61 research outputs found

    Mapping scrub vegetation cover from photogrammetric point clouds: A useful tool in reserve management

    Get PDF
    Scrub vegetation is a valuable habitat and resource for wildlife, but if unmanaged can encroach and dominate adjacent habitats, reducing biodiversity value. A primary task in the management of terrestrial nature reserves in the UK is monitoring and controlling scrub. The methods used to monitor and assess scrub cover are often basic, relying on qualitative assessment. Inaccurate assessments may fail to inform appropriate management of the habitats and lead to loss or degradation of important ecological features. Scrub can be monitored using UAV or satellite-derived imagery, but it can be difficult to distinguish between other vegetation types without using high-cost hyperspectral sensors. An alternative method using high-resolution surface models from photogrammetric point clouds enables the isolation of vegetation types based on height. Scrub can be isolated from woodland, hedgerows, and tall ground vegetation. In this study, we calculate scrub cover using a photogrammetric point cloud modeling approach using UAVs. We illustrate the method with two case studies from the UK. The scrub cover at Daneway Banks, a calcareous grassland site in Gloucestershire, was calculated at 21.8% of the site. The scrub cover at Flat Holm Island, a maritime grassland in the Severn Estuary, was calculated at 7%. This approach enabled the scrub layer to be readily measured and if required, modeled to provide a visual guide of what a projected management objective would look like. This approach provides a new tool in reserve management, enabling habitat management strategies to be informed, and progress toward objectives monitored

    Climate threats to coastal infrastructure and sustainable development outcomes

    Get PDF
    Climate hazards pose increasing threats to development outcomes across the world’s coastal regions by impacting infrastructure service delivery. Using a high-resolution dataset of 8.2 million households in Bangladesh’s coastal zone, we assess the extent to which infrastructure service disruptions induced by flood, cyclone and erosion hazards can thwart progress towards the Sustainable Development Goals (SDGs). Results show that climate hazards potentially threaten infrastructure service access to all households, with the poorest being disproportionately threatened in 69% of coastal subdistricts. Targeting adaptation to these climatic threats in one-third (33%) of the most vulnerable areas could help to safeguard 50–85% of achieved progress towards SDG 3, 4, 7, 8 and 13 indicators. These findings illustrate the potential of geospatial climate risk analyses, which incorporate direct household exposure and essential service access. Such high-resolution analyses are becoming feasible even in data-scarce parts of the world, helping decision-makers target and prioritize pro-poor development

    Sustainable pathways towards climate and biodiversity goals in the UK:the importance of managing land-use synergies and trade-offs

    Get PDF
    Agricultural and environmental policies are being fundamentally reviewed and redesigned in the UK following its exit from the European Union. The UK government and the Devolved Administrations recognise that current land use is not sustainable and that there is now an unprecedented opportunity to define a better land strategy that responds fully to the interconnected challenges of climate change, biodiversity loss and sustainable development. This paper presents evidence from three pathways (current trends, sustainable medium ambition, and sustainable high ambition) to mid-century that were co-created with UK policymakers. The pathways were applied to a national integrated food and land-use model (the FABLE calculator) to explore potential synergies and trade-offs between achieving multiple sustainability targets under limited land availability and constraints to balance food supply and demand at national and global levels. Results show that under the Current Trends pathway all unprotected open natural land would be converted to urban, agriculture and afforested land, with the consequence that from 2030 onwards tree planting targets could not be met. In contrast, the two sustainable pathways illustrate how dietary change, agricultural productivity improvements and waste reduction can free up land for nature recovery and carbon sequestration. This enables a transition to a sustainable food and land-use system that provides a net carbon sink with up to 44% of land able to support biodiversity conservation. We highlight key trade-offs and synergies, which are important to consider for designing and implementing emerging national policies. These include the strong dependence of climate, food and biodiversity targets on dietary shifts, sustainable improvements in agricultural productivity, improved land-use design for protecting and restoring nature, and rapid reductions in food loss and waste.Supplementary informationThe online version contains supplementary material available at 10.1007/s11625-022-01242-8

    Multicenter Standardization of Phase-Resolved Functional Lung MRI in Patients With Suspected Chronic Thromboembolic Pulmonary Hypertension

    Full text link
    BACKGROUND Detection of pulmonary perfusion defects is the recommended approach for diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). This is currently achieved in a clinical setting using scintigraphy. Phase-resolved functional lung (PREFUL) magnetic resonance imaging (MRI) is an alternative technique for evaluating regional ventilation and perfusion without the use of ionizing radiation or contrast media. PURPOSE To assess the feasibility and image quality of PREFUL-MRI in a multicenter setting in suspected CTEPH. STUDY TYPE This is a prospective cohort sub-study. POPULATION Forty-five patients (64 ± 16 years old) with suspected CTEPH from nine study centers. FIELD STRENGTH/SEQUENCE 1.5 T and 3 T/2D spoiled gradient echo/bSSFP/T2 HASTE/3D MR angiography (TWIST). ASSESSMENT Lung signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between study centers with different MRI machines. The contrast between normally and poorly perfused lung areas was examined on PREFUL images. The perfusion defect percentage calculated using PREFUL-MRI (QDPPREFUL_{PREFUL} ) was compared to QDP from the established dynamic contrast-enhanced MRI technique (QDPDCE_{DCE} ). Furthermore, QDPPREFUL_{PREFUL} was compared between a patient subgroup with confirmed CTEPH or chronic thromboembolic disease (CTED) to other clinical subgroups. STATISTICAL TESTS t-Test, one-way analysis of variance (ANOVA), Pearson's correlation. Significance level was 5%. RESULTS Significant differences in lung SNR and CNR were present between study centers. However, PREFUL perfusion images showed a significant contrast between normally and poorly perfused lung areas (mean delta of normalized perfusion -4.2% SD 3.3) with no differences between study sites (ANOVA: P = 0.065). QDPPREFUL_{PREFUL} was significantly correlated with QDPDCE_{DCE} (r = 0.66), and was significantly higher in 18 patients with confirmed CTEPH or CTED (57.9 ± 12.2%) compared to subgroups with other causes of PH or with excluded PH (in total 27 patients with mean ± SD QDPPREFUL_{PREFUL}  = 33.9 ± 17.2%). DATA CONCLUSION PREFUL-MRI could be considered as a non-invasive method for imaging regional lung perfusion in multicenter studies. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1

    Metabolic Disturbances Associated with Systemic Lupus Erythematosus

    Get PDF
    The metabolic disturbances that underlie systemic lupus erythematosus are currently unknown. A metabolomic study was executed, comparing the sera of 20 SLE patients against that of healthy controls, using LC/MS and GC/MS platforms. Validation of key differences was performed using an independent cohort of 38 SLE patients and orthogonal assays. SLE sera showed evidence of profoundly dampened glycolysis, Krebs cycle, fatty acid β oxidation and amino acid metabolism, alluding to reduced energy biogenesis from all sources. Whereas long-chain fatty acids, including the n3 and n6 essential fatty acids, were significantly reduced, medium chain fatty acids and serum free fatty acids were elevated. The SLE metabolome exhibited profound lipid peroxidation, reflective of oxidative damage. Deficiencies were noted in the cellular anti-oxidant, glutathione, and all methyl group donors, including cysteine, methionine, and choline, as well as phosphocholines. The best discriminators of SLE included elevated lipid peroxidation products, MDA, gamma-glutamyl peptides, GGT, leukotriene B4 and 5-HETE. Importantly, similar elevations were not observed in another chronic inflammatory autoimmune disease, rheumatoid arthritis. To sum, comprehensive profiling of the SLE metabolome reveals evidence of heightened oxidative stress, inflammation, reduced energy generation, altered lipid profiles and a pro-thrombotic state. Resetting the SLE metabolome, either by targeting selected molecules or by supplementing the diet with essential fatty acids, vitamins and methyl group donors offers novel opportunities for disease modulation in this disabling systemic autoimmune ailment

    Genetic counselling and testing in pulmonary arterial hypertension:a consensus statement on behalf of the International Consortium for Genetic Studies in PAH

    Get PDF
    Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.</p

    Recent Progress and Next Steps for the MATHUSLA LLP Detector

    Full text link
    We report on recent progress and next steps in the design of the proposed MATHUSLA Long Lived Particle (LLP) detector for the HL-LHC as part of the Snowmass 2021 process. Our understanding of backgrounds has greatly improved, aided by detailed simulation studies, and significant R&D has been performed on designing the scintillator detectors and understanding their performance. The collaboration is on track to complete a Technical Design Report, and there are many opportunities for interested new members to contribute towards the goal of designing and constructing MATHUSLA in time for HL-LHC collisions, which would increase the sensitivity to a large variety of highly motivated LLP signals by orders of magnitude.Comment: Contribution to Snowmass 2021 (EF09, EF10, IF6, IF9), 18 pages, 12 figures. v2: included additional endorser

    Developing an Integrated Ocean Observing System for New Zealand

    Get PDF
    New Zealand (NZ) is an island nation with stewardship of an ocean twenty times larger than its land area. While the challenges facing NZ’s ocean are similar to other maritime countries, no coherent national plan exists that meets the needs of scientists, stakeholders or kaitiakitanga (guardianship) of NZ’s ocean in a changing climate. The NZ marine science community used the OceanObs’19 white paper to establish a framework and implementation plan for a collaborative NZ ocean observing system (NZ-OOS). Co-production of ocean knowledge with Māori will be embedded in this national strategy for growing a sustainable, blue economy for NZ. The strengths of an observing system for a relatively small nation come from direct connections between the science impetus through to users and stakeholders of an NZ-OOS. The community will leverage off existing ocean observations to optimize effort and resources in a system that has historically made limited investment in ocean observing. The goal of the community paper will be achieved by bringing together oceanographers, data scientists and marine stakeholders to develop an NZ-OOS that provides best knowledge and tools to the sectors of society that use or are influenced by the ocean
    corecore