheme using a
shared PUF. For example, the secret key of Alice
is the responses of a set of challenges, and Bob
has his secret key extracted from the responses of
another set of challenges of the same PUF. Using a
password controlled PUF, Alice and Bob can each
have her/his own password for accessing their own
private CRPs without possibly compromising the
other’s key even if one of them has the posses-
sion and full knowledge (knowing the state) of the
PUF.

8 Summary and Future Work

PUFs have enjoyed the intense attention of the
security community for around two decades by
now. While their main applications initially con-
sisted of key storage and system identification,
a no less interesting second research strand has
evolved in recent years: So-called Strong PUFs
have been suggested as cryptographic primitive in
advanced protocols such as key exchange (KE),
bit commitment (BC), oblivious transfer (OT), or
secure multiparty computation (SMC).

One fundamental and unresolved problem in
the area had been the re-use of the same PUF in
multiple runs of these protocols, however. While
such re-use appears imperative from an economic

Springer Nature 2021 LATEX template

18 Article Title

and efficiency perspective, it creates severe secu-
rity issues [20]: All abovementioned KE, OT, and
SMC protocols can be broken in such a scenario
(albeit, as we explicitly stress, not the simplest
Strong PUF based identification protocols [3];
compare [20]). It can be formally proven [21] that
this issue in Strong PUF based OT, KE and SMC
cannot be overcome by additional protocol or soft-
ware steps alone. Instead, it requires resolution on
the hardware level and a novel PUF-type, so-called
Erasable PUFs. By definition, they allow that sin-
gle CRP can be “altered” or “erased” for good,
without affecting any other CRPs.

Our paper now for the first time proposes
a fully viable construction for Erasable PUFs,
which furthermore is generic, i.e., which can turn
any Strong PUF with a digital challenge-response
interface into an Erasable PUF. In greater detail,
our approach named “GeniePUF” is based on
a trusted control logic that surrounds the given
Strong PUF. This comes at the price of extend-
ing the trusted computing base of the system,
now including the PUF’s control logic. This might
seem unusual at first sight. On the other hand,
the same approach has long been accepted in the
PUF-area in other contexts, for example in the
construction of so-called Controlled PUFs [29].
Furthermore, our GeniePUFs require a public, but
authenticated piece of information accompanying
the PUF. Again, this assumption might appear
exotic at first glance, but has long been intro-
duced and accepted in the standard key derivation
from Weak PUFs. Overall, our construction hence
rests on previously known and somewhat princi-
ples within the PUF-area. Also the use of a hash
function in connection with PUFs, even inside the
TCB (which makes things more tedious) has been
used before us, namely in the context of Controlled
PUFs [29].

We also to our knowledge presented the first
formal definitional framework for Erasable PUFs.
Using a parametric, non-asymptotic style of defi-
nitions, not considering infinite PUF-families, but
single PUFs and their properties, we tried to
clearly define our objects of study. Compared to
other approaches, the compact and semi-formal
style of our framework makes it easily accessible,
also for non-theorists. Our hope is that this might
allow the definitions (and similar, future ones that
might adopt their style) to act as link between
PUF-theorists and PUF-practitioners. We also

proved the relationship between strong PUFs and
Erasable PUFs (GeniePUFs). In that, we tried to
demonstrate how one can reason somewhat for-
mally and rigidly about security while using our
semi-formal definitional framework.

Future Work

We believe that various future research oppor-
tunities arise from our work. Starting with the
practical and implementational side, further opti-
mization of our logical Erasable PUFs together
with prototyping in FPGAs and ASICs seems a
worthwhile endeavour. Other Strong PUFs than
the iPUF [49] can be used in connection with
the generic GeniePUF technique. On the the-
ory side, our novel definitional framework will
first of all hopefully spark a new style of easily
acccessible, intuitive PUF-definitions in follow-
up works. Secondly, follow-up theory works could
utilize Erasable PUFs in advanced protocols, in
which PUFs can indeed be securely re-used, going
beyond the original set-up and communication
model of [15]. Formalizing and proving the secu-
rity of such new schemes, for example in the
universal composition framework (compare [15]),
appears interesting for future theory papers.

A final promising avenue is to further
explore the concept of PAC PUFs, for example
spelling out other useful access policies for PUF-
applications, and investigating yet other applica-
tions of theirs.

Acknowledgments. Chenglu Jin was sup-
ported by NSF award CNS 1617774, NYU CCS,
and NYU CUSP. Wayne Burleson was supported
by NSF/SRC grant CNS-1619558. Marten van
Dijk was supported by NSF award CNS 1617774.
Ulrich Rührmair acknowledges support by BMBF-
project QUBE and by BMBF-project PICOLA
and by the AFOSR Project on “Highly Secure
Nonlinear Optical PUFs”.

Springer Nature 2021 LATEX template

Article Title 19

c0, h0 = H (c0, h1, h2)

c3, h3 = H (c3, 0, 0) c4, h4 = H (c4, 0, 0) c5, h5 = H (c5, 0, 0)

c1, h1 = H (c1, h3, h4) c2, h2 = H (c2, h5, 0)

cnew

Fig. A1: Proof construction in an authenticated search tree. Suppose that one needs to prove that cnew
does not exist in the authenticated search tree (containing c0 to c5). For example, the dashed node shows
the location where cnew is supposed to be. The green information is included in the proof of non-existence
for cnew. Note that the hash value stored in the left child of c4 is also needed in the proof, but it is
omitted in the diagram, because it is a nil node in the tree.

11
2 14

151 7
5 8

4

11
2 14

151 7
5 8

4

11
7 14

152 8
51

4

7
2 11

141 5 8
4 15

Case 1

Case 2

Case 3

Z

Z

Z
Z

Y

Y

Y

(a) (b)

(c) (d)

Fig. A2: Insertion of a new node 4.

Appendix A Background on
Authenticated
Search Trees
and Red-Black
Trees

An authenticated search tree was introduced
in [41] as an undeniable attester. In the context
of our GeniePUF, an untrusted Red-Black Tree
(RBT) interface is used, which manages LIST of
size n. It takes a challenge as input, and gen-
erates a proof of non-existence/existence of this
challenge in LIST. Notice that, the length of the
proof is only O(log(n)) long. Upon receiving the
non-existence/existence proof, the TCB around
the PUF can then verify the proof by checking
against a constant-sized (O(1)) root hash stored in
the TCB. This root hash does not need to be kept
secret, i.e., it can be known to adversaries; it must

merely be secure against alteration or overwriting
by adversaries.

To further improve the performance of an
authenticated search tree in the worst case sce-
nario, where a standard search tree will become
extremely unbalanced, we merge a red-black tree
(RB tree) [42, 60] with the authenticated search
tree in the untrusted memory. In short, a red-black
tree is one self-balancing binary search tree struc-
ture [42, 60], which checks and balances the depth
of the tree after every node insertion and deletion.
Hence, a Red-Black tree can guarantee searching
in O(log(n)) time in the average and the worst
scenario, where n is the total number of nodes in
the tree [42].

In the following, we will describe the necessary
procedures of our authenticated red-black trees
(e.g., we only describe node insertion, not dele-
tion, because in the GeniePUF application, LIST
can only grow). In particular, we present the high

Springer Nature 2021 LATEX template

20 Article Title

level idea of the following basic schemes of our
combined tree structure to prepare the readers for
understanding this paper.

An authenticated search tree is sorted
according to the challenges stored in each
node, and it is constructed in such a way
that each node consists of a unique chal-
lenge ci in the LIST and a hash value
hi = FHash(ci, left(ci).hash, right(ci).hash),
where left(ci).hash and right(ci).hash are the
hash values stored in the left or right child of
node ci, respectively. The hash values of the chil-
dren of the bottom leaves are considered to be 0
by default. An example tree structure is shown in
Figure A1.

Scheme 3: Searching for a Challenge ci
in a RBT

1. The RBT interface receives a challenge ci.
2. The RBT interface searches for ci, using the

RBT as an ordinary binary search tree.
3. In the end, it results in two cases:

• If ci is found, then a pointer to the node
associated with ci is returned.

• If the binary search for ci within RBT
reaches a leaf node, where no challenge is
stored, then the interface returns a pointer
to the parent node of the leaf node. (This
parent node is the lowest node in the tree
whose child ci would have supposed to be,
if ci was part of the RBT.) In the example
in Figure A1, the returned pointer will be
pointing to the node containing c4.

Scheme 4: Generating a PROOF of Exis-
tence/Non-Existence of a Challenge ci in
a RBT
1. After a search for ci, as described in

Scheme 3, is completed in the LIST (either
found or not found), the RBT interface gets
a node in the tree from the search procedure.
It sets this node as the starting node of the
PROOF.

2. The interface adds the challenge of the start-
ing node and the hash values stored in the
children nodes of the starting node into
the PROOF. Again, taking the example of
Figure A1, the information added is c4 and
the hash values of its two children (two nil
nodes).

3. Then the RBT interface fetches the challenge
of the node and the hash value in the sibling
node of each node along the path in the tree
from the starting node to the root of the tree
to generate the completed PROOF of non-
existence/existence of ci. E.g., adding (c1, h3)
and (c0, h2) into the PROOF, as shown in
Figure A1.

4. It returns the completed PROOF.

The proof construction process is also illus-
trated in Figure A1.

Scheme 5: Verifying a PROOF of Exis-
tence/Non-Existence
1. All the proofs generated by the RBT inter-

face have to be verified by the trusted control
logic CL. After a proof is received, the CL
checks the starting node first. If it is a proof
of non-existence, the CL checks whether the
left/ right child of the starting node is a leave
node based on whether c is smaller/ greater
than the challenge in the starting node. In
the case of an existence proof, the CL verifies
the order of the two children and the starting
node. If any of the above check failed, return
“⊥”.

2. Then the CL hashes every node from the
starting node of the proof all the way to
the root, using the challenge value of each
node and their sibling hash values provided
in the proof. The order of left and right child
is determined by comparing two consecutive
challenges in the PROOF. The final result is
RootHash’.

3. Check if RootHash’ = RootHash stored in the
TCB:

• If yes, we conclude that the PROOF is a
valid proof. Based on whether its an exis-
tence proof or a non-existence proof, we
conclude whether ci is in the LIST or not.

• If no, the PROOF is considered as invalid,
and we conclude that either the LIST or the
RBT Interface has been tampered with by
an attacker.

Scheme 6: Adding a New Challenge ci to
the RBT
1. In the case that a new challenge ci needs to

be added to the LIST, the RBT interface first

Springer Nature 2021 LATEX template

Article Title 21

proves that ci is not in the LIST using the
above schemes.

2. If the non-existence of ci gets accepted by the
verifier, then ci is added as a child of the node
returned by the search procedure.

3. After insertion, a red-black tree fix-up is trig-
gered. It may rotate the structure of the tree
to re-balance it. More details about the red-
black tree fixup can be found in the example
in the Appendix B and [42].

4. After fix-up, a new RootHash will be gener-
ated by the trusted control logic CL according
to the fixup information of the tree and the
proof of non-existence used in Scheme 3.

Note that, based on the way the authenticated
search tree is constructed and verified, its secu-
rity solely relies on the collision resistance of the
underlying hash function.

Appendix B Example
Rotation of an
Authenticated
RB Tree

Figure A2 depicts an example of consecutive oper-
ations in Red-Black Tree Insert-Fixup, see [42]. (a)
A new node 4 is inserted. The dashed path in (a)
is PROOF. All of the information in nodes 5, 7, 2
and 11 are included in PROOF, together with the
hash values of nodes 8, 1 and 14, called the sib-
ling’s hash values. In order to verify non-existence,
we need to reconstruct the root hash using PROOF
and compare with the trusted root hash stored in
the TCB. In addition, we need to check whether
new node 4 is added at the correct location, which
means 2 < 4 < 5, and node 5 has no left child.
Here, case 1 in [42] applies, so node 5 and 7 are
recolored but the structure remain the same.

There are six possible cases in a RB tree fixup,
in which only case 2, 3, 5 and 6 in [42] will rotate
the structure of the tree; this example shows three
cases (the other three cases are similar in that they
are mirrored versions of the three in the example).
In (b),(c) and (d), the nodes in dashed blocks are
the nodes which hash values need to be updated;
the transition from (b) to (c) is a rotation and
the transition from (c) to (d) is a rotation. Note
that, PROOF already provides all the informa-
tion needed for updating these hash values. In this

example, in order to compute the hash of node 2,
7 and 11 in (d), we need the hash value of node 5,
which was updated in case 1 during the transition
from (a) to (b), and the hash values of nodes 1, 8
and 14, which are exactly the sibling’s hash values
that are contained in PROOF.

Appendix C Proofs of
Theorems

In the following proofs we assume that ignoring
operations or communication does not increase the
original execution time tatt of an adversary.

C.1 Proof of Theorem 1

Proof. We will show the contraposition of
the above statement, assuming that P is not
an (k, tatt, ϵ)-secure Strong PUF with respect
to some adversary A. By Definition 2, this
implies that there exists an adversary A
who is capable of winning the security game
SecGameStrong (P,A, k, tatt) of Definition 2
with probability greater than ϵ. This, in turn,
means that A can predict the correct response to
one out of k uniformly randomly chosen challenges
cj ∈ CP with probability greater than ϵ, whereby
the time that A requires for his physical actions
and numeric computations does not exceed tatt.

We notice that the very same adver-
sary A will also win the security game
SecGameErasable (P,A, k, tatt) with probabil-
ity greater than ϵ. The reason for this
is that the execution of the security game
SecGameErasable (P,A, k, tatt) with cj = cjerase
is identical to the execution of the secu-
rity game SecGameStrong (P,A, k, tatt) because
adversary A in SecGameErasable (P,A, k, tatt)
never attempts to query an erased challenge cj =
cjerase. This implies that P is not a (k, tatt, ϵ)-
secure Erasable PUF, completing our contraposi-
tion argument.

C.2 Proof Sketch of Theorem 2

Proof Sketch. Let A be any adversary that is mod-
eled by Definition 5. We define a series of games
that reduce

SecGameErasable (P,A, k, tatt),

Springer Nature 2021 LATEX template

22 Article Title

with probability of winning denoted by ϵerase, to

SecGameStrong (P,A′, k, tatt),

where ϵ is the probability of winning as stated in
the theorem.

We first modify SecGameErasable by
assuming an adversary A0 who is like A but who
cannot produce a valid PROOF for an invalid claim
that a challenge was not erased in its interac-
tions with GeniePUF(P). We call this new game
SecGameErasable0 and denote the probabil-
ity of winning this game by ϵ0. By the implicit
assumptions on the capabilities of the adversary
in Definition 5, we know that the control logic CL
and PUF P cannot be modified. Therefore, the
only way to produce a valid PROOF for an (erased)
challenge c in RBT is to find a collision for the hash
function. By Theorem 1 in Section 6.2 of [41], the
probability of finding a valid PROOF is at most ρ.
This shows that

ϵerase ≤ ϵ0 + ρ.

Not being able to provide a valid PROOF for
an invalid claim in SecGameErasable0 means
that the GeniePUF(P) does not produce responses
for erased challenges. This is similar to the same
game SecGameErasable0 where in Step 4a only
a challenge cjerase is chosen at random but not
erased, and with the restriction that the adver-
sary is not allowed to query cjerase after cjerase is
given to the adversary in Step 4b. We call this
game SecGameErasable1. We now define A1

as adversary A0 by discarding any erasure oper-
ations which A0 asks for in Step 2 or Step 4c
(these operations cannot lead to feedback from
GeniePUF(P) which contains predictive informa-
tion that can be used in Step 5). For A1, we can
now conclude that game SecGameErasable1 has
winning probability ϵ1 for which

ϵ0 = ϵ1.

Notice that SecGameErasable1 does not
implement any erasure operations. Because
SecGameErasable1 disallows querying any of
the cjerase after being selected in Step 4a and
communicated to A1 in Step 4b of game
SecGameErasable1, we know that the con-
trol logic CL of GeniePUF(P) simply provides

direct access to P for the queries by A1.
Therefore, the control logic of GeniePUF(P) pro-
vides direct access to P in SecGameErasable1

and provides no other functionality. This means
SecGameErasable1 results directly in a game
for PUF P where we have conceptually stripped
away the control logic of GeniePUF(P).

Unrolling all the steps in SecGameErasable1

for P shows its equivalence with
SecGameStrong. We now define A′ as A1 where
any attempt by A1 to read state in RBT or control
logic CL is replaced by dummy observations. For
A′, we may now conclude that SecGameStrong
has winning probability

ϵ1 = ϵ.

By combining all inequalities and equations we
have

ϵerase ≤ ϵ+ ρ.

References

[1] Lofstrom K, Daasch WR, Taylor D. IC iden-
tification circuit using device mismatch. In:
2000 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers (Cat.
No. 00CH37056). IEEE; 2000. p. 372–373.

[2] Gassend B, Clarke D, van Dijk M, Devadas
S. Silicon physical random functions. In: Pro-
ceedings of the 9th ACM conference on Com-
puter and communications security. ACM;
2002. p. 148–160.

[3] Pappu R, Recht B, Taylor J, Gershenfeld
N. Physical one-way functions. Science.
2002;297(5589):2026–2030.

[4] Rührmair U, Holcomb DE. PUFs at a glance.
In: Proceedings of the conference on Design,
Automation & Test in Europe. European
Design and Automation Association; 2014. p.
347.

[5] Holcomb DE, Burleson WP, Fu K. Initial
SRAM state as a fingerprint and source of
true random numbers for RFID tags. In: Pro-
ceedings of the Conference on RFID Security.
vol. 7; 2007. .

Springer Nature 2021 LATEX template

Article Title 23

[6] Jaeger C, Algasinger M, Rührmair U, Csaba
G, Stutzmann M. Random pn-junctions
for physical cryptography. Applied Physics
Letters. 2010;96(17):172103.

[7] Xiong W, Schaller A, Anagnostopoulos NA,
Saleem MU, Gabmeyer S, Katzenbeisser S,
et al. Run-time accessible DRAM PUFs
in commodity devices. In: International
Conference on Cryptographic Hardware and
Embedded Systems. Springer; 2016. p. 432–
453.

[8] Kumar SS, Guajardo J, Maes R, Schrijen
GJ, Tuyls P. The butterfly PUF protecting
IP on every FPGA. In: 2008 IEEE Interna-
tional Workshop on Hardware-Oriented Secu-
rity and Trust. IEEE; 2008. p. 67–70.

[9] Holcomb DE, Burleson WP, Fu K. Power-up
SRAM state as an identifying fingerprint and
source of true random numbers. IEEE Trans-
actions on Computers. 2009;58(9):1198–1210.

[10] Simons P, van der Sluis E, van der Leest V.
Buskeeper PUFs, a promising alternative to
D flip-flop PUFs. In: 2012 IEEE International
Symposium on Hardware-Oriented Security
and Trust. IEEE; 2012. p. 7–12.

[11] Maes R, Van Herrewege A, Verbauwhede
I. PUFKY: A fully functional PUF-based
cryptographic key generator. In: Interna-
tional Workshop on Cryptographic Hardware
and Embedded Systems. Springer; 2012. p.
302–319.

[12] Maes R, Van Der Leest V, Van Der Sluis E,
Willems F. Secure key generation from biased
PUFs. In: International Workshop on Cryp-
tographic Hardware and Embedded Systems.
Springer; 2015. p. 517–534.

[13] Suh GE, Devadas S. Physical unclonable
functions for device authentication and secret
key generation. In: Proceedings of the
44th annual Design Automation Conference.
ACM; 2007. p. 9–14.

[14] Rührmair U. Oblivious transfer based on
physical unclonable functions. In: Trust and
Trustworthy Computing. Springer; 2010. p.

430–440.

[15] Brzuska C, Fischlin M, Schröder H, Katzen-
beisser S. Physically uncloneable functions
in the universal composition framework. In:
Advances in Cryptology CRYPTO 2011.
Springer; 2011. p. 51–70.

[16] Ostrovsky R, Scafuro A, Visconti I, Wadia
A. Universally composable secure computa-
tion with (malicious) physically uncloneable
functions. In: Advances in Cryptology–
EUROCRYPT 2013. Springer; 2013. p. 702–
718.

[17] Fischlin M, Mazaheri S. Self-guarding cryp-
tographic protocols against algorithm sub-
stitution attacks. In: 2018 IEEE 31st
Computer Security Foundations Symposium
(CSF). IEEE; 2018. p. 76–90.

[18] Chen L, Chen L, Jordan S, Liu YK, Moody
D, Peralta R, et al. Report on post-quantum
cryptography. US Department of Commerce,
National Institute of Standards and Technol-
ogy; 2016.

[19] Perlman RJ, Hanna SR.: Methods and sys-
tems for establishing a shared secret using an
authentication token. Google Patents. US
Patent 6,173,400.

[20] Rührmair U, van Dijk M. Pufs in secu-
rity protocols: Attack models and security
evaluations. In: Security and Privacy (SP),
2013 IEEE Symposium on. IEEE; 2013. p.
286–300.

[21] van Dijk M, Rührmair U. Physical unclonable
functions in cryptographic protocols: Secu-
rity proofs and impossibility results. IACR
Cryptology ePrint Archive. 2012;2012:228.

[22] Rührmair U, Jaeger C, Algasinger M.
An attack on PUF-based session key
exchange and a hardware-based countermea-
sure: Erasable PUFs. In: Financial Cryptog-
raphy and Data Security. Springer; 2011. p.
190–204.

[23] Katzenbeisser S, Kocabaş Ü, van Der Leest
V, Sadeghi AR, Schrijen GJ, Wachsmann

Springer Nature 2021 LATEX template

24 Article Title

C. Recyclable pufs: Logically reconfigurable
pufs. Journal of Cryptographic Engineering.
2011;1(3):177–186.

[24] Zhang L, Kong ZH, Chang CH, Cabrini
A, Torelli G. Exploiting process varia-
tions and programming sensitivity of phase
change memory for reconfigurable physi-
cal unclonable functions. IEEE Transac-
tions on Information Forensics and Security.
2014;9(6):921–932.

[25] Kursawe K, Sadeghi AR, Schellekens D,
Skoric B, Tuyls P. Reconfigurable physi-
cal unclonable functions-enabling technology
for tamper-resistant storage. In: Hardware-
Oriented Security and Trust, 2009. HOST’09.
IEEE International Workshop on. IEEE;
2009. p. 22–29.

[26] Eichhorn I, Koeberl P, van der Leest V. Log-
ically reconfigurable PUFs: Memory-based
secure key storage. In: Proceedings of the
sixth ACM workshop on Scalable trusted
computing. ACM; 2011. p. 59–64.

[27] Jin C, Burleson W, van Dijk M, Rührmair
U. Erasable PUFs: Formal Treatment and
Generic Design. In: Proceedings of the 4th
ACM Workshop on Attacks and Solutions in
Hardware Security; 2020. p. 21–33.

[28] Rührmair U, Jaeger C, Bator M, Stutz-
mann M, Lugli P, Csaba G. Applications of
high-capacity crossbar memories in cryptog-
raphy. Nanotechnology, IEEE Transactions
on. 2011;10(3):489–498.

[29] Gassend B, Clarke D, van Dijk M, Devadas
S. Controlled physical random functions. In:
Computer Security Applications Conference,
2002. Proceedings. 18th Annual. IEEE; 2002.
p. 149–160.

[30] Gassend B, Dijk Mv, Clarke D, Torlak E,
Devadas S, Tuyls P. Controlled physical ran-
dom functions and applications. ACM Trans-
actions on Information and System Security
(TISSEC). 2008;10(4):3.

[31] Rostami M, Majzoobi M, Koushanfar F, Wal-
lach DS, Devadas S. Robust and reverse-
engineering resilient PUF authentication and
key-exchange by substring matching. IEEE
Transactions on Emerging Topics in Comput-
ing. 2014;2(1):37–49.

[32] Yu MD, Hiller M, Delvaux J, Sowell R,
Devadas S, Verbauwhede I. A lockdown tech-
nique to prevent machine learning on PUFs
for lightweight authentication. IEEE Trans-
actions on Multi-Scale Computing Systems.
2016;2(3):146–159.

[33] Majzoobi M, Koushanfar F, Potkonjak M.
Techniques for design and implementation of
secure reconfigurable PUFs. ACM Trans-
actions on Reconfigurable Technology and
Systems (TRETS). 2009;2(1):1–33.

[34] Rührmair U, van Dijk M. On the practi-
cal use of physical unclonable functions in
oblivious transfer and bit commitment proto-
cols. Journal of Cryptographic Engineering.
2013;3(1):17–28.

[35] Rührmair U, Sölter J, Sehnke F. On the
Foundations of Physical Unclonable Func-
tions. IACR Cryptology ePrint Archive.
2009;2009:277.

[36] Rührmair U, Busch H, Katzenbeisser S.
Strong PUFs: models, constructions, and
security proofs. In: Towards hardware-
intrinsic security. Springer; 2010. p. 79–96.

[37] Armknecht F, Moriyama D, Sadeghi AR,
Yung M. Towards a unified security model
for physically unclonable functions. In: Cryp-
tographers’ Track at the RSA Conference.
Springer; 2016. p. 271–287.

[38] Rührmair U. Physical Turing Machines
and the Formalization of Physical Cryptog-
raphy. IACR Cryptology ePrint Archive.
2011;2011:188.

[39] Rührmair U, Sehnke F, Sölter J, Dror
G, Devadas S, Schmidhuber J. Modeling
attacks on physical unclonable functions. In:
Proceedings of the 17th ACM conference
on Computer and communications security.

Springer Nature 2021 LATEX template

Article Title 25

ACM; 2010. p. 237–249.

[40] Herder C, Yu MD, Koushanfar F, Devadas
S. Physical unclonable functions and appli-
cations: A tutorial. Proceedings of the IEEE.
2014;102(8):1126–1141.

[41] Buldas A, Laud P, Lipmaa H. Account-
able certificate management using undeniable
attestations. In: Proceedings of the 7th ACM
conference on Computer and communications
security. ACM; 2000. p. 9–17.

[42] Cormen TH, Leiserson CE, Rivest RL, Stein
C, et al. Introduction to algorithms. vol. 2.
MIT press Cambridge; 2001.

[43] Rührmair U. SoK: Towards Secret-Free Secu-
rity. In: 2020 Workshop on Attacks and
Solutions in Hardware Security (ASHES@
CCS 2020); 2020. .

[44] Standaert FX. Introduction to side-channel
attacks. In: Secure integrated circuits and
systems. Springer; 2010. p. 27–42.

[45] Wang H, Forte D, Tehranipoor MM, Shi
Q. Probing attacks on integrated circuits:
Challenges and research opportunities. IEEE
Design & Test. 2017;34(5):63–71.

[46] Wisiol N, Mühl C, Pirnay N, Nguyen PH,
Margraf M, Seifert JP, et al. Splitting
the interpose PUF: A novel modeling attack
strategy. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems.
2020;p. 97–120.

[47] Tajik S, Dietz E, Frohmann S, Seifert JP,
Nedospasov D, Helfmeier C, et al. Physical
characterization of arbiter pufs. In: Crypto-
graphic Hardware and Embedded Systems–
CHES 2014. Springer; 2014. p. 493–509.

[48] Barenghi A, Breveglieri L, Koren I, Nac-
cache D. Fault injection attacks on crypto-
graphic devices: Theory, practice, and coun-
termeasures. Proceedings of the IEEE.
2012;100(11):3056–3076.

[49] Nguyen PH, Sahoo DP, Jin C, Mahmood K,
Rührmair U, van Dijk M. The Interpose

PUF: Secure PUF Design against State-of-
the-art Machine Learning Attacks. IACR
Transactions on Cryptographic Hardware
and Embedded Systems. 2019;.

[50] Tobisch J, Aghaie A, Becker GT. Combin-
ing Optimization Objectives: New Machine-
Learning Attacks on Strong PUFs. IACR
Cryptol ePrint Arch. 2020;2020:957.

[51] Herder C, Ren L, Van Dijk M, Yu MD,
Devadas S. Trapdoor computational fuzzy
extractors and stateless cryptographically-
secure physical unclonable functions. IEEE
Transactions on Dependable and Secure
Computing. 2016;14(1):65–82.

[52] Jin C, Herder C, Ren L, Nguyen PH, Fuller
B, Devadas S, et al. FPGA Implementation
of a Cryptographically-Secure PUF Based on
Learning Parity with Noise. Cryptography.
2017;1(3):23.

[53] Menezes AJ, van Oorschot PC, Vanstone SA.
Handbook of applied cryptography. CRC
press; 1996.

[54] AES, NIST. Advanced encryption stan-
dard. Federal Information Processing Stan-
dard, FIPS-197. 2001;12.

[55] Tuyls P, Škorić B. Strong authentication
with physical unclonable functions. In: Secu-
rity, Privacy, and Trust in Modern Data
Management. Springer; 2007. p. 133–148.

[56] Kilian J. Founding crytpography on oblivi-
ous transfer. In: Proceedings of the twentieth
annual ACM symposium on Theory of com-
puting. ACM; 1988. p. 20–31.

[57] Becker GT. The Gap Between Promise and
Reality: On the Insecurity of XOR Arbiter
PUFs. In: Güneysu T, Handschuh H, editors.
Cryptographic Hardware and Embedded Sys-
tems – CHES 2015. vol. 9293. Berlin, Hei-
delberg: Springer Berlin Heidelberg; 2015. p.
535–555.

[58] Liu Q, Safavi-Naini R, Sheppard NP. Digital
rights management for content distribution.

Springer Nature 2021 LATEX template

26 Article Title

In: Proceedings of the Australasian informa-
tion security workshop conference on ACSW
frontiers 2003-Volume 21. Citeseer; 2003. p.
49–58.

[59] Sarmenta LF, van Dijk M, O’Donnell CW,
Rhodes J, Devadas S. Virtual monotonic
counters and count-limited objects using a
TPM without a trusted OS. In: Proceed-
ings of the first ACM workshop on Scalable
trusted computing. ACM; 2006. p. 27–42.

[60] Bayer R. Symmetric binary B-trees: Data
structure and maintenance algorithms. Acta
informatica. 1972;1(4):290–306.

	Introduction and Overview
	PUF Re-Use and Relevance of Erasable PUFs
	Fundamental Challenges
	Our Contributions
	Organization of This Paper

	Related Work
	A Formal Framework for Erasable PUFs
	Basic Aspects of (Strong) PUFs
	Erasable PUFs

	Generic Erasable PUF Design
	Basic Idea and Overview
	Read-Out Mechanism of the GeniePUF
	Erasure Mechanism of the GeniePUF

	Security and Practicality of Our Design
	Security of Our Construction
	Practicality and Performance Figures of Our Construction
	Typical Application Scenario of Erasable PUFs

	A Conceptual Extension: Programmable Access Controlled PUFs (PAC PUFs)
	Examples and First Applications of PAC PUFs
	Example 1: GeniePUF
	Example 2: Count-limited access PUF
	Example 3: Password controlled PUF

	Summary and Future Work
	Acknowledgments

	Background on Authenticated Search Trees and Red-Black Trees
	Example Rotation of an Authenticated RB Tree
	Proofs of Theorems
	Proof of Theorem 1
	Proof Sketch of Theorem 2

