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Abstract: In previous works, the authors have developed a trajectory planning algorithm for
spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals,
for circular and eccentric Keplerian orbits. The algorithm is initialized by solving the impulsive
problem first and then, using explicit linearization and linear programming, the solution is
refined until a (possibly local) optimal value is reached. However, trajectory planning cannot
take into account orbital perturbations, disturbances or model errors. To overcome these issues,
in this paper we develop a Model Predictive Control (MPC) algorithm based on the open-loop
PWM planner and test it for elliptical target orbits with arbitrary eccentricity (using the linear
time-varying Tschauner-Hempel model). The MPC is initialized by first solving the open-loop
problem with the PWM trajectory planning algorithm. After that, at each time step, our MPC
saves time recomputing the trajectory by applying the iterative linearization scheme of the
trajectory planning algorithm to the solution obtained in the previous time step. The efficacy
of the method is shown in a simulation study where it is compared to MPC computed used an
impulsive-only approach.
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1. INTRODUCTION

Technology enabling simple autonomous spacecraft ren-
dezvous and docking is becoming a growing field as access
to space continues increasing. The field has become very
active in recent years, with an increasingly growing litera-
ture. Among others, approaches based on trajectory plan-
ning and optimization (Breger and How (2008); Arzelier
et al. (2013, 2011)) and predictive control (Richards and
How (2003); Rossi and Lovera (2002); Asawa et al. (2006);
Gavilan et al. (2009, 2012); Larsson et al. (2006); Hartley
et al. (2012); Leomanni et al. (2014)) are emerging.

Classically, in these approaches the problem of rendezvous
is modeled by using impulsive maneuvers; one computes a
sequence of (possibly optimal) impulses (usually referred
to as ∆V ’s) to achieve rendezvous. Other methods allow
the control signal (thrust) to take any value inside an al-
lowed range. This type of control signal is usually referred
to as Pulse-Amplitude Modulated (PAM).

However, neither impulsive actuation nor PAM actuation
capture with precision the behavior of real spacecraft
thrusters. A more realistic model has to take into account
that, typically, thrusters are ON-OFF actuators, i.e., the
thrusters are not able to produce arbitrary forces, but
instead can only be switched on (producing the maximum
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amount of force) or off (producing no force). These switch-
ing times are the only signals that can be controlled. This
type of control signal is usually referred to as Pulse-Width
Modulated (PWM). Trajectory planning in the rendezvous
problem with PWM actuation poses a challenge because
the system becomes nonlinear in the switching times.

Recently, Vazquez et al. (2011, 2014) introduced a tra-
jectory planning algorithm algorithm for spacecraft ren-
dezvous that was able to incorporate PWM control signals.
The former considered the linear time-invariant Clohessy-
Wiltshire model (target orbiting in a circular Keple-
rian orbit, see Clohessy and Wiltshire (1960)). The lat-
ter extended the approach to elliptical target orbits by
using the linear time-varying Tschauner-Hempel model
(see Tschauner and Hempel (1965)). Both methods start
from an initial guess computed by solving an optimal linear
program with PAM or impulsive actuation, approximate
the solution with ON-OFF thrusters, and then iteratively
linearize around the obtained solutions to improve the
PWM solution. For both circular and elliptical target or-
bits the algorithms are simple and reasonably fast, and we
showed simulations of its application favorably comparing
it with an impulsive-only approach.

However, these methods are based on trajectory planning
which cannot take into account orbital perturbations,
disturbances or model errors. To overcome these issues,
in this paper we develop a Model Predictive Control
(MPC) algorithm. The term Model Predictive Control
does not designate a specific control strategy but rather
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an ample range of control methods which make explicit
use of a model of the process to obtain the control
signal by minimizing an objective function over a finite
receding horizon. In MPC the process model is used
to predict the future plant outputs, based on past and
current values and on the proposed optimal future control
actions. These actions are calculated by the optimizer
taking into account the cost function (where the fuel cost
and the future tracking error are considered) as well as
the constraints. The MPC algorithm developed in this
paper is based on the previous open-loop PWM planner for
elliptical target orbits with arbitrary eccentricity (Vazquez
et al. (2014)). The MPC is initialized by first solving the
open-loop problem with the PWM trajectory planning
algorithm. After that, at each time step, our MPC saves
time recomputing the trajectory by applying the iterative
linearization scheme of the trajectory planning algorithm
to the solution obtained in the previous time step.

The structure of the paper is as follows. In Section 2
we introduce the Tschauner-Hempel model, both in the
impulsive and PWM case. We follow with Section 3
where we formulate the underlying optimization problems.
Section 4 describes a method that solves the planning
problem using PWM signals. Section 5 develops the model
predictive controller. In Section 6 we show simulations
of the method compared to MPC computed used an
impulsive-only approach. We finish with some remarks in
Section 7.

2. TSCHAUNER-HEMPEL MODEL OF
SPACECRAFT RENDEZVOUS

The Tschauner-Hempel model (see Tschauner and Hempel
(1965) or Carter (1998)) assumes that the target vehicle
is passive and moving along an elliptical orbit with semi-
major axis a and eccentricity e. Following Vazquez et al.
(2014), we write the Tschauner-Hempel using eccentric
anomaly instead of time. Let us first establish some nota-
tion. Note that t and E are related in a one-to-one fashion
by using Kepler’s equation:

n(t− tp) = E − e sinE, (1)

where tp is the time at periapsis, a parameter of the
target’s which we use as a starting point to measure the
eccentric anomaly E. This equation is numerically invert-
ible (see any Orbital Mechanics reference, such as Wie
(1998)), and we will represent its inverse by the function
K, i.e. E = K(t). Denote by E0 the eccentric anomaly
corresponding to t0, this is, E0 = K(t0), and Ek =
K(tk) = K(t0 + kT ), where T is an adequately chosen
sampling time. Call as xk, yk, and zk the position of the
chaser in a local–vertical/local–horizontal (LVLH) frame
of reference fixed on the center of gravity of the target
vehicle at time tk. In the (elliptical) LVLH frame, x refers
to the radial position, z to the out-of-plane position (in
the direction of the orbital angular momentum), and y is
perpendicular to these coordinates (no longer aligned with
the target velocity given that its orbit is not circular). The
velocity and inputs of the chaser in the LVLH frame at
time tk are denoted, respectively, by vx,k, vy,k, and vz,k,
and by ux,k, uy,k, and uz,k.

If there is no actuation (i.e. ux,k = uy,k = uz,k = 0),
the resulting transition equation was obtained exactly
by Yamanaka and Ankersen (2002) as follows:

xk+1 = A(tk+1, tk)xk (2)

where

xk = [xk yk zk vx,k vy,k vz,k]
T
, (3)

and where A(tk+1, tk) = YK(tk+1)Y
−1
K(tk)

, with YK(tk) being

the fundamental matrix solution of the Tschauner-Hempel
model. Working expressions of this matrix and its inverse
can be found in Vazquez et al. (2014). They are as
in Yamanaka and Ankersen (2002) but using eccentric
anomaly and a different definition of the reference axes.

Next, we formulate two versions of the discretized equa-
tions. In the first version, the control inputs are considered
impulses which are applied at the middle of the sampling
interval. This is referred to as the impulsive discrete model.
In a second, more realistic version, thrusters can only
be switched on (producing the maximum force) or off
(producing no force), and only once during each sampling
time. This is referred to as the PWM discrete model.

2.1 Impulsive discrete model

For the impulsive model, we assume that we can apply an
impulse u in any axis and at any given sample time. For
simplicity’s purpose, we assume that only one impulse per
axis is allowed at each time interval and model the impulse
at the beginning of the time interval. We also assume that
impulses are limited above and below:

umin ≤ u ≤ umax.

Exploiting the linearity of the system, it can be easily
shown that

xk+1 = A(tk+1, tk)xk +B(tk+1, tk)uk, (4)

where uk = [ux,k uy,k uz,k]
T

and, calling m the mass of
the spacecraft (assumed constant)

B(tk+1, tk) = A(tk+1, tk)




0 0 0
0 0 0
0 0 0

1/m 0 0
0 1/m 0
0 0 1/m



. (5)

Compact formulation
Next we develop a compact formulation that simplifies the
notation of the problem. The state at time tj+k+1, given
the initial state at time tj (which is denoted as xj) and
the input signals from tj to time tj + k, is computed by
applying recursively Equation (4) and using the fact that
A(ti+1, ti)A(ti, ti−1) = A(ti+1, ti−1):

xj+k+1=A(tj+k+1, tj)xj+

j+k∑
i=j

A(tj+k+1, ti+1)B(ti+1, ti)ui,

(6)
where it must be noted that A(ti, ti) = Id, where Id is the
identity matrix. Define now xS(j) and uS(j) as a stack
of Np − j states and input signals, respectively, spanning
from time tj to time tNp for the state and from time tj−1

to time tNp−1 for the controls, where Np is the initial MPC
horizon (and desired time of rendezvous):

xS(j) =



xj+1

...
xNp


 , uS(j) =




uj

...
uNp−1


 .

Then,
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Next, we formulate two versions of the discretized equa-
tions. In the first version, the control inputs are considered
impulses which are applied at the middle of the sampling
interval. This is referred to as the impulsive discrete model.
In a second, more realistic version, thrusters can only
be switched on (producing the maximum force) or off
(producing no force), and only once during each sampling
time. This is referred to as the PWM discrete model.

2.1 Impulsive discrete model

For the impulsive model, we assume that we can apply an
impulse u in any axis and at any given sample time. For
simplicity’s purpose, we assume that only one impulse per
axis is allowed at each time interval and model the impulse
at the beginning of the time interval. We also assume that
impulses are limited above and below:

umin ≤ u ≤ umax.

Exploiting the linearity of the system, it can be easily
shown that

xk+1 = A(tk+1, tk)xk +B(tk+1, tk)uk, (4)

where uk = [ux,k uy,k uz,k]
T

and, calling m the mass of
the spacecraft (assumed constant)

B(tk+1, tk) = A(tk+1, tk)




0 0 0
0 0 0
0 0 0

1/m 0 0
0 1/m 0
0 0 1/m



. (5)

Compact formulation
Next we develop a compact formulation that simplifies the
notation of the problem. The state at time tj+k+1, given
the initial state at time tj (which is denoted as xj) and
the input signals from tj to time tj + k, is computed by
applying recursively Equation (4) and using the fact that
A(ti+1, ti)A(ti, ti−1) = A(ti+1, ti−1):

xj+k+1=A(tj+k+1, tj)xj+

j+k∑
i=j

A(tj+k+1, ti+1)B(ti+1, ti)ui,

(6)
where it must be noted that A(ti, ti) = Id, where Id is the
identity matrix. Define now xS(j) and uS(j) as a stack
of Np − j states and input signals, respectively, spanning
from time tj to time tNp for the state and from time tj−1

to time tNp−1 for the controls, where Np is the initial MPC
horizon (and desired time of rendezvous):

xS(j) =



xj+1

...
xNp


 , uS(j) =




uj

...
uNp−1


 .

Then,
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xS(j)=




A(tj+1, tj)xj +B(tj+1, tj)uj

A(tj+2, tj)xj +

j+1∑
i=j

A(tj+2, ti+1)B(ti+1, ti)ui

...

A(tNp
, tj)xj +

Np−1∑
i=j

A(tNp
, ti+1)B(ti+1, ti)ui




,(7)

which can be written as

xS(j) = Fjx0 +GjuS, (8)

where Gj is a square, block lower triangular matrix of size
Np − j, with its non-null elements defined by (Gj)kl =
A(tk+j , tl+j)B(tl+j , tl+j−1) and the matrix Fj is defined
as:

Fj =



A(tj+1, tj)

...
A(tNp , tj)


 . (9)

2.2 PWM discrete formulation

Consider now ON-OFF thrusters with fixed force that can
be only switched on or off. For simplicity, assume that
there is an aligned pair of thrusters for each direction
i = 1, 2, 3 with opposing orientation, denoted respectively
as u+

i and u−
i . The maximum thrust is referred to as ū+

i

and ū−
i , respectively. During a sample time each thruster

is allowed to fire only once.

Thus, the PWM output at k is completely described by
two new control variables for each pair of thrusters, as
shown in Fig. 1: the pulse width κ+

i,k and the pulse start

time τ+i,k (similarly κ−
i,k and τ−i,k for the negatively oriented

thruster in the direction i. Then, for t ∈ [kT, (k+1)T ], we
have:

u+
i (t) =




0, t ∈
[
kT, kT + τ+i,k

]
,

ū+
i , t ∈

[
kT + τ+i,k, kT + τ+i,k + κ+

i,k

]
,

0, t ∈
[
kT + τ+i,k + κ+

i,k, (k + 1)T
]
,

(10)

and similarly for the negatively oriented thrusters. The
new control variables verify κ+

i,k > 0, τ+i,k > 0 and

τ+i,k + κ+
i,k < T , and similarly for the negatively oriented

thrusters. The last constraint prevent the PWM signal to
spill over to the next time interval.

maxu

t

T

·
¿

Fig. 1. PWM Variables.

Call the PWM control variables at tk as uP
k :

uP
k =

[
τ+1,k κ

+
1,k τ

−
1,k κ

−
1,k τ

+
2,k κ

+
2,k τ

−
2,k κ

−
2,k τ

+
3,k κ

+
3,k τ

−
3,k κ

−
3,k

]T
.

(11)

To find the state transition equations for PWM inputs,
define, for i = 1, 2, 3,

bi(t, τ, κ) =
1

m

∫ t+τ+κ

t+τ

Y −1
K(s)Ci+3ds, (12)

where Ci is a column vector of zeros with a value of one at
row i. This is obtained from the variation of parameters
formula for a linear inhomogeneous time-varying system.
This equation can be expressed in terms of eccentric
anomaly as follows:

bi(t, τ, κ) =
1

m

∫ K(t+τ+κ)

K(t+τ)

Y −1
E Ci+3

1− e cosE

n
dE. (13)

However we cannot explicitly compute these integrals, ex-
cept b3 (see Vazquez et al. (2014)) 1 The system evolution
equation for the PWM case is

xk+1 = A(tk+1, tk)xk +BPWM (tk+1, tk,u
P
k ), (14)

where

BPWM =

i=3∑
i=1

B+
i ū+

i +
i=3∑
i=1

B−
i ū−

i . (15)

with B±
i column vectors defined by

B±
i (tk+1, tk,u

P
k ) = Y (tk+1)bi(t, τ

±
i,k, κ

±
i,k) (16)

In this equation we need to compute b1 and b2 numerically.

Compact formulation
The compact formulation developed before can be readily
adapted to PWM inputs. Equation (8) is now written as

xS(j) = Fjxj +GPWMj(u
P
S (j)), (17)

where uP
S (j) is a stack vector with all the PWM signals for

j toNp−1,GPWMj is a block lower triangular matrix with
its non-null elements defined by (GPWMj(u

P
S (j)))kl =

A(tk+j ,l+j )BPWM (tl+j , tl+j−1,u
P
l+j−1).

3. FORMULATION OF THE RENDEZVOUS
PROBLEM

Next we formulate the rendezvous problem, introducing
the constraints and the objective function. The formula-
tion is done for both impulsive and PWM control signals.

3.1 Constraints on the problem

Inequality constraints on the state For sensing pur-
poses (see e.g. Breger and How (2008)), during rendezvous
it is required that the chaser vehicle remains inside a line of
sight (LOS) area. To simplify the constraint, we consider
a 2-D LOS area as shown in Figure 2.

For impulsive control these constraints can be formulated
(see Vazquez et al. (2011) for definitions) as

AcGuS(j) ≤ bc −AcFxj , (18)

and similarly for the case of PWM control.

Equality constraints on the state

Equality constraints are formulated to ensure that the
chaser spacecraft arrives at the origin with zero velocity at
the end of the planning horizon. Thus, these constraints
can be written as x(Np) = 0.

1 As pointed out by a reviewer, these integrals are explicitly solved
in Ankersen (2010). This will be used in future works.
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Fig. 2. Line of Sight region.

We formulate the arrival conditions as equality constraints
for the control signals (see Vazquez et al. (2011) for
definitions):

AeqGjuS(j) = −AeqFjxj , (19)

and similarly for the case of PWM control.

Input constraints

For the case of impulsive control, we consider limitations
on the magnitude of the impulses. To be able to convert
the impulsive signals to PWM signals, we fix the maximum
(resp. minimum) of the impulse as the maximum (resp.
minus minimum) thrust of the PWM actuator times the
sample time.

−T ū− ≤ uS(j) ≤ T ū+. (20)

For the case of PWM control, the constraints are given by
κ±
i (k) > 0, τ±i (k) > 0 and τ±i (k) + κ±

i (k) < T .

3.2 Objective function

The objective function to be minimized in the planning
problem is the 1-norm of the control signal, which is
proportional to fuel consumption.

Impulsive control inputs

For the case of impulsive control inputs, the objective
function is given by:

JIMP (uS(j)) =

Np−1∑
k=j

‖uk‖1 = ‖uS(j)‖1. (21)

PWM control inputs

For the case of PAM control inputs, using (10) it can be
seen that the objective function is given by:

JPWM (uP
S (j)) =

Np−1∑
k=j

3∑
i=1

(
ū+
i κ

+
i,k + ū−

i κ
−
i,k

)
. (22)

4. THE PLANNING ALGORITHM

If we set j = 0 in the problem formulated in Section 3, then
we are left with the planning problem of, starting at x0,
achieving rendezvous at k = Np under the constraints. For
the reader’s convenience (and given it its the basis for our
MPC scheme) we next summarize the planning algorithm
introduced in Vazquez et al. (2014).

Step 1. The impulsive optimization problem is solved.
Step 2. The impulsive signals are converted to PWM
inputs.
Step 3. The trajectory of the system with the PWM
inputs is computed numerically.
Step 4. The system with PWM inputs is linearized
around the previous step solution, thus obtaining a
linear, explicit plant with respect to increments in the
PWM inputs. Then a LP can be posed and solved to
optimize the increments.
Step 5. The resulting solution is used to improve the
approximation towards the real solution. Repeat the
computation of Step 4 and the linearization process of
Step 3 around the new solution. The process is iterated
until the solution converges or time is up.

Next, we describe all the steps in our scheme.

4.1 Computation of impulsive control input

To compute the optimal control plan (with impulsive
control signals), one solves

min
uS(0)

JIMP (uS(0)) (23)

subject to: AcGuS(0) ≤ bc −AcFx0

AeqGuS(0) = −AeqFx0

−T ū− ≤ uS(0) ≤ T ū+.

Since the cost function and the constraints are linear, then
(23) can be readily solved.

4.2 Initial PWM solution: Adapting the impulsive solution

The impulsive solution from (23) is transformed to a PWM
inputs, for each time instant k and direction i, as follows:

(1) Use the positive or negative thruster according to the
sign of ui,k.

(2) The pulse width has an area equal to the impulse

value: κ±
i,k =

|ui,k|
ū±
i

, where ū±
i is the maximum level

of the (positive or negative) thruster i.
(3) Since the impulse was modeled to start at the begin-

ning of a time sample, τ±i,k = 0.

The PWM signals uP
k constructed by this method produce

a similar output to the system driven by impulsive signals.
However, the PWM results are not necessarily optimal
since their constraints are quite different; in fact, they
might not even verify the constraints (as we will see in
simulations). Thus, this solution is only used as an initial-
ization for the optimization algorithm proposed next.

4.3 Computation of trajectories under PWM inputs

Next we apply (17) to compute the output of the system
with PWM inputs.

4.4 Refined PWM solution: An optimization algorithm

Following Vazquez et al. (2014), we linearize BPWM (using
(12)–(15)) around uP

k . Then, we obtain

xk+1 =A(tk+1, tk)xk +BPWM (tk+1, tk,u
P
k )

+B∆(tk+1, tk,u
P
k )∆uP

k , (24)
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We formulate the arrival conditions as equality constraints
for the control signals (see Vazquez et al. (2011) for
definitions):

AeqGjuS(j) = −AeqFjxj , (19)

and similarly for the case of PWM control.

Input constraints

For the case of impulsive control, we consider limitations
on the magnitude of the impulses. To be able to convert
the impulsive signals to PWM signals, we fix the maximum
(resp. minimum) of the impulse as the maximum (resp.
minus minimum) thrust of the PWM actuator times the
sample time.

−T ū− ≤ uS(j) ≤ T ū+. (20)

For the case of PWM control, the constraints are given by
κ±
i (k) > 0, τ±i (k) > 0 and τ±i (k) + κ±

i (k) < T .

3.2 Objective function

The objective function to be minimized in the planning
problem is the 1-norm of the control signal, which is
proportional to fuel consumption.

Impulsive control inputs

For the case of impulsive control inputs, the objective
function is given by:

JIMP (uS(j)) =

Np−1∑
k=j

‖uk‖1 = ‖uS(j)‖1. (21)

PWM control inputs

For the case of PAM control inputs, using (10) it can be
seen that the objective function is given by:

JPWM (uP
S (j)) =

Np−1∑
k=j

3∑
i=1

(
ū+
i κ

+
i,k + ū−

i κ
−
i,k

)
. (22)

4. THE PLANNING ALGORITHM

If we set j = 0 in the problem formulated in Section 3, then
we are left with the planning problem of, starting at x0,
achieving rendezvous at k = Np under the constraints. For
the reader’s convenience (and given it its the basis for our
MPC scheme) we next summarize the planning algorithm
introduced in Vazquez et al. (2014).

Step 1. The impulsive optimization problem is solved.
Step 2. The impulsive signals are converted to PWM
inputs.
Step 3. The trajectory of the system with the PWM
inputs is computed numerically.
Step 4. The system with PWM inputs is linearized
around the previous step solution, thus obtaining a
linear, explicit plant with respect to increments in the
PWM inputs. Then a LP can be posed and solved to
optimize the increments.
Step 5. The resulting solution is used to improve the
approximation towards the real solution. Repeat the
computation of Step 4 and the linearization process of
Step 3 around the new solution. The process is iterated
until the solution converges or time is up.

Next, we describe all the steps in our scheme.

4.1 Computation of impulsive control input

To compute the optimal control plan (with impulsive
control signals), one solves

min
uS(0)

JIMP (uS(0)) (23)

subject to: AcGuS(0) ≤ bc −AcFx0

AeqGuS(0) = −AeqFx0

−T ū− ≤ uS(0) ≤ T ū+.

Since the cost function and the constraints are linear, then
(23) can be readily solved.

4.2 Initial PWM solution: Adapting the impulsive solution

The impulsive solution from (23) is transformed to a PWM
inputs, for each time instant k and direction i, as follows:

(1) Use the positive or negative thruster according to the
sign of ui,k.

(2) The pulse width has an area equal to the impulse

value: κ±
i,k =

|ui,k|
ū±
i

, where ū±
i is the maximum level

of the (positive or negative) thruster i.
(3) Since the impulse was modeled to start at the begin-

ning of a time sample, τ±i,k = 0.

The PWM signals uP
k constructed by this method produce

a similar output to the system driven by impulsive signals.
However, the PWM results are not necessarily optimal
since their constraints are quite different; in fact, they
might not even verify the constraints (as we will see in
simulations). Thus, this solution is only used as an initial-
ization for the optimization algorithm proposed next.

4.3 Computation of trajectories under PWM inputs

Next we apply (17) to compute the output of the system
with PWM inputs.

4.4 Refined PWM solution: An optimization algorithm

Following Vazquez et al. (2014), we linearize BPWM (using
(12)–(15)) around uP

k . Then, we obtain

xk+1 =A(tk+1, tk)xk +BPWM (tk+1, tk,u
P
k )

+B∆(tk+1, tk,u
P
k )∆uP

k , (24)
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where B∆ can be found explicitly. The variable ∆uP
k

represents the increments or decrements with respect to
uP
k . Equation (24) becomes

xS(j) = Fjxj +GPWMj(u
P
S (j)) +G∆j(u

P
S (j))∆S(j),

(25)
where G∆j(u

P
S (j)) is a block lower triangular matrix with

its non-null elements defined by

(G∆j(u
P
S (j)))kl = A(tk+j , tl+j)B

∆(tl+j , tl+j−1,u
P
l+j−1),

and ∆S(j) is a stack vector of the increment in the PWM
variables ∆uP

k (j) from j + 1 to Np. The LOS constraints
(18) become

AcG∆j∆S(j) ≤ bc −AcFxj −AcGPWMj , (26)

where the dependence of GPWM and G∆ on uP
S has been

omitted. Similarly, the equality constraints become:

AeqG∆j∆S(j) = −AeqFjxj −AeqGPWMj . (27)

The constraints on the ∆uP
k are as follows:

−∆κ±
i (k)≤ κ±

i (k), −∆τ±i (k) ≤ τ±i (k) (28)

∆τ±i (k) + ∆κ±
i (k)≤ T − τ±i (k)− κ±

i (k), (29)

|∆uP
k | ≤∆MAX , (30)

for k = j up to k = Np − 1, where (30) is used to
avoid large variations that might make the linearization
approximation to fail. These constraints are summarized
as A∆(k)∆S(k) ≤ b∆(k). Finally, the objective function
can be rewritten in terms of ∆S(j) as J(u

P
S (j),∆S(j)) =

JPWM (uP
S (j)) + J∆(∆S(j)), where

J∆(∆S(j)) =

Np−1∑
k=j

3∑
i=1

(
ū+
i ∆κ+

i,k + ū−
i ∆κ−

i,k

)
. (31)

Thus, for the planning problem an LP with PWM outputs
can be posed as follows:

min
∆S(0)

J∆(∆S(0)) (32)

s. t.: AcG∆0∆S(0) ≤ bc −AcF0x0 −AcGPWM0,

AeqG∆0∆S(0) = −AeqF0x0 −AeqGPWM0,

A∆∆S(0) ≤ b∆.

The solution ∆S(0) is used to recompute new PWM

inputs, uP
S
NEW

(0) = uP
S (0) + ∆S(0). Then uP

S
NEW

(0)
is used to recompute the matrices in (33), including
GPWM0, and the optimization problem is solved again.
The procedure is iterated until there is convergence.

5. MODEL PREDICTIVE CONTROL

Trajectory planning cannot take into account orbital per-
turbations, disturbances or model errors. To overcome
these issues, we need closed-loop control. In particular,
model predictive control closes the loop by simply re-
planning the maneuver at each time step after applying
just one set of control inputs. The re-planning is done
from the actual position at each time step, which seldom
coincides with the planned position due to disturbances.

However, it is not necessary to repeat all the steps of
Section 4. Since the new position should be close to the
planned one, we can apply the linearization scheme of
the planning algorithm starting from the last available
linearization. We summarize the MPC algorithm next:
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Fig. 3. System trajectories in the target orbital plane:
open-loop PWM inputs computed from impulsive
solution (dot-dashed), closed-loop Model Predictive
Control with PWM inputs using impulsive model
(dashed), and closed-loop Model Predictive Control
with PWM inputs using the PWM planning algorithm
(solid).

Step 1. At time step j = 0 and starting from x0 apply
the Planning algorithm of Section 4, obtaining a set of
impulses uP

S (0) that would guarantee rendezvous if there
were no disturbances.
Step 2. Apply impulses corresponding to the first time
instant; save the rest of impulses, uP

S (1). Set j = 1
Step 3. One arrives at xj , which probably is not the
intended value of the state at time j but close.

Step 4. Apply the linearization algorithm of Section 4.4
using the previous impulses uP

S (j) as initial guess to
obtain a new set of impulses uP

S (j). Apply the impulses
corresponding to time j.

Step 5. Repeat 3 until j = Np (rendezvous).

The optimization problem to be solved in Step 3 is

min
∆S(j)

J∆(∆S(j)) (33)

s. t.: AcG∆j∆S(j) ≤ bc −AcFjxj −AcGPWMj ,

AeqG∆j∆S(j) = −AeqFjxj −AeqGPWMj ,

A∆∆S(j) ≤ b∆.

The solution ∆S(j) is used to recompute new PWM

inputs, uP
S
NEW

(j) = uP
S (j) + ∆S(j), and the procedure

is iterated until it converges or time is up.

6. SIMULATION RESULTS

For simulations we choose Np = 50 as planning horizon,
T = 60 s, and ū = 10−1 N/kg. The target orbit has e = 0.7
and perigee altitude hp = 500 km. Initial conditions were
θ0 = 45o, r0 = [0.25 0.4 −0.2]T km, v0 = [0.005 −0.005 −
0.005]T km/s. The LOS constraint (see Vazquez et al.
(2011)) is defined by x0 = 0.001 km and CLOS = tan 30o.
In the simulations four algorithms were considered: first,
an impulsive open-loop trajectory planner, as described
in Section 4.1. Next, the full PWM planner of Section 4.
Next, closed-loop simulations using MPC, based either on
the impulsive planner, or on the full PWM algorithms as
explained in Section 5. The impulses produced by the first
and third methods are subsequently transformed to PWM
inputs using the algorithm of Section 4.2.
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Fig. 4. System trajectories in the target orbital plane,
with inexact thruster model: open-loop PWM inputs
computed with the planning algorithm (dot-dashed),
closed-loop Model Predictive Control with PWM in-
puts using impulsive model (dashed), and closed-loop
Model Predictive Control with PWM inputs using the
PWM planning algorithm (solid).

We first compare the algorithms without disturbances.
The trajectories (projected on the target orbital plane)
are shown in Fig. 3. The open-loop impulsive solution
does not achieve rendezvous and drifts away, whereas the
other solutions successfully reach the origin. The impulsive
MPC is able to compensate its imperfect thruster model,
without violating the constraints. There was no visible
difference between the open-loop and the MPC closed loop
PWM algorithms. The cost for the impulsive solution was
14.6 m/s, while the PWM planner had a cost of 15.2 m/s
(MPC was able to reduce it slightly to 15.1 m/s) whereas
the impulsive MPC had a cost of 15.7 m/s.

Next in Fig. 4 we show a simulation where the maximum
and minimum thrust is not perfectly calibrated (with
biases of about 1-3% for each thruster). Now, the open-
loop PWM planner fails to achieve rendezvous, whereas
both MPC algorithms reach the origin. The impulsive
MPC, however, slightly exists the line-of-sight region. The
cost for the PWM MPC algorith was 15.1 m/s, whereas
the impulsive MPC had a cost of 15.8 m/s.

Each iteration took less than 1s on a conventional com-
puter, using MATLAB and the Gurobi optimization pack-
age (see Gurobi Optimization, Inc. (2014)). With a max-
imum number of iterations of 6, the computation time
remained well below the interval sampling time.

7. CONCLUDING REMARKS

We have presented a MPC algorithm that computes opti-
mal PWM inputs for the problem of rendezvous in ellip-
tical orbits. The algorithm might be particularly useful
for satellites with small specific thrust. The algorithm
improves the results of an impulsive-only MPC (with the
impulses posteriorly transformed to PWM inputs), partic-
ularly in the presence of disturbances, which would help
avoiding a PWM approximation term typically included
in the “uncertainty budget” for robust design. Inclusion
of real-life constraints and more realistic simulations are
needed to validate the method.
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