28 research outputs found

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Development and evaluation of an algorithm to link mothers and infants in two US commercial healthcare claims databases for pharmacoepidemiology research

    No full text
    Abstract Background Administrative healthcare claims databases are used in drug safety research but are limited for investigating the impacts of prenatal exposures on neonatal and pediatric outcomes without mother-infant pair identification. Further, existing algorithms are not transportable across data sources. We developed a transportable mother-infant linkage algorithm and evaluated it in two, large US commercially insured populations. Methods We used two US commercial health insurance claims databases during the years 2000 to 2021. Mother-infant links were constructed where persons of female sex 12–55 years of age with a pregnancy episode ending in live birth were associated with a person who was 0 years of age at database entry, who shared a common insurance plan ID, had overlapping insurance coverage time, and whose date of birth was within ± 60-days of the mother’s pregnancy episode live birth date. We compared the characteristics of linked vs. non-linked mothers and infants to assess similarity. Results The algorithm linked 3,477,960 mothers to 4,160,284 infants in the two databases. Linked mothers and linked infants comprised 73.6% of all mothers and 49.1% of all infants, respectively. 94.9% of linked infants’ dates of birth were within ± 30-days of the associated mother’s pregnancy episode end dates. Characteristics were largely similar in linked vs. non-linked mothers and infants. Differences included that linked mothers were older, had longer pregnancy episodes, and had greater post-pregnancy observation time than mothers with live births who were not linked. Linked infants had less observation time and greater healthcare utilization than non-linked infants. Conclusions We developed a mother-infant linkage algorithm and applied it to two US commercial healthcare claims databases that achieved a high linkage proportion and demonstrated that linked and non-linked mother and infant cohorts were similar. Transparent, reusable algorithms applied to large databases enable large-scale research on exposures during pregnancy and pediatric outcomes with relevance to drug safety. These features suggest studies using this algorithm can produce valid and generalizable evidence to inform clinical, policy, and regulatory decisions

    Whole genome microarray analysis, from neonatal blood cards

    No full text
    BACKGROUND: Neonatal blood, obtained from a heel stick and stored dry on paper cards, has been the standard for birth defects screening for 50 years. Such dried blood samples are used, primarily, for analysis of small-molecule analytes. More recently, the DNA complement of such dried blood cards has been used for targeted genetic testing, such as for single nucleotide polymorphism in cystic fibrosis. Expansion of such testing to include polygenic traits, and perhaps whole genome scanning, has been discussed as a formal possibility. However, until now the amount of DNA that might be obtained from such dried blood cards has been limiting, due to inefficient DNA recovery technology. RESULTS: A new technology is employed for efficient DNA release from a standard neonatal blood card. Using standard Guthrie cards, stored an average of ten years post-collection, about 1/40(th )of the air-dried neonatal blood specimen (two 3 mm punches) was processed to obtain DNA that was sufficient in mass and quality for direct use in microarray-based whole genome scanning. Using that same DNA release technology, it is also shown that approximately 1/250(th )of the original purified DNA (about 1 ng) could be subjected to whole genome amplification, thus yielding an additional microgram of amplified DNA product. That amplified DNA product was then used in microarray analysis and yielded statistical concordance of 99% or greater to the primary, unamplified DNA sample. CONCLUSION: Together, these data suggest that DNA obtained from less than 10% of a standard neonatal blood specimen, stored dry for several years on a Guthrie card, can support a program of genome-wide neonatal genetic testing

    Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations.

    No full text
    ABL1 is a proto-oncogene well known as part of the fusion gene BCR-ABL in the Philadelphia chromosome of leukemia cancer cells(1). Inherited germline ABL1 changes have not been associated with genetic disorders. Here we report ABL1 germline variants co-segregating with an autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. The variant c.734A>G (p.Tyr245Cys) was found as de novo or co-segregating with disease in five individuals (families 1-3). Additionally, a de novo c.1066G>A (p.Ala356Thr) variant was identified in the sixth individual (family 4). We overexpressed the mutant constructs in HEK 293T cells and observed increased tyrosine phosphorylation, suggesting increased ABL1 kinase activities associated with both p.Tyr245Cys and p.Ala356Thr substitutions. Our clinical and laboratory findings, together with previously reported teratogenic effects of selective BCR-ABL inhibitors in humans(2-5) and developmental defects in Abl1 knock-out mice(6,7), suggest ABL1 plays an important role during organismal development
    corecore