80 research outputs found

    Automating the Verification of the Low Voltage Network Cables and Topologies

    Get PDF
    Low Voltage (LV) networks are increasingly required to cope with challenges they were not designed for, requiring for more active network management (ANM). Crucially, ANM solutions require the availability of accurate network information. In practice, available data on LV networks can be incomplete, a problem often overlooked in prior ANM research. For example, in the U.K. and many developed countries, the lifetime of distribution networks assets spans several decades, with some of the available asset data gathered and maintained over many years. This can often lead to incomplete cable data being available to network operators. To overcome this, we propose a novel machine learning technique to autonomously approximate the missing cable information in LV networks. Our proposed algorithm uses a tree-based search methodology, which approximates the missing cable's cross section area (XSA) data based on rules engineers used when designing the LV networks. We validate our approach using a large database of real LV networks, where some of the cables' XSA are treated as unknown and used as ground truth to evaluate the accuracy of the predictions. Moreover, we propose a mechanism that scores the confidence level of the prediction, information which is then presented to the human network planners

    Cost-effectiveness of screening for ovarian cancer amongst postmenopausal women: a model-based economic evaluation

    Get PDF
    Background The United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) was the biggest ovarian cancer screening trial to date. A non-significant effect of screening on ovarian cancer was reported, but the authors noted a potential delayed effect of screening, and suggested the need for four years further follow-up. There are no UK-based cost-effectiveness analyses of ovarian cancer screening. Hence we assessed the lifetime outcomes associated with, and the cost-effectiveness of, screening for ovarian cancer in the UK, along with the value of further research. Methods We performed a model-based economic evaluation. Effectiveness data were taken from UKCTOCS, which considered strategies of multimodal screening (MMS), ultrasound screening (USS) and no screening. We conducted systematic reviews to identify the remaining model inputs, and performed a rigorous and transparent prospective evaluation of different methods for extrapolating the effect of screening on ovarian cancer mortality. We considered costs to the UK healthcare system and measured effectiveness using quality-adjusted life years (QALYs). We used value of information methods to estimate the value of further research. Results Over a lifetime, MMS and USS were estimated to be both more expensive and more effective than no screening. USS was dominated by MMS, being both more expensive and less effective. Compared with no screening, MMS cost on average £419 more (95% confidence interval £255 to £578), and generated 0.047 more QALYs (0.002 to 0.088). The incremental cost-effectiveness ratio (ICER) comparing MMS with no screening was £8864 per QALY (£2600 to £51,576). Alternative extrapolation methods increased the ICER, with the highest value being £36,769 (£13,888 to dominated by no screening). Using the UKCTOCS trial horizon, both MMS and USS were dominated by no screening, as they produced fewer QALYs at a greater cost. The value of research into eliminating all uncertainty in long-term effectiveness was estimated to be worth up to £20 million, or approximately £5 million for four years follow-up. Conclusions Screening for ovarian cancer with MMS is both more effective and more expensive than not screening. Compared to national willingness to pay thresholds, lifetime cost-effectiveness is promising, but there remains considerable uncertainty regarding extrapolated long-term effectiveness

    Microwave undulator to generate short-wavelength FEL radiation

    Get PDF
    This paper presents the design and the measurement of a short section of a 36 GHz microwave undulator, as well as the electron beam dynamic and the spectrum of the FEL radiation based on the microwave undulator. The operation of the microwave undulator at a higher frequency of 94 GHz is also discussed

    Beam dynamic study of a Ka-band microwave undulator and its potential drive sources

    Get PDF
    Microwave undulators (MUs) have great potential to be an alternative solution to permanent magnet undulators in a free electron laser (FEL) when shorter undulator periods are required. In this paper, the factors that affect the choice of the high-power drive sources were studied via a Ka-band cavity-type MU with a corrugated waveguide proposed for the CompactLight X-ray FEL. They include the technology of the high-power vacuum electronic devices, the quality factor of the MU cavity that was demonstrated by prototyping a short section of the MU structure, and the beam dynamic study of the electrons’ trajectories inside the MU. It showed that at high beam energy, a high-power oscillator is feasible to be used as the drive source. At low beam energy, the maximum transverse drift distance becomes larger therefore an amplifier has to be used to minimize the drift distance of the electrons by controlling the injection phase

    Factors associated with completion of bowel cancer screening and the potential effects of simplifying the screening test algorithm

    Get PDF
    BACKGROUND: The primary colorectal cancer screening test in England is a guaiac faecal occult blood test (gFOBt). The NHS Bowel Cancer Screening Programme (BCSP) interprets tests on six samples on up to three test kits to determine a definitive positive or negative result. However, the test algorithm fails to achieve a definitive result for a significant number of participants because they do not comply with the programme requirements. This study identifies factors associated with failed compliance and modifications to the screening algorithm that will improve the clinical effectiveness of the screening programme. METHODS: The BCSP Southern Hub data for screening episodes started in 2006–2012 were analysed for participants aged 60–69 years. The variables included age, sex, level of deprivation, gFOBt results and clinical outcome. RESULTS: The data set included 1 409 335 screening episodes; 95.08% of participants had a definitively normal result on kit 1 (no positive spots). Among participants asked to complete a second or third gFOBt, 5.10% and 4.65%, respectively, failed to return a valid kit. Among participants referred for follow up, 13.80% did not comply. Older age was associated with compliance at repeat testing, but non-compliance at follow up. Increasing levels of deprivation were associated with non-compliance at repeat testing and follow up. Modelling a reduction in the threshold for immediate referral led to a small increase in completion of the screening pathway. CONCLUSIONS: Reducing the number of positive spots required on the first gFOBt kit for referral for follow-up and targeted measures to improve compliance with follow-up may improve completion of the screening pathway

    Characterising neutrophil subtypes in cancer using scRNA sequencing demonstrates the importance of IL-1β/CXCR2 axis in generation of metastasis specific neutrophils

    Get PDF
    Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand–receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1β/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1β/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states
    • …
    corecore