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Abstract: A Model Predictive Controller is introduced to solve the problem of rendezvous
of spacecraft, using the HCW model and including additive disturbances and line-of-sight
constraints. It is shown that a standard MPC is not able to cope with disturbances. Then
a robust Model Predictive Control that introduces the concepts of robust satisfaction of
constraints is proposed. The formulation also includes a predictor of the disturbance properties
which are needed in the robust algorithm. In simulations it is shown that the robust MPC
scheme is able to handle not only additive disturbances (which are the ones used in the
formulation) but also large multiplicative disturbances and unmodelled dynamics (due to
eccentricity of the orbit of the target spacecraft).
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1. INTRODUCTION

Technology enabling simple autonomous spacecraft ren-
dezvous and docking is becoming a growing necessity as
access to space continues increasing. After decades of
development, many approaches have been proposed and
there have been many experiences, positive and negative;
see Woffinden and Geller (2008) for an historical account
or Fehse (2003) for the basics. However, no approach
has emerged as universally successful, and autonomous
rendezvous is still a subject open to further investigation.
Correspondingly, the field of has become very active in
recent years, with an increasingly growing literature; see,
for instance, Richards and How (2003), P.K.C. Wang
(2003), Geller (2006), or Breger and How (2008).

This work approaches the problem of rendezvous of space-
craft using Model Predictive Control (mpc) [Camacho and
Bordons (2004)]. mpc originated in the late seventies and
has developed considerably since then. There are many
applications of predictive control successfully in use at
the current time, not only in the process industry but
also applications to the control of other processes ranging
from solar technology [Camacho et al. (1994)] to flight
control [Breger and How (2006)]. Model Predictive Control
is considered to be a mature technique for linear and
rather slow systems like the ones usually encountered in
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the process industry, even though more complex systems,
such as nonlinear, hybrid, or very fast processes, are not
so amenable to the methods of mpc. Hence mpc is very
suitable to deal with the problem of spacecraft rendezvous,
which is inherently slow and can be modeled by linear
equations (shown in Section 2). See for instance Richards
and How (2003), where the use of mpc is analyzed for the
rendezvous problem and compared with other methods.

The term Model Predictive Control does not designate
a specific control strategy but rather an ample range of
control methods which make explicit use of a model of
the process to obtain the control signal by minimizing
an objective function over a finite receding horizon. In
mpc the process model is used to predict the future plant
outputs, based on past and current values and on the
proposed optimal future control actions. These actions are
calculated by the optimizer taking into account the cost
function (where the future tracking error is considered) as
well as the constraints.

One of the advantages of mpc is that robust control ideas
can be easily incorporated. The key idea is to take into
account disturbances and uncertainties about the process
in an explicit manner and to design mpc to optimize
the objective function for the worst situation of the dis-
turbances/uncertainties [Camacho and Bordons (2004)].
However it is necessary to obtain an estimate of some of the
properties, such as upper and lower bounds or the mean
of the disturbances and uncertainties. In Richards (2004),
some methods for estimation of uncertainty properties are
proposed.
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We use both techniques (robust mpc design and distur-
bance properties estimation) in this work, and show that
they can successfully be applied to solve the problem of
spacecraft rendezvous with large, persistent disturbances.
It is also shown that our design also allows for a suc-
cessful rendezvous even in the case that the target orbit
is elliptic—implying that the HCW model used for mpc
computations is no longer accurate.

The structure of this paper is as follows. In Section 2 we
introduce the mathematical model for rendezvous space-
craft used for MPC and the constraints of the rendezvous
problem. We follow in Section 3 with a formulation of
Model Predictive Control suitable for the problem at hand,
introducing the concepts of robust constraint satisfaction
and estimation of disturbance properties. In Section 4
we show simulations for the unperturbed case and the
perturbed case with large disturbances. We also show that
our control design is successful for elliptical target orbits,
with the discrepancies due to ellipticity considered as a
disturbance. We close the paper with some remarks in
Section 5.

2. MODEL OF SPACECRAFT RENDEZVOUS

There are numerous mathematical models for spacecraft
rendezvous; which one should be used depends on the
parameters of the scenario. In Carter (1998) a survey of
numerous mathematical models for spacecraft rendezvous
can be found.

For instance, if the target is orbiting in a circular keplerian
orbit and approaching vehicle is very close to the target,
then the linear Hill-Clohessy-Wiltshire (HCW) equations,
as introduced by Hill (1878) and Clohessy and Wiltshire
(1960), describe with adequate precision the relative po-
sition of the spacecraft. The HCW model is the one we
use throughout this paper, even though we include the
possibility of disturbances to allow for unmodeled effects.
Remark 1. It must be noted that, in many situations,
the HCW equations are not accurate. For instance, if the
chaser vehicle is far from the target then linearization is
no longer possible. Other situations include the possibility
that the target is moving in a keplerian eccentric orbit
(see Inalhan et al. (2002)) or that some orbital pertur-
bations are taken into account (see for example Humi and
Carter (2008)). In Section 4 we consider the target orbiting
in an eccentric keplerian trajectory, and show that our
control design (based on the HCW equations) still works.

The HCW model assumes that the target vehicle is passive
and moving along a circular orbit of radius R. Thus the
angular speed of the target through its orbit is n =

√
µ
R3 ,

where µ is the gravitation parameter of the Earth, µ =
398600.4 km3/s2.

Considering that the control inputs are constant for the
sample time T , we can use the following discrete time
version of the HCW equations with disturbances:

x(k + 1) = Ax(k) +Bu(k) + δ(k). (1)
In (1), x(k), u(k) and δ(k) denote respectively the state,
input, and disturbance at time k, where

x = [x y z ẋ ẏ ż]T , u = [ux uy uz]
T
, (2)

δ = [δx δy δz δẋ δẏ δż]
T
. (3)

In these definitions, x, y, and z denote the position of the
chaser in a local–vertical/local–horizontal (LVLH) frame

of reference fixed on the center of gravity of the target
vehicle. In the LVLH frame, x refers to the radial position,
y to the in-track position, and z to the cross-track position.
The velocity of the chaser in the LVLH frame is given
by ẋ, ẏ, and ż. The variables ux, uy, and uz are the
inputs (thrust actuation) acting on the chaser vehicle,
whereas δx, δy, δz, δẋ, δẏ, and δż represent the disturbances
entering the system. Both are referred to the LVLH axes
as indicated by their respective subscripts.

The matrices A and B appearing in (1) are given by

A=



4− 3C 0 0
S

n

2(1− C)
n

0

6(S − nT ) 1 0 −2(1− C)
n

4S − 3nT
n

0

0 0 C 0 0
S

n
3nS 0 0 C 2S 0

−6n(1− C) 0 0 −2S 4C − 3 0
0 0 −nS 0 0 C


,(4)

B =



1− C
n2

2nT − 2S
n2

0
2(S − nT )

n2
−3T 2

2
+ 4

1− C
n2

0

0 0
1− C
n2

S

n
2

1− C
n

0
2(C − 1)

n
−3T + 4

S

n
0

0 0
S

n


, (5)

where S = sinnT and C = cosnT (the sampling time
chosen in this work is 60 s). The disturbances are unknown,
so we assume δ(k) is a random vector, with mean δ̄ and
covariance Σ, which are also unknown. These disturbances
might arise from errors in the input signals (as thrusters
are typically subject to command uncertainties and are
never perfectly aligned), or they could also be thought
of as unmodeled dynamics (in which case they are not
random; however we keep the randomness assumption
for convenience). In Section 4 we show some of these
disturbance models.
Remark 2. Even though we are modelling the disturbances
as additive, in Section 4 we show that our control scheme
works for other kind of disturbances such as multiplicative
disturbance or modelling errors.

2.1 Constraints on the problem

For sensing purposes (see Breger and How (2008)), during
rendezvous it is required that the chaser vehicle remains
inside a line of sight (LOS) area. This LOS region is
the intersection of a cone (given by the equations −x0 −
cLOSy ≤ x ≤ x0 + cLOSy) and the region y ≥ 0, as shown
in Figure 1.

The LOS constraint is formulated as ALOSx(k) ≤ bLOS ,
where

ALOS =

[ 0 −1 0 0 0 0
1 −cLOS 0 0 0 0
−1 cLOS 0 0 0 0

]
, bLOS =

[ 0
x0

x0

]
. (6)

We also assume that the control inputs are bounded above
and below:

umin ≤ u(k) ≤ umax. (7)



Fig. 1. Line of Sight region.

3. MPC FORMULATION

We next formulate our robust MPC scheme; first we
develop some notation and formulate the general problem,
and afterwards we explain how to tackle the disturbances
appearing in (1).

3.1 Prediction of the state

The state at time k + j, given the state at time k, and
the input signals and disturbances from time k to time
k + j − 1, is computed by applying recursively Equation
(1):

x(k + j) =Ajx(k) +
j−1∑
i=0

Aj−i−1Bu(k + i)

+
j−1∑
i=0

Aj−i−1δ(k + i). (8)

Define now xS(k), uS(k), δS(k) as a stack of Np states,
input signals, and disturbances beginning at time k, where
Np is the prediction horizon.

xS(k) =


x(k + 1)
x(k + 2)

...
x(k +Np)

 , uS(k) =


u(k)

u(k + 1)
...

u(k +Np − 1)

 ,

δS(k) =


δ(k)

δ(k + 1)
...

δ(k +Np − 1)

 . (9)

Then, we have

xS(k)=



Ax(k) +Bu(k) + δ(k)

A2x(k) +
1∑
i=0

A1−i (Bu(k + i) + δ(k + i))

...

ANpx(k) +
Np−1∑
i=0

ANp−1−i (Bu(k + i)

+ δ(k + i))


,(10)

which can be written as
xS(k) = Fx(k) + GuuS(k) + GδδS, (11)

where Gu and Gδ are block lower triangular matrix with
its non-null elements defined by (Gu)ij = Ai−jB and
(Gδ)ij = Ai−j , and the matrix F is defined as:

F =


A
A2

...
ANp

 . (12)

Remark 3. Note that we assume that we have perfect
knowledge of the state vector x(k). If it were not accessible,
a Kalman filter [Camacho and Bordons (2004)] would be
required.

3.2 Objective Funtion

Taking mathematical expectation, we define x̂(k + j|k) =
E[x(k + j)], the expected value of x(k + j) given x(k).
Similarly define x̂S(k+ j|k) = E[xS(k+ j)]. For the MPC
formulation we use the following cost function:

J(k) =
Np∑
i=1

[
x̂T (k + i|k)R(k + i)x̂(k + i|k)

]
+

Np∑
i=1

[
uT (k + i− 1)Qu(k + i− 1)

]
, (13)

where Q = Id3×3 and where the matrix R(k) is defined as

R(k) = γh(k − ka)
[

Id3×3 Θ3×3

Θ3×3 Θ3×3

]
. (14)

In (14), h is the step function, ka is the desired arrival
time for docking, γ a large number, and Id3×3, Θ3×3 are
respectively the identity matrix and a matrix full of zeroes,
both of order 3 by 3.

The reason for choosing (13) is that we wish to arrive at
the origin at time ka (and remain there) and at the same
time minimize the control effort.

Using (11), and since E[δ(k + i)] = δ̄, Equation (13) can
be rewritten as:

J(k) = (GuuS(k) + Fx(k) + Gδ δ̄S)TRS

×(GuuS(k) + Fx(k) + Gδ δ̄S) + uS
TQSuS,(15)

where δ̄S is a stack vector with δ̄ repeated Np times,
QS = Id and RS is a block diagonal matrix defined by:

RS =

R(k + 1)
. . .

R(k +Np)

 . (16)



Using the notation above developed with the constraints
formulated in Section 2.1, the constraints equations for the
state can be rewritten as:

AcxS ≤ bc, (17)

where Ac and bc are given by:

Ac =

ALOS ALOS
ALOS

ALOS

 , bc =


bLOS
bLOS

...
bLOS

 .
(18)

Using equation (11), one can reformulate the LOS con-
straints as constraints for the control signals in the follow-
ing way:

AcGuuS ≤ bc −AcFx(k)−AcGδδS, (19)
and similarly we can write (7) as:

umin ≤ uS ≤ umax. (20)

3.3 Computation of control input

To compute the control input at time k, one seeks the
control signal that minimizes the cost function over the
prediction horizon, satisfying at the same time the con-
straints:

min
uS

J(x(k),uS, δ̄S) (21)

subject to: AcGuuS ≤ bc −AcFx(k)−AcGδδS, ∀δS
umin ≤ uS ≤ umax.

Since the cost function is quadratic and the constraints
are linear, if the future δ is perfectly known (for example,
the undisturbed case) then (21) can be solved; the control
u(k) is set to the first three components of uS, and the
computation is repeated for every time step.

However, if the disturbances are not known but rather we
know the mean and some bounds on them, it is necessary
to modify (21), as we explain next.

3.4 Robust satisfaction of constraints

Assume now that we know bounds for the disturbances
δ given as (δx)min ≤ δx ≤ (δx)max and similarly for
the rest of the components of δ, which we summarize
as AδδS ≤ cδ; we assume the region defined by this
constraint is enclosed by a polytope. Then, we are able
to eliminate the disturbances from (19) by bounding the
term −AcGδδS. This would give us

AcGuuS ≤ bc −AcFx(k) + bδ, (22)
where bδ is column vector, whose i-th term (bδ)i is given
by

(bδ)i = min
s.t.AδδS≤cδ

aiδS, (23)

where ai is the i-th row of the matrix −AcGδ. Since the
function to minimize is linear and the feasible region is
enclosed by a polytope, this minimization can be rapidly
solved.

Equation (20) represents the constraints computed for
the worst-case disturbances. Hence, enforcing (20) we are
robustly satisfying the constraints (17), i.e., satisfying
them for any possible disturbance.

The control input at time k is now computed from

min
uS

J(x(k),uS, δ̄S) (24)

subject to: AcGuuS ≤ bc −AcFx(k) + bδ,

umin ≤ uS ≤ umax,
where now everything is known except for the control
inputs to be computed. Note that we need to calculate (23)
at every time step and for every row of the −AcGδ matrix.
However it is a linear optimization with linear constraints
which can be implemented very efficiently.

3.5 Disturbance estimation algorithm

The robust satisfaction of constraints presented in Sec-
tion 3.4 requires knowledge of disturbance bounds. How-
ever, it is often the case that disturbance are completely
unknown and such bounds have to obtained online.

To do so, we make the assumption that the disturbances
are normally distributed with mean δ̄ and variance Σ, i.e.,
δ ∼ N6(δ̄,

√
Σ).

At each time k we estimate δ̄ and variance Σ taking into
account all past disturbances, which can be computed a
posteriori as

δ(i) = x(i+ 1)−Ax(i)−Bu(i), (25)
for i = 1, . . . , k − 1.

Then δ̂(k) and Σ̂(k), the estimates of δ̄ and variance Σ at
time k, are given by

δ̂(k) =
∑k−1
i=0 e−λ(k−i)δ(i)∑k−1
i=0 e−λ(k−i)

, (26)

Σ̂(k) =

∑k−1
i=0 e−λ(k−i)

(
δ(i)− δ̂(i)

)(
δ(i)− δ̂(i)

)T
∑k−1
i=0 e−λ(k−i)

, (27)

where λ > 0 is a forgetting factor. Even though we have
assumed the disturbances are just a random variable, this
would help accommodate the case in which they are a
random process, i.e., their statistical properties change
with time.

Define γk =
∑k−1
i=0 e−λ(k−i). Using the sum of a geometric

progression, we have that

γk =
e−λ

(
1− e−λ

)
1− e−λk

. (28)

We can define recursive formulas for (26)–(27) as follows:

δ̂(k) =
e−λ

γk

(
γk−1δ̂(k − 1) + δ(k)

)
, (29)

Σ̂(k) =
e−λ

γk

(
γk−1Σ̂(k − 1)

+
(
δ(k)− δ̂(k)

)(
δ(k)− δ̂(k)

)T)
. (30)

These formulas allow us to save memory, only needing to
store the last estimate of the mean and covariance.

Once the mean and covariance is known, we can obtain
a “confidence interval” (whose statistical validity will
depend on the number of disturbance samples that have
been processed and on how approximate the normality
assumption is). This interval is used for the computations
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Fig. 2. Non-robust MPC without disturbances (solid line),
and with disturbances (dashed line)

of Section 3.4. For instance, for the bounds (δx)min ≤
δx(k) ≤ (δx)max at time k we can take δ̂x(k)±α

√
Σ̂xx(k),

where α depends on how tight we wish to make the
confidence interval (for a few samples α should be large,
while if many are available it can be set to 3 or 4).

4. SIMULATION RESULTS

Using the model of Section 2, different scenarios are con-
sidered. Even though the disturbances in (1) are additive,
we consider two types of disturbances: those coming from
thruster errors and those due to unmodelled dynamics.

For the first type of disturbance, we considered that the
real output u coming from the thrusters is not exact, but
rather takes the form:

ureal = T (δθ)u(1 + δ1) + δ2, (31)
where ureal is the output coming from the thrusters, u
is the commanded output obtained in the control laws,
δ1 and δ2 are random variables, and T (δθ) is a rotation
matrix where δθ is a vector of small, random angles
modelling imperfect alignment. Hence in this case δ =
B ((T (δθ)− Id) u(1 + δ1) + δ2), which is not strictly an
additive disturbance.

The results obtained by the non-robust controller (21),
where the disturbances are just ignored, are shown in
Fig. 2, both for the nominal system (ureal = u) and
the perturbed system. The non-robust controller achieves
perfect rendezvous for the nominal case satisfying the
constraints, whereas in the perturbed case the controller
violates the constraints and is not able to reach the target.

Fig. 3 shows the result obtained when a robust MPC is
applied to the perturbed case. The spacecraft evolution
is shown in Fig. 3(a). The spacecraft achieves rendezvous
without violating the constraints. The corresponding con-
trol efforts are shown in Fig. 3(b). The solid line shows the
commanded signal u and the dotted line shows ureal.

Figure 4 shows the result obtained with rather high
perturbations applied. As can be seen the controller is able
to achieve rendezvous and constraint satisfaction.

Unmodelled dynamics due by eccentricity (e = 0.2) in
the target orbit are considered next. The corresponding
spacecraft path is plotted in Fig. 5. The controller is able
to arrive at the origin in spite of using an incorrect model
and with disturbances in the thrusters.

5. CONCLUDING REMARKS

In this paper we have presented a robust MPC controller
to solve the problem of rendezvous of spacecraft, using
the HCW model with disturbances and line-of-sight con-
straints, We show that standard MPC is not able to cope
with disturbances. Thus we formulated a robust Model
Predictive Control introducing robust constraint satisfac-
tion and estimation of disturbance properties. In simula-
tions it is shown that the robust MPC scheme is able to
handle not only additive disturbances but also large mul-
tiplicative disturbances and unmodelled dynamics (due to
eccentricity of the orbit of the target spacecraft).

Future work might include the addition of safety con-
straints [Breger and How (2008)] in the robust scheme,
more sophisticated disturbance estimation models, and
considering eccentricity in the target’s orbit, which makes
the model time varying [Inalhan et al. (2002)].
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Fig. 5. Robust MPC with unmodeled dynamics and thruster disturbance (δ1 = 0, δ2 ∼ N3(5 · 10−5, 0.5 · 10−5),
δθ ∼ N3(0.0436, 0.0436)). Controller parameters are set to: Np = 60, γ = 1000, ka = 60, α = 5, λ = 0.23.


