15,748 research outputs found
Neutral current (anti)neutrino scattering: relativistic mean field and superscaling predictions
We evaluate the neutral current quasi-elastic neutrino cross section within
two nuclear models: the SuSA model, based on the superscaling behavior of
electron scattering data, and the RMF model, based on relativistic mean field
theory. We also estimate the ratio and
compare with the MiniBooNE experimental data, performing a fit of the
parameters and within the two models. Finally, we present our
predictions for antineutrino scattering.Comment: 15 pages, 4 figure
A prospective observational study of mycophenolate mofetil treatment in progressive diffuse cutaneous systemic sclerosis of recent onset.
OBJECTIVE: A prospective observational study of mycophenolate mofetil (MMF) treatment in patients with diffuse progressive cutaneous systemic sclerosis (SSc) of recent onset.
METHODS: Twenty-five previously untreated consecutive patients with recent-onset (\u3c 24 mo) diffuse progressive cutaneous SSc received MMF as the only disease-modifying therapy. Modified Rodnan skin score (mRSS) and affected body surface area (BSA) were compared from initiation of MMF to study end. Pulmonary function tests performed at the same institution before therapy and at study end were available in 15 patients. Histopathology and real-time PCR assessment of fibrosis-related gene expression were performed before and after treatment in skin biopsies from 3 patients.
RESULTS: At 18.2 ± 8.73 months of MMF therapy (median 2000 mg/day) the mRSS decreased from 24.56 ± 8.62 to 14.52 ± 10.9 (p = 0.0004) and the affected BSA from 36% ± 16% to 14% ± 13.3% (p = 0.00001). Pulmonary function tests remained stable from initiation of MMF to the end of the study. Skin histopathology showed a remarkable reduction in accumulation of fibrotic tissue. Real-time PCR of skin biopsies demonstrated a marked decrease in expression of fibrosis-related genes.
CONCLUSION: Patients with diffuse progressive cutaneous SSc of recent onset treated with MMF experienced marked improvement in skin involvement and stabilization of pulmonary function. Skin biopsies from 3 patients demonstrated histopathological improvement and decreased expression of fibrosis-related genes
Reactivity of OH and CH3OH between 22 and 64 K: Modelling the gas phase production of CH3O in Barnard 1b
In the last years, ultra-low temperature chemical kinetic experiments have
demonstrated that some gas-phase reactions are much faster than previously
thought. One example is the reaction between OH and CH3OH, which has been
recently found to be accelerated at low temperatures yielding CH3O as main
product. This finding opened the question of whether the CH3O observed in the
dense core Barnard 1b could be formed by the gas-phase reaction of CH3OH and
OH. Several chemical models including this reaction and grain-surface processes
have been developed to explain the observed abundance of CHO with little
success. Here we report for the first time rate coefficients for the gas-phase
reaction of OH and CH3OH down to a temperature of 22 K, very close to those in
cold interstellar clouds. Two independent experimental set-ups based on the
supersonic gas expansion technique coupled to the pulsed laser photolysis-laser
induced fluorescence technique were used to determine rate coefficients in the
temperature range 22-64 K. The temperature dependence obtained in this work can
be expressed as k(22-64 K) = (3.6+/-0.1)e-12 (T/ 300)^(-1.0+/-0.2) cm3
molecule-1 s-1. Implementing this expression in a chemical model of a cold
dense cloud results in CH3O/CH3OH abundance ratios similar or slightly lower
than the value of 3e-3 observed in Barnard 1b. This finding confirms that the
gas-phase reaction between OH and CH3OH is an important contributor to the
formation of interstellar CH3O. The role of grain-surface processes in the
formation of CH3O, although it cannot be fully neglected, remains
controversial.Comment: Accepted for publication in The Astrophysical Journa
Off-shell effects in the relativistic mean field model and their role in CC (anti)neutrino scattering at MiniBooNE kinematics
The relativistic mean field (RMF) model is used to describe nucleons in the
nucleus and thereby to evaluate the effects of having dynamically off-shell
spinors. Compared with free, on-shell nucleons as employed in some other
models, within the RMF nucleons are described by relativistic spinors with
strongly enhanced lower components. In this work it is seen that for MiniBooNE
kinematics, neutrino charged-current quasielastic cross sections show some
sensitivity to these off-shell effects, while for the antineutrino-nucleus case
the total cross sections are seen to be essentially independent of the
enhancement of the lower components. As was found to be the case when comparing
the RMF results with the neutrino-nucleus data, the present impulse
approximation predictions within the RMF also fall short of the MiniBooNE
antineutrino-nucleus data.Comment: 19 pages, 7 figures, submitted to Physics Letters
The star-formation histories of elliptical galaxies across the fundamental plane
We present the first results from a study designed to test whether, given
high-quality spectrophotometry spanning the mid-UV--optical wavelength regime,
it is possible to distinguish the metal content (Z) and star-formation history
(sfh) of individual elliptical galaxies with sufficient accuracy to establish
whether their formation history is linked to their detailed morphology and
position on the Fundamental Plane. From a detailed analysis of UV-optical
spectrophotometry of the `cuspy' elliptical galaxy NGC 3605 and the giant
elliptical NGC 5018 we find that: 1) optical spectra with l > 3500 A may not
contain sufficient data to robustly uncover all the stellar populations present
in individual galaxies, even in such relatively passive objects as ellipticals,
2) the addition of the UV data approaching l = 2500 A holds the key to
establishing well-constrained sfhs, from which we can infer a formation and
evolution history which is consistent with their photometric properties, 3)
despite the superficial similarity of their spectra, the two galaxies have very
different `recent' sfhs -- the smaller, cuspy elliptical NGC 3605 contains a
high-Z population of age ~= 1 Gyr, and has a position on the fundamental plane
typical of the product of a low-z gas-rich merger (most likely at z ~ 0.08),
while the giant elliptical NGC 5018, with a sub-solar secondary population,
appears to have gained its more recent stars via mass transfer / accretion of
gas from its spiral companion, 4) despite these differences in detailed
history, more than 85% of the stellar mass of both galaxies is associated with
an old (9-12 Gyr) stellar population of near-solar Z. This pilot study provides
strong motivation for the construction and analysis of high-quality UV-optical
spectra for a substantial sample of ellipticals spanning the Fundamental Plane.Comment: 11 pages, 10 figures, submitted to MNRAS, revised versio
Cosmic magnetic fields and dark energy in extended electromagnetism
We discuss an extended version of electromagnetism in which the usual gauge
fixing term is promoted into a physical contribution that introduces a new
scalar state in the theory. This new state can be generated from vacuum quantum
fluctuations during an inflationary era and, on super-Hubble scales, gives rise
to an effective cosmological constant. The value of such a cosmological
constant coincides with the one inferred from observations as long as inflation
took place at the electroweak scale. On the other hand, the new state also
generates an effective electric charge density on sub-Hubble scales that
produces both vorticity and magnetic fields with coherent lengths as large as
the present Hubble horizon.Comment: 4 pages, 2 figures. Contribution to the proceedings of Spanish
Relativity Meeting 2010, Granada, Spain, 6-10 September 201
High Agreement between Laboratory and Field Estimates of Critical Power in Cycling
The purpose of this study was to investigate the level of agreement between laboratory-based estimates of critical power (CP) and results taken from a novel field test. Subjects were fourteen trained cyclists (age 40±7 yrs; body mass 70.2±6.5 kg; V?O2max 3.8±0.5 L · min-1). Laboratory-based CP was estimated from 3 constant work-rate tests at 80%, 100% and 105% of maximal aerobic power (MAP). Field-based CP was estimated from 3 all-out tests performed on an outdoor velodrome over fixed durations of 3, 7 and 12 min. Using the linear work limit (Wlim) vs. time limit (Tlim) relation for the estimation of CP1 values and the inverse time (1/t) vs. power (P) models for the estimation of CP2 values, field-based CP1 and CP2 values did not significantly differ from laboratory-based values (234±24.4 W vs. 234±25.5 W (CP1); P<0.001; limits of agreement [LOA], -10.98-10.8 W and 236±29.1 W vs. 235±24.1 W (CP2); P<0.001; [LOA], -13.88-17.3 W. Mean prediction errors for laboratory and field estimates were 2.2% (CP) and 27% (W'). Data suggest that employing all-out field tests lasting 3, 7 and 12 min has potential utility in the estimation of CP
Protein flexibility is key to cisplatin crosslinking in calmodulin
Chemical crosslinking in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) has significant potential for studying protein structures and proteinprotein interactions. Previously, cisplatin has been shown to be a crosslinker and crosslinks multiple methionine (Met) residues in apo-calmodulin (apo-CaM). However, the inter-residue distances obtained from nuclear magnetic resonance structures are inconsistent with the measured distance constraints by crosslinking. Met residues lie too far apart to be crosslinked by cisplatin. Here, by combining FTICR MS with a novel computational flexibility analysis, the flexible nature of the CaM structure is found to be key to cisplatin crosslinking in CaM. It is found that the side chains of Met residues can be brought together by flexible motions in both apo-CaM and calcium-bound CaM (Ca4-CaM). The possibility of cisplatin crosslinking Ca4-CaM is then confirmed by MS data. Therefore, flexibility analysis as a fast and low-cost computational method can be a useful tool for predicting crosslinking pairs in protein crosslinking analysis and facilitating MS data analysis. Finally, flexibility analysis also indicates that the crosslinking of platinum to pairs of Met residues will effectively close the nonpolar groove and thus will likely interfere with the binding of CaM to its protein targets, as was proved by comparing assays for cisplatin-modified/unmodified CaM binding to melittin. Collectively, these results suggest that cisplatin crosslinking of apo-CaM or Ca4-CaM can inhibit the ability of CaM to recognize its target proteins, which may have important implications for understanding the mechanism of tumor resistance to platinum anticancer drugs
- …