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Abstract—Low Voltage (LV) networks are increasingly re-
quired to cope with challenges they were not designed for,
requiring for more active network management (ANM). Cru-
cially, ANM solutions require the availability of accurate network
information. In practice, available data on LV networks can be
incomplete, a problem often overlooked in prior ANM research.
For example, in the UK and many developed countries, the
lifetime of distribution networks assets spans several decades,
with some of the available asset data gathered and maintained
over many years. This can often lead to incomplete cable data
being available to network operators. To overcome this, we
propose a novel machine learning technique to autonomously
approximate the missing cable information in LV networks.
Our proposed algorithm uses a tree-based search methodology,
which approximates the missing cable’s cross section area (XSA)
data based on rules engineers used when designing the LV
networks. We validate our approach using a large database of
real LV networks, where some of the cables’ XSA are treated as
unknown and used as ground truth to evaluate the accuracy of
the predictions. Moreover, we propose a mechanism that scores
the confidence level of the prediction, information which is then
presented to the human network planners.

Index Terms—LV networks, Cables, Asset management, Net-
work trees (graphs), Machine learning

NOMENCLATURE
U Cable with unknown data
a,  Cable with known data selected to approximate
P,  Asset path with u
P,,, Asset path with a,,
Sa,, Score which measures similarity between asset paths
P, and P, .
M The total number of cables with known data selected

to approximate u, a,,, m € M.
Ay Cable with known data with the maximum score
among S,,., m € M.

Sa,  The score for ay.

R The total number of occurrence that a,, is selected
to approximate u.

Gm, The r*h occurrence that a,, is selected to approxi-

mate u. 7 € R.
I. INTRODUCTION

The reactive and passive approach to LV network manage-
ment may no longer be suitable with the predicted change
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to the users energy needs, specifically, the changes to the
domestic electricity demand [1]. The changes ranging from the
increase in penetration of embedded renewables; the charging
of electric-powered vehicles (EVs) at homes [2] and the use
of electric heating. Historically, distribution network operators’
or DNOs’ option for LV networks reinforcements were to add
more capacity from new assets or to manually reconfigure the
networks when warnings are reported. The former comes at
a high cost, and the later if not resolved in time can lead
to faults resulting in loss of electricity connection. Active
network management (ANM) is often identified as an option
to help resolve this issue [3], [4], [5], [6]. Enabling ANM for
the LV Networks, however, is historically unfeasible. ANM
may now be possible because of the broader visibility of
the LV network through the use of smart meters and the
broader infrastructure initiatives, i.e. for communication and
cyber-security. There is also an increasing use of Geographical
Information Systems (GIS), which collate and store the LV
network topologies and assets data within a single platform,
which also ease in enabling ANM for LV networks.

In more detail, one of the key tools required for LV networks
ANM is a Power System State Estimation (PSSE) tool. Given
a network topology and energy demand information, PSSE
estimates and simulates the most likely state of the networks
[7], [8], and for LV networks ANM, informing how best to
manage the energy import from Distributive Energy Resources
(DER) [9], [10], [11], [12], [13], and/or the scheduling of
Electric Vehicles (EVs) charging [14], [15], [16]. PSSE can
also be used to evaluate alternative LV network configurations
when the need for network reconfiguration is predicted. LV
network reconfiguration is beneficial, for example, if the pre-
dicted increase in energy demand resulted from the potential
increase of EVs charging at home in the evening after their
use have resulted in significant voltage constraints violations.
If the number of EVs requiring charging is high and demand
side management (DSM) is unable to effectively schedule their
charging, network reconfiguration may be required.

There is an abundance PSSE tools described in literature,
and PSSE has also become an industry accepted tool. However,
PSSE was developed and is commonly used for simulating the
Medium Voltage (MV) and above. At present, the effectiveness
of PSSE decreases significantly when used for simulating the
LV networks [17], [18], [19], [20], [21]. As these studies
indicate, PSSE is currently ineffective for the LV networks,
not only because of the lack of observability in the networks,
but also due to the nature of the network themselves: dynamic
radial networks with asymmetry between the phase loading;
high variability in the type of cables used; and higher cables
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impedance ratio (R/X) [22]. Furthermore, one of the most
common issues identified, which can significantly impact the
LV networks state estimations, is the possible incomplete
cables data within the networks [8], [23].

A. Related work: Validation of LV network cable data

In recent years, DNOs have begun to address the lack of
observability by using data from the mass smart meter roll-
out. Yet, the incompleteness of the LV cables information
may be harder to resolve, as obtaining the complete LV assets
information can be a challenging and expensive task, if it was
handled manually.

The difficulties are due both to the high volume and signifi-
cant age of typical network assets, which can result in missing
data. Significant errors can also result from undocumented
LV assets changes, because of their historic maintenance and
repair cycles [20], [21], [24]. The reporting of the assets
traditionally relied on the effectiveness of human operators
performing repairs to report on the most recent asset informa-
tion. Furthermore, in many real networks, the majority of the
LV assets are underground, posing a significant challenge in
verifying the available assets information [24], [25].

There are many studies described in literature aim to
perform PSSE using smart meter data [18], [26], [27], [28].
This includes the need to infer LV network topologies [29].
Authors of [30] and [31] use voltage clustering to identify
customers’ phase on the network and their source of supply.
Graph-theoretic interpretation [32], and the combination of
linear coupled power flow (LC-PF) model using smart meter
data and recursive grouping algorithm [24], [33] are some of
the methods proposed to identify the network topology. These
studies assume that near-full to full coverage of smart meters
are provided. This is not often the case, resulting in the limited
uptake of these techniques by DNOs in practice. Crucially,
these studies also assume that impedance of all cables are
available. In practice, however, missing cable data is an issue
that needs to be resolved a-priori.

The aim of our work is to approximate the missing cable
data within the LV networks, in order to enable effective
analysis of the networks. Incomplete cable data can result
in erroneous network capacity estimation and can affect the
outcome of many LV network analysis, from PSSE, ANM,
including DER management and DSM [9], [10], [13], [15],
[16], to network sensitivity analysis [34] and network topology
assessments [35].

Furthermore, accurate reporting of LV networks’ cable data
are not only required for the network’s PSSE, but it is also
vital for the health management of the networks. In the UK,
there have been a number of government-funded initiative to
improve the accuracy of assets and cables reporting for the LV
networks. Majority of this work concentrates on the health
assessments of the cables. Example initiatives are: (i) the
work conducted by Electricity North West that concentrates on
the development of hardware solutions aimed to identify and
capture the condition of cables within the LV network [36]. (ii)
IQA has conducted manual inspection of SP Energy Network’s
cables [37] to identify at-risks networks. The limitations of
these example methodologies are the potential high man hours

required to inspect and identify the cables on the network [38];
more so when one wish to identify the missing cable data. Data
analytic can reduce this requirement. This paper proposed a
novel machine learning technique that can address the issue
related to missing cable data, specifically the missing cable
cross section area (XSA). The novel technique together with
smart meter data can in-turn reduce the need for the indicated
high man hours, whereby erroneous correlation between the
LV network impedance, indicated by the cable XSA, and its
voltage distribution can be indicative of errors.

We propose a tree-based search methodology that first rep-
resents the LV network as a tree describing its cable make-up
and connectivity, and the branch of the tree with the unknown
cable are compared against other branches on the same tree
or other trees, so that those that are similar to the one with
the unknown cable is the candidate suitable to approximate
the unknown cable. A scoring scheme is also proposed to
indicate its suitability and how the scores are used to rank
the options if multiple options are provided. This paper also
discusses and evaluates the search criteria to approximate the
unknown cable. The proposed method improves and revises
our preliminary method initially presented in [39], whereby a
new scoring scheme with the scores between 0 to 1 is proposed
in this paper to provide better indication of choice if multiple
options for approximations are found. This paper also aims
to validate the proposed method via ground truth evaluation,
whereby known cable values in the LV networks were defined
as unknown and are to be approximated. This analysis was
not performed in the initial publication.

This method is to be implemented as part of the business-as-
usual continual improvement program for LV monitoring and
asset data management practice for one of UK’s DNO. The
method is part of a bigger goal of providing data analytical
checks that can react to ongoing data management process
failure and adapt to historical issues which are harder to
fix manually. Feedback from the DNO has indicated the
significant time-saving advantage of the proposed method,
essential for the transitioning of UK’s DNO to Distribution
System Operator that provides active management of the LV
networks.

The paper is divided into 6 sections; Section II describes
how the LV network is modelled as a tree and how the trees
generated are used to approximate the unknown cables infor-
mation. Section III presents the experiment used to evaluate
the effectiveness of the proposed methodology. Section IV
presents the results from the experiment. Section V indicates
the potential benefits of the proposed method. Section VI
concludes the paper.

II. METHODOLOGY
A. Representing an LV network as a network tree graph

For this paper, we defined an LV network as a collection
of LV circuits that share the same source or transformer.
LV circuit is defined as a collection of cables that connect
the endpoints to a common electricity source or transformer.
Figure 1 shows an example LV network consisting of 3 LV
circuits.
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Fig. 1: The LV network and its asset path tree.
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Fig. 2: The conventional display of the network tree for the
boxed area of the LV network in Fig. 1.

A good representation of the LV network is required when
approximating the unknown or missing cables information. A
tree diagram, consisting of V' nodes and E edges is chosen
to provide this representation. An edge e;; € E indicates
either the connection point that links one cable (segment) @
to another j or the connection point that links a cable ¢ to an
endpoint 7. An endpoint can either be a consumer of electricity
on the network or an open point connection. A node v; € V'
represents the cable (segment) between two connection points
or edges. Each node v; is associated with the properties z; that
indicates the electrical impedance of the cable, its construction
type and its cable length, or any other attributes that describe
the properties of the cable.

Conventionally, an LV network tree displays the nodes
and edges for all connection points between cables. The
complexity of the network tree, therefore, can be indicative
of the complexity of the LV network that it represents. For
example, a long mains 95mm cable that connects to two 35mm
and four 25mm service cables shown in the boxed area in Fig.
1 is displayed as the branch of the tree as shown in Fig. 2.

B. Asset path and the asset paths tree

A network tree consisting of all the connection point within
the network may have information unnecessary to approximate

the missing cable information. For example, it is unnecessary
to represent the long 95mm mains cable in Fig. 1 as multiple
nodes on a tree as shown in Fig. 2 [40]. Because of this, the
term asset path is introduced to compress the complex network
tree down to its most important information [39].

An asset path is defined as the collection of cables that
connects the energy source to the customer(s). Fig. 1a shows
an example asset path tree that is a compressed network tree
representation of the LV network shown in Fig. 1. Like the
actual LV network, for which it acts as a “digital twin”, the
tree shows how the cables located in the middle of the circuits
(or the mains cables) are connected to one another. However,
the connections to the cables at the end of the network (or
the service cables) will differ between the asset path tree, the
conventional network tree and the actual network.

In the example shown in the boxed area in Fig. 1, the
endpoints connected at the end of the two 35mm and four
25mm service cables, because of their similar cross-section
area, these endpoints are categorised into two; one for the
35mm cables and the other for the 25mm cables. These two
types of cables categories are each represented as a node on
the asset path tree, despite their actual connection locations
and lengths. These nodes are connected at the end of the
mains 95mm cable’s node, which these two cables types are
all connected to. Because of this, the branch on the network
tree shown in Fig. 2 is simplified so that the long 95mm cable
can be represented as a single node connected to the two nodes
representing the 25mm and 35mm service cables. The filled
blue circles in Fig. 1a indicate the connection points between
the cables’ nodes. The endpoints are represented as nodes that
are connected at the end of its representative cable’s node.
These are the green filled diamonds shown in Fig. 1a.
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If one traces the tree from the root node of a circuit
(identified in Fig. la as <Fuse>) to an endpoint (the filled
green diamond), the list of cables that creates the connection
between the source (a closed fuse in a substation) to the
endpoint is therefore the asset path.

C. Asset path to approximate the unknown cable

Network designers often follows a set of guidelines when
designing the LV network. The combinations of cables are
often selected to meet the aggregated energy demand re-
quirements of customers and the customers distance from
the energy source or substation. Based on this understanding,
two assumptions are made when devising the methodology to
approximate the missing cable information [39].

First, if the unknown portion of an LV circuit (identified as
<UNKNOWN> in Fig. la) shares the same connection point
(the filled blue circle) with another cable, the unknown cable
can be approximated with the other cable if it is of similar
length and loading. This is based on the design rule which
states that a specific cable that is of specific length is selected
for a specific type of distributed customer loading.

If the unknown cable does not share its connection point
with another cable (see unknown cable shown in Fig. 1a), or
the available cable options have large dissimilarities in their
lengths and loading, the asset path with the unknown cable is
then compared against other asset paths on the same circuit
or on other circuits that have similar cable configurations (i.e.
similar combinations of lengths and loading). This assumption
is justified by the design rule which states that a specific
combination of cables and their lengths (asset path) is often
selected for a specific type of distributed customer loading.

D. Scoring the selected asset paths
Equation (1) is proposed to score the similarities, S, _,
between two asset paths:

1) the asset path P, that has the unknown cable data u.
2) the other asset path P,  selected to approximate u.

Up—1 min(Da, ,Du,) min(Ea,,, Eu,)
g Zn:l max(Da,, ,Du,,) max(Ea, ,Eu,)
= n X
a
m Un

m,in(Laam Luy)
max (L

EUn—l min(Ca,, ,Cu,)
n=1 maz(Caq, ,Cu,)

L) | )
Un

U,, is the number of cable types in asset paths P,, up to
and including the unknown cable u. Therefore, the asset paths
{P.s,,Pay,-.c;Pa, y..c; Puyy }» M is the number of options
selected to approximate wu, should have U, — 1 cable types
from the source that are the same as to P,. In the example
shown in Fig. la, there are M = 2 asset paths that meets
this criteria to approximate the indicated unknown cable type
<UNKNOWN>.

If w is the cable located at the end of the circuit, Eaam is the
mean length for cable type a,, in P, that are connected to
the load(s). E,,, is the mean length for u in P,. If u is located
in the middle of the circuit, Eaam , instead, is the mean length
for where the start of a,, (mains cable) connects to other cable

at the customer end. E,, is similar to F,, , but for v in P,.
D,,, is the maximum length for the (mains) cable n in P,
D, is the maximum length for the same cable n in P,.

C,, is the number of cables connected to the cable n,
towards the consumer end and in P, . Cy, is similar to C,,
but for the same cable n in P,. If u is located at the end
of the circuit, L, is the number of loads connected to a.,
in P, and L, is similar to L, , but for u in P,. If u is
located in the middle of the circuit, L, is the number of
cables connected to a,, and L, is similar to L,, but for u
in P,. If v and a,,, are nodes on the same branch, i.e. share
the same connection point (the filled blue circle in Fig. 1a),
D,, =D,, and C,, = C,,, therefore:

m*

min(Ca,,, Cu,)
maz(Ca,,, Cu,)

min(Da,, , Du, )
maz(Da,,, Du,)

=1 2)

If there are multiple choices available to approximate u in
P, the score S, will guide the selection, with m € M,
where M is the number of asset path(s) P, selected for
comparison. The cable a, in P, is selected to approximate
w in P, because a, has the highest score S,, (3) compared
against others (x € M).

Sa, = max({Say, Sags -y Saps -y Sans }) 3)

The cable a, is selected to approximate u in P, with the
assumption that P, is most similar to P,_.The closer the score
Sa, to 1, the higher the similarities between P, and P,,
and a, can best approximate w. This is inline with the two
assumptions derived from the LV network design rules:

1) a specific cable that is of specific length is selected for
a specific type of distributed customer loading.

2) a specific combination of cables and their lengths (asset
path) is often selected for a specific type of distributed
customer loading.

E. Scoring multiple similar asset paths

A specific asset path P, can be found multiple times,
both/either in the same circuit as P, and/or in a different
circuit altogether; {Py,, , P, Payp sy Loy} 7 € R
and R is the number of occurrence that the asset path P,  is
found with cable type a,, that can approximate u. The score
SamT , (1) with r omitted from the equation, may differ at each
match occurrence r of P, , especially if the P, is found
on another circuit. The requirements of P, may differ from
one circuit to another, resulting in the differences in scores
Sa,,, 0 (4).

If R > 1, the mean scores for S, calculated at each match
occurrence 1 (4) is used to find the best approximated cable

type a, that has the highest score S,, in (3).

S, S

Amg ") MAmy.

Sa,, = mean([S,

Amq

e San ) @

If a particular asset path P,  are found multiple times (R > 1)
and have similar length and loading to each other, they will
have their scores Sam,» r € R, closer to 1. This will result
in the mean of the scores S,,, also closer to 1 (4), and will
therefore be selected to approximate u. This brings us to our
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third assumption which indicates that the more often a partic-
ular combination of cables (asset path) are found, the higher
is the likelihood that the combination of cables is effective for
a particular distributed customer loading requirement.

This scoring scheme differs from the initial scheme pre-
sented in [39], to limit the score S,, between O to 1.
The new scheme provides a clearer indication of similarity
in comparison to the initial scoring scheme presented in [39],
which resulted in the scores to be > 1.

FE. Defining the search space

The number of LV networks available to perform the
comparison analysis can vary. The number can be as big
as from one particular region or country, or as small as
a single settlement or a specific postcode area. If a large
search space is provided to approximate u in P,, this can
be computationally expensive. Additional complication can
also arise when dealing with large search space. An example
complication will be discussed in Sec. IV-C.

The search to approximate u can be classified into 3 main
types (i) the local search, (ii) the clustered search and finally,
if needs be, (iii) global search.

1) Local search

As shown in Fig. la, a transformer can have multiple fuses,
each is providing electricity to its own circuit. An LV network
connected to a specific transformer can therefore be defined
as a combination of circuits that share the same transformer.
Local search compares the asset path P, with u with all
other asset paths in its own circuit and in the circuits that
shares the same transformer as P,. Ideally, the local search is
performed first to approximate w. This is based on our fourth
design principle which states that the circuits that share the
same source are of balanced distributed customer loading, and
therefore will have the common combination of cables used at
specific lengths (asset paths), which the unknown cable u can
be approximated from. For the network in Fig. 1a, the circuit
with » can be compared against two other circuits that share
its transformer.

2) Clustered and global search

Local search is beneficial for circuits that share their
transformer with others, as it has its ‘nearest neighbours’ to
compare against. However, a large proportion of the circuits
do not fall within this category. Typically, majority of the
transformers only have one fuse and provides electricity to
just one circuit. For these circuits, there is a higher likelihood
that ¥ may not be approximated using local information only.

If the local search is unable to find a suitable approxima-
tion, i.e., no similar asset path is found or that the scores
{Sa15Sass s Sap s s Sap }» M is the number of cable XSA
options to approximate the unknown cable XSA u have low
scores, the search space is to be widened to include more
circuits, ideally, geographically closer to the circuit with w.
This, for example, in the same postcode area or in the same
county.

If the defined area is small, complication resulted from large
search space may not be an issue, and all circuits provided can
be included in the analysis (or global search). For example, if

a radius of 0.7km in a suburban area in Scotland is selected
for analysis, only 26 circuits are to be analysed, therefore all
circuits can be included in the search space (global search).
If the radius is to increase to lkm with 225 circuits, 2km
with 1,800 circuits, or 5km radius with 22,576 circuits, the
computation time can be significantly higher, if all circuits
in the radius are to be included in the search space. Table
I indicates the approximated run times for analysing and
approximating missing cables” XSA in 1,800 circuits and
22,576 circuits. The descriptions of full and partial asset paths
are described in Sec. II-G.

TABLE I: Run time analysis for large number of LV circuits

No. of Full Partial Full Partial Full Partial
circuits asset asset asset asset asset asset
path & | path & | path & | path & | path & | path &
local local clus- clus- global global
search search tered tered search search
search search
1,800 16.5 254 37.25 2.40 2.55 6.47
circuits mins mins mins hrs hrs hrs
22,576 84 146.7 6.42 31.96 6.4 > 7
circuits mins mins hrs hrs days days

Furthermore, the larger the radius, the higher the likelihood
of dissimilarities between the circuits. For example, Skm
radius from Edinburgh or Glasgow city centre can encompass
both rural and urban areas. The dissimilarities may not add
significant benefits to the results of approximations despite the
additional computation time. To minimise this complexity, the
search space is best curtailed to only those that are of similar
characteristics to the circuit with u.

The properties selected for the clustering are: (i) the circuit
length; (ii) the number of load; and (iii) the number of cable
types on the longest asset path. The asset path comparison is
then performed for the circuits that are in the same cluster
as the circuit with u. Because of the similarity between the
circuits that are clustered together, the selected asset path P,
will be similar to P, and the score S,, will be closer to 1.
This indicates for a high confidence that u is that of a,.

In our analysis, the k-medoid algorithm [41] is used for
clustering, specifically the Matlab kmedoids function [42],
which utilise a variant of the Lloyd’s iteration as described in
[43] to find the medoids. Through this method, 20 clusters
are found.

There is the likelihood that circuits that share a source
(transformer and local search) do not belong in the same
cluster. When this occur, all the circuits from the same
transformer will be assigned to the cluster for which majority
of these circuits do belong to. This is to ensure that these
circuits are evaluated using the same set of information.

G. Full versus Partial Asset Paths

The analysis is performed in two parts:

1) First, to approximate u located at the end of the circuits.
These cables are often the missing service cable data.
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2) Second, to approximate u located in the middle of the
circuit, typically the missing mains cables data.

These two parts are further split into two methods:

1) Full asset path, where the comparison requires all the
cables in P, and P,  to match except for » in P, and
Gm in P, . A strict match is therefore required before
a score can be calculated.

2) Partial asset path, which uses only the cable previously
connected to u (at the source end) and another cable
prior to that cable (as shown in Fig. 3). Hence, a less
strict match is required before the score is calculated.

<Fuse> <95mm> @ { <0.06ins> @ <95mm> @ <UNKNOWN> ]

Fig. 3: Full asset path vs. partial asset path (boxed area).

The reason for these two options can be seen in the results
figures presented in Sec. IV. A much higher percentages of
successful approximation of u are shown when the partial asset
path was used, instead of the full asset path. The key reason for
this is that the strict match of all but w is needed when the full
asset path method is used. This especially when there are > 2
cable types in the asset path which connects u from the source,
which as shown in Fig. 3 (with 3 cable types prior to u). In
another example, if some of the service cables, especially the
cables at the end of the long LV circuit path in Fig. 1 are
instead with unknown XSA, the number of cable types per
asset path prior to the service cables will be > 2.

III. EXPERIMENTAL SETUP

Approximately 4,000 circuits were provided for the anal-
ysis. These circuits are randomly selected from Central Belt
region of Scotland (UK), and are a combination of domestic
and commercial circuits located in urban, suburban and rural
area. The dataset lists the nodes V' and edges E data for the
LV network trees G(V,E) as shown in Fig. 2. A node v,
v € V is the cable segment in the circuit. The unknown cable
data in the dataset is the cable’s cross section area (XSA), and
is to be approximated. This missing data is important and is
required to calculate the LV circuit’s ratings and impedance.
Incorrect calculation can lead to incorrect understanding of
circuit capacity and risk.

To evaluate the success of the algorithm, cable segments
with known XSA were selected and defined as unknown u.
These set of cable segments act as ground truth, to evaluate if
a, is that of its original cable XSA. Half of the 4,000 provided
circuits were selected at random for their cable segments with
known XSA to be defined as unknown. For each of the selected
circuit, the cable segments were also selected at random.

These circuits also have existing unknown cables XSA
within them. The length and location of the cables with
existing unknown XSA varies from one circuit to another. For
majority of the circuits, the length of the existing unknown
cables’ XSA are <50% of the total length of the circuit.
Because of this, the number of known cable segments selected
for ground truth evaluation per circuit will also vary. This
ranges between 2 to 15 cable segments per circuit. The selected

cable segments defined as unknown may also be next to each
other.

The experiment is performed in two stages: (i) local search
and (ii) clustered search. Global search was not performed
because of the high number of circuits provided for analysis,
resulting in significantly long computation times. Furthermore,
as indicated in Sec. II-F, because of the varied nature of the
circuits provided (both urban and rural circuits), no significant
benefits can be achieved with global search.

For the experiment, half of the provided circuits are selected
at random for their cable segments with known XSA to be
defined as unknown u. The experiment is repeated 5 times, to
provide us with different locations of unknown cables XSA
in the circuits at each iteration. The repetition enables for
>10,000 circuit evaluations. Each circuit evaluation calculates
the percentage of successful approximation of the ground truth
cable XSA. A successful approximation is when a, is the
cable actual XSA before it was defined as unknown and has
the highest match score S,, (3).

The random selection of the circuits is performed once for
the initial search criteria of local search with full asset path.
To have a consistent benchmark, this same sets of circuits are
then re-used when performing the local search with the partial
asset path. They are also re-used for the clustered search, for
both full and partial asset path.

IV. EXPERIMENTAL EVALUATION

The effectiveness of the algorithm will not only depend on
the size of the search space, but also the quality of the data. If a
circuit contains higher proportion of existing unknown cables
within the circuit, the likelihood for the unknown cable to be
approximated will decrease, as there is insufficient information
available to approximate the unknown cable.

The results corroborate this statement, with the tables and
figures in this section show the median percentages of success-
ful approximation of the ground truth (y-axis) reduces as the
proportions of unknown cables in the circuit, both existing and
defined (x-axis), were to increase, both when full and partial
asset path were used and when using local or clustered search.
The percentage of unknown cables is calculated based on the
number of cable segments with existing and defined unknown
XSA against the total number of cable segments in the circuit.
A cable segment is the cable node v in the asset path tree in
Fig. 1a.

A. Local search

As indicated in Sec. III, the likelihood of the unknown
cables approximated will also decrease with the increase in
the number of cables in the asset path. This is as shown in
Table II, with the lowest median percentages of successful
ground truth approximation when u are located at the end of
the asset path and when full asset path is used. When the full
asset path method is used, a strict match for all but u in the two
asset paths P, and P, are required and in the same order.
The unknown cable u at the end of the asset path are typically
the service cables on a long LV circuit connected via multiple
mains cable types from the source. u located in the middle
are the mains cable with missing XSA. The results show that
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TABLE II: Median percentages of successful approximations
(confidence interval), with local search.

TABLE III: Median percentages of successful approximations
(confidence interval), with clustered search.

u < u < u < u < u < u < u < u < u < u <

10% 25% 50% 75% 100% 10% 25% 50% 75% 100%

Full asset path & | 77.78% | 71.43% | 71.43% | 69.23% | 66.67% Full asset path & | 82.58% | 76.92% | 75.0% 75.0% 75.0%
u in the middle (2.38%) | (1.45%) | (1.20%) | (1.22%) | (1.35%) u in the middle (6.38%) | (1.51%) | (1.13%) | (1.07%) | (1.29%)
Partial asset path | 80.0% 75.0% | 71.43% | 71.43% | 66.67% Partial asset path | 80.0% 80.0% 75.0% 75.0% 75.0%
& wu in the (247%) | (1.44%) | (1.16%) | (1.27%) | (1.35%) & wu in the (2.61%) | (1.32%) | (1.11%) | (1.12%) | (1.29%)

middle middle

Full asset path & | 62.5% 60.0% 50.0% 50.0% 50.0% Full asset path & | 66.67% | 66.7% 62.5% 60.0% 60.0%
u at the end (5.52%) | (2.63%) | (2.04%) | (2.10%) | (2.67%) u at the end (4.59%) | (2.34%) | (2.13%) | (2.0%) | (2.23%)
Partial asset path | 66.67% | 62.5% 57.14% | 50.0% 50.0% Partial asset path 75.0% 75.0% | 71.43% | 66.67% | 66.67%
& w at the end (5.14%) | (2.75%) | (2.06%) | (2.19%) | (2.67%) & w at the end (3.02%) | (2.33%) | (1.97%) | (1.80%) | (2.09%)

the median percentages increases when partial asset path was
used and when w is at the end. This is because the strict match
of the full asset path method are no longer required. Only the
two cable types prior to u are needed to match to enable the
approximation.

Because of this also, the median percentages of successful
approximation are similar when w is in the middle, when full
and partial asset paths are used. This is because the number
of cable types prior to the u mains cable are lower compared
to when w are at the end. There are also with less variability
of how the mains cables are typically connected as they are
often chosen to meet a specific requirements. As a result, this
decreases the number of options available for approximations,
increasing the likelihood of successful approximation.

The results show that the percentages of successful ground
truth approximation are lower for when u is at the end of
the asset path, both when full and partial asset path are used.
This, in comparison to those in the middle. This is because of
the high variability of how service cable are to be connected,
as how they are connected depends on how far the cables
(customers) are from the source. This for example as shown in
Fig. 1. Furthermore, there is a ratio of 1.74:1 existing unknown
cables located at the end of the asset paths, in comparison to
those located in the middle.

To increase the percentages of successful ground truth
approximation, a larger search space is required. Results
shown in Fig. 4 show that for the circuits which shares its
transformers with >1 other circuits, its median percentages
of successful approximation have increased. This, especially
for the unknown cables u located in the middle of the asset
paths and when either full asset path or partial asset path were
used, with 50% success for both when the circuits do not
share their transformer, to 81.82% of success for full asset
path and 83.33% for partial asset path when the circuits share
their transformer with > 8 other circuits. When u are at the
end and when partial asset path are used, the percentage of
success went from 50% when the circuits do not share their
transformers to 72% of success when the circuits share with
> 8 others. This indicates the benefit of extending the search
criteria to include more circuits for comparison, increasing the
likelihood of successful match.

B. Increasing the search space using clustered information

The search space can be increased depending on the data
availability and preference. LV circuits provide electricity for
different uses, depending on the type and the number of
loads (users) that they are connected to. Clustering the circuits
ensures that those circuits that are of similar properties are
only selected for comparison. As indicated in Sec. II-F2, all
the circuits from the same transformer will be assigned to the
cluster for which majority of these circuits do belong to. This
is to ensure that these circuits are evaluated using the same set
of information. Clustering can also identify abnormal circuits’
topology (outliers), which can also be indicative of ‘at-risk’
connections or resulted from data error. An example of this
is when a cluster only consists of abnormally long (length)
circuits when compared against others.

Figure 5 shows that the median percentages of successful
ground truth approximation increases when there is an increase
in the search space, with Table III shows the percentages
of successes when using clustered search. More so for the
selected cables located at the end of the circuit, and when
partial asset paths were used.

Sharing transformer with other circuits
T T T T T

100 T

80

60 -

Median percentages (%)

40

-§-Full asset path & Unknown cable is in the middle of the circuit
$Full asset path & Unknown cable is at the end of the circuit
Partial asset path & Unknown cable is in the middle of the circuit

+Partia| asset path & Unknown cable is at the end of the circuit
T T T T T T I

0 1 2 3 4 5 6 7 >8
No. of shared circuits

Fig. 4: Median percentages of successful ground truth approx-
imation for circuits that share their transformers.
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Fig. 5: The median percentages of successful approximation
for varying percentage of unknown cable « in the circuit.

C. Cable dissimilarities

As the search space increases, there will be more options
available to approximate the unknown cable u. The results
indicated in Table III indicated the median percentages of
successful ground truth approximation when a, with the
maximum score S, is that of the actual cable XSA (ground
truth). Table IV shows the median percentages of success
if the ground truth cable XSA is one of the cables options
{a1,a2,...,am,...,apr } that were selected as valid M number
of options to approximate the cable XSA, when the valid XSA
was defined as unknown u.

When comparing the percentage of success when a, with
the maximum score .S, is that of the actual cable XSA against
when the ground truth cable XSA is one of the valid M options
indicated, the results show that there are increases to the
median percentages. This is as summarised in Fig. 6.

This indicates that for some LV circuits, the asset path with
the ground truth cable XSA is an available option from the
M selected asset paths { Py, , Pa,, ..., Pa,,; -, Pa,, }, however,
there is another asset path in the circuit or other circuits that
may have similar asset path attributes compared to the one with
the ground truth value. Further insight into the dissimilarity of
choice when the selected cable a, with the maximum score
S, is not the ground truth can provide indication of risk of
the existing cables’ combination or asset path. This is one of
our future work.

V. BENEFITS OF THE PROPOSED METHOD

As indicated in Sec. I, Active Network Management (ANM)
may be the most cost-effective solution to address the potential
risk of the increase in electricity demand to the LV networks.
ANM requires the use of PSSE to simulate the state of the
network based on new input and control options. Effective use
of PSSE in turn requires high visibility of the LV networks
and the correct reporting of the network assets, specifically the
cables, and topology. The mass roll-out of smart meters and the
use of Geographical Information System or GIS that collates
the LV network topology information can provide this oppor-

TABLE IV: Median percentages of successful approximations
(confidence interval), when the ground truth is one of the M
valid options.

u < u < u < u < u <
10% 25% 50% 75% 100%
Full asset path & | 85.71% | 81.82% | 83.33% | 83.33% | 83.33%
u in the middle (291%) | (1.27%) | (1.01%) | (1.18%) | (1.11%)
Partial asset path 90.0% 88.89% | 88.89% | 88.89% | 90.0%
& wu in the (2.04%) | (1.07%) | (0.86%) | (0.79%) | (0.74%)
middle
Full asset path & | 71.43% | 66.7% 66.7% 66.7% 66.7%
u at the end (3.97%) | (233%) | (236%) | (2.16%) | (2.00%)
Partial asset path | 85.71% | 80.91% | 80.0% 80.0% 80.0%
& w at the end (3.40%) | (1.97%) | (1.97%) | (1.80%) | (1.67%)
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Fig. 6: The median percentages of successful approximation
when ground truth is a, with S, only (max score) or that it
is also one of the M options available (a,,, m € M).

tunity. However, missing cable data can affect the effectiveness
of the ANM controls and analysis. The algorithm proposed in
this paper will approximate any missing cable XSA required
to enable effective simulation of the LV networks, specifically
the calculation of the network topology to identify the risks
and capacities.

A network engineer can validate the approximated missing
cable information, by comparing the outputs of the voltage
distribution from PSSE with that recorded by the smart meters.
Validated LV networks assets and topologies are necessary to
ensure the most effective ANM solutions can be proposed.

VI. CONCLUSION AND FUTURE WORK

The demand for electricity is predicted to increase and the
predicted increase may be higher than what the existing LV
networks can accommodate for. Reinforcements to the LV net-
works are therefore necessary to ensure risks are appropriately
managed. The most cost-effective reinforcement is to enable
the Active Network Management (ANM) of the LV networks;
previously designed with the passive ’fit-and-forget’ approach
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to network management.

The mass roll out of smart meters and the growing use
of GIS are the enabler to this capability. However, there
is the challenge of ensuring that the correct LV network
information are reported in the GIS. This is because, missing
asset information, historical or resulting from on-site operators
failing to follow rigorous data management processes, are
some of the most common issues identified. This requires for
a cost-effective data repair solution. This paper proposes the
algorithm that autonomously approximate the missing cable
data, specifically the missing cross section area cable data.
The proposed algorithm uses a tree-based search methodology,
which approximates the missing cable data based on rules en-
gineers used when designing the LV network topology. Known
cables data are redefined as unknown, and act as the ground
truth. The algorithm is able to successfully approximate the
ground truth data, and also providing a mechanism that scores
the confidence level for the choices made to approximate the
missing cable data.

In the future, we aim to include operators’ expert knowledge
to the scoring of the cable choices, for example, the date of
installation and repair cycles, and the cable preferences used.
Our future work will also evaluate the use of smart meter data,
specifically the voltage data, to validate the cable choice, as
well as to identify errors in the data. How voltage is distributed
across the circuit depends on the total line impedance. Errors
can be identified if these two data are uncorrelated.

Other clustering methods, for example k-means++ and
hierarchical clustering are also to be explored in the future.
Alternatively, clustering can be performed based on the geo-
graphical area, if the specific coordinate of the transformers are
provided, by analysing the LV circuits within a small radius,
for example, 0.5km radius from a chosen transformer, and
to perform local search first, followed by global search if
local search is unable to approximate all the unknown cable
data. If the initial search with the small radius was unable to
approximate the unknown cables, the radius is then increased
gradually until a maximum search criterion is met. This, for
example with the increments of 0.5km radius from a reference
transformer until the maximum radius of 2km is met.
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