39 research outputs found

    A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing

    Get PDF
    Gene editing is a versatile technique in biomedicine that promotes fundamental research as well as clinical therapy. The development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing machinery has accelerated the application of gene editing. However, the delivery of CRISPR components often suffers when using conventional transfection methods, such as viral transduction and chemical vectors, due to limited packaging size and inefficiency toward certain cell types. In this review, we discuss physical transfection methods for CRISPR gene editing which can overcome these limitations. We outline different types of physical transfection methods, highlight novel techniques to deliver CRISPR components, and emphasize the role of micro and nanotechnology to improve transfection performance. We present our perspectives on the limitations of current technology and provide insights on the future developments of physical transfection methods

    Antigen-Specific T Cells: Analyses of the Needles in the Haystack

    Get PDF
    Antigen binding to T cell receptors is a critical step in an immune response. Detection and characterization of rare populations of T cells enhances our ability to understand and treat diseas

    TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines

    Get PDF
    A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-012-1217-5) contains supplementary material, which is available to authorized users

    Enhanced Antigen-Specific Antitumor Immunity with Altered Peptide Ligands that Stabilize the MHC-Peptide-TCR Complex

    Get PDF
    AbstractT cell responsiveness to an epitope is affected both by its affinity for the presenting MHC molecule and the affinity of the MHC-peptide complex for TCR. One limitation of cancer immunotherapy is that natural tumor antigens elicit relatively weak T cell responses, in part because high-affinity T cells are rendered tolerant to these antigens. We report here that amino acid substitutions in a natural MHC class I–restricted tumor antigen that increase the stability of the MHC-peptide-TCR complex are significantly more potent as tumor vaccines. The improved immunity results from enhanced in vivo expansion of T cells specific for the natural tumor epitope. These results indicate peptides that stabilize the MHC-peptide-TCR complex may provide superior antitumor immunity through enhanced stimulation of specific T cells

    Peptide Centric Vβ Specific Germline Contacts Shape a Specialist T Cell Response

    Get PDF
    Certain CD8 T cell responses are particularly effective at controlling infection, as exemplified by elite control of HIV in individuals harboring HLA-B57. To understand the structural features that contribute to CD8 T cell elite control, we focused on a strongly protective CD8 T cell response directed against a parasite-derived peptide (HF10) presented by an atypical MHC-I molecule, H-2Ld. This response exhibits a focused TCR repertoire dominated by Vβ2, and a representative TCR (TG6) in complex with Ld-HF10 reveals an unusual structure in which both MHC and TCR contribute extensively to peptide specificity, along with a parallel footprint of TCR on its pMHC ligand. The parallel footprint is a common feature of Vβ2-containing TCRs and correlates with an unusual Vα-Vβ interface, CDR loop conformations, and Vβ2-specific germline contacts with peptides. Vβ2 and Ld may represent “specialist” components for antigen recognition that allows for particularly strong and focused T cell responses

    Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease.</p> <p>Methods</p> <p>We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA). Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR.</p> <p>Results</p> <p>Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma).</p> <p>Conclusions</p> <p>The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic plasticity creates this phenotype, although they suggest that cells which give rise to hemangiosarcoma modulate their microenvironment to promote tumor growth and survival. We propose that the frequent occurrence of canine hemangiosarcoma in defined dog breeds, as well as its similarity to homologous tumors in humans, offers unique models to solve the dilemma of stem cell plasticity and whether angiogenic endothelial cells and hematopoietic cells originate from a single cell or from distinct progenitor cells.</p
    corecore