5,163 research outputs found

    La lógica dialéctica y el cálculo diferencial

    Get PDF
    La aparición del Cálculo Diferencial fue el resultado de un largo proceso, en el cual influyó decisivamente el desarrollo de otras ciencias, como la Física (Mecánica) y la Astronomía. Estas ciencias planteaban a la Matemática la necesidad de resolver diversos problemas prácticos. Al surgir el Cálculo Diferencial en el Siglo XVIII, es sometido a una crítica encarnizada, que se mantuvo hasta finales del Siglo XIX. En nuestro trabajo haremos un análisis de los aspectos más importantes de este proceso, y sobre la necesidad de desarrollar este análisis a partir de la utilización de los principios de la lógica formal y la lógica dialéctica, y su incidencia en la formación de los conceptos básicos del Cálculo Diferencial en las carreras de Ingeniería

    Li–Yorke chaos in nonautonomous Hopf bifurcation patterns - I

    Get PDF
    We analyze the characteristics of the global attractor of a type of dissipative nonautonomous dynamical systems in terms of the Sacker and Sell spectrum of its linear part. The model gives rise to a pattern of nonautonomous Hopf bifurcation which can be understood as a generalization of the classical autonomous one. We pay special attention to the dynamics at the bifurcation point, showing the possibility of occurrence of Li-Yorke chaos in the corresponding attractor and hence of a high degree of unpredictability.MINECO/FEDER, MTM2015-66330-PEuropean Commission, H2020-MSCA-ITN-201

    Non-Atkinson perturbations of nonautonomous linear Hamiltonian systems: exponential dichotomy and nonoscillation

    Get PDF
    Producción CientíficaWe analyze the presence of exponential dichotomy (ED) and of global existence of Weyl functions M±M^\pm for one-parametric families of finite-dimensional nonautonomous linear Hamiltonian systems defined along the orbits of a compact metric space, which are perturbed from an initial one in a direction which does not satisfy the classical Atkinson condition: either they do not have ED for any value of the parameter; or they have it for at least all the nonreal values, in which case the Weyl functions exist and are Herglotz. When the parameter varies in the real line, and if the unperturbed family satisfies the properties of exponential dichotomy and global existence of M+M^+, then these two properties persist in a neighborhood of 0 which agrees either with the whole real line or with an open negative half-line; and in this last case, the ED fails at the right end value. The properties of ED and of global existence of M+M^+ are fundamental to guarantee the solvability of classical minimization problems given by linear-quadratic control processes.MINECO/FEDER, MTM2015-66330-PEuropean Commission, H2020-MSCA-ITN-201

    Model Predictive Control for Spacecraft Rendezvous in Elliptical Orbits with On/Off Thrusters

    Get PDF
    IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles. 08/06/2015. SevillaIn previous works, the authors have developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, for circular and eccentric Keplerian orbits. The algorithm is initialized by solving the impulsive problem first and then, using explicit linearization and linear programming, the solution is refined until a (possibly local) optimal value is reached. However, trajectory planning cannot take into account orbital perturbations, disturbances or model errors. To overcome these issues, in this paper we develop a Model Predictive Control (MPC) algorithm based on the open-loop PWM planner and test it for elliptical target orbits with arbitrary eccentricity (using the linear time-varying Tschauner-Hempel model). The MPC is initialized by first solving the open-loop problem with the PWM trajectory planning algorithm. After that, at each time step, our MPC saves time recomputing the trajectory by applying the iterative linearization scheme of the trajectory planning algorithm to the solution obtained in the previous time step. The efficacy of the method is shown in a simulation study where it is compared to MPC computed used an impulsive-only approach

    Trajectory Planning for Spacecraft Rendezvous in Elliptical Orbits with On / Off Thrusters

    Get PDF
    The 19th World Congress of the International Federation of Automatic Control 2014 Cape Town, SudáfricaIn a previous work, the authors developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, assuming that the target was moving in a circular Keplerian orbit. In this paper we extend the algorithm to the case of an elliptical target orbit with arbitrary eccentricity. Since the orbit is elliptical, the linear time-varying Tschauner-Hempel model is used, whose exact solution is possible by using true (or eccentric) anomaly instead of time (which is directly related to both via Kepler's equation). Unlike in the circular case, computing the PWM solution itself requires numerical integration. However, explicit linearization around the computed solution turns out to be possible and is exploited for rapidly improving the solution using linear programming (LP) techniques. The algorithm is initialized by solving the impulsive problem first; the impulses are converted to PWM signals, which are used as an initial guess. Using the explicit linearization and LP, the solution is refined until a (possibly local) optimal value is reached. The efficacy of the method is shown in a simulation study where it is compared to the impulsive-only approach

    Spike-based control monitoring and analysis with Address Event Representation

    Get PDF
    Neuromorphic engineering tries to mimic biological information processing. Address-Event Representation (AER) is a neuromorphic communication protocol for spiking neurons between different chips. We present a new way to drive robotic platforms using spiking neurons. We have simulated spiking control models for DC motors, and developed a mobile robot (Eddie) controlled only by spikes. We apply AER to the robot control, monitoring and measuring the spike activity inside the robot. The mobile robot is controlled by the AER-Robot tool, and the AER information is sent to a PC using the USBAERmini2 interface.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    Robust Model Predictive Control for Spacecraft Rendezvous with Online Prediction of Disturbance Bounds

    Get PDF
    IFAC Workshop Aerospace Guidance, Navigation and Flight Control Systems (AGNFCS' 09) Samara, RUSSIA June 30 - July 2, 2009A Model Predictive Controller is introduced to solve the problem of rendezvous of spacecraft, using the HCW model and including additive disturbances and line-of-sight constraints. It is shown that a standard MPC is not able to cope with disturbances. Then a robust Model Predictive Control that introduces the concepts of robust satisfaction of constraints is proposed. The formulation also includes a predictor of the disturbance properties which are needed in the robust algorithm. In simulations it is shown that the robust MPC scheme is able to handle not only additive disturbances (which are the ones used in the formulation) but also large multiplicative disturbances and unmodelled dynamics (due to eccentricity of the orbit of the target spacecraft)

    Trajectory Planning for Spacecraft Rendezvous with On / Off Thrusters

    Get PDF
    18th World CongressThe International Federation of Automatic ControlMilano (Italy) August 28 - September 2The objective of this work is to present a trajectory planning algorithm for spacecraft rendezvous that is able to incorporate Pulse-Width Modulated (PWM) control signals. The algorithm is based on linearization around a previously computed solution. To initialize the algorithm, a first solution needs to be obtained. To do so, the trajectory planning problem is solved using Pulse-Amplitude Modulated (PAM) control signals; these are then converted to PWM signals, which are used as an initial guess. Iterating, the solution is refined until an optimal value is reached. Simulations show that this method converges after a few iterations. The algorithm is simple and fast, hence it could be implemented online or used together with a Model Predictive Controller
    corecore