101 research outputs found
Nanocasting–Introducing Secondary Supports into Metal-Organic Frameworks to Increase their Stability
Faculty advisor: Andreas SteinThis research was supported by the Undergraduate Research Opportunities Program (UROP)
From the dual-dimensional perspective of employee mindfulness and superior trust, explore the influence mechanism of negative workplace gossip on work engagement
IntroductionAs a common phenomenon of workplace negative gossip in organizations, how it affects employees’ work engagement is not yet clear, nor what methods can be used to mitigate its negative impact on employees’ work engagement.MethodsBased on Conservation of Resource Theory, this study obtained 334 valid employee samples from mainland China enterprises through a three-time lagged research design and explored the mechanism of negative workplace gossip on work engagement from the dual perspectives of employees and supervisors.ResultsThe results show that: (1) Negative workplace gossip negatively affects employee work engagement. (2) Professional commitment plays a mediating role between negative workplace gossip and employee work engagement. (3) Employee mindfulness negatively moderates the negative impact of workplace negative gossip on professional commitment; superior trust negatively moderates the negative impact of workplace negative gossip on professional commitment. (4) Employee mindfulness and superior trust are further weakened to moderate the negative indirect impact of workplace negative gossip on employee work engagement through professional commitment, and this negative indirect impact is weaker when employees have a higher degree of mindfulness and higher trust in superiors.DiscussionIt proposes effective strategies for managing workplace gossip to harness its positive influence and offer practical guidance to enhance employee work engagement
Leishmania donovani visceral leishmaniasis diagnosed by metagenomics next-generation sequencing in an infant with acute lymphoblastic leukemia: a case report
BackgroundVisceral leishmaniasis (VL) is a neglected vector-borne tropical disease caused by Leishmania donovani (L. donovani) and Leishmania infantum (L. infantum). Due to the very small dimensions of the protozoa impounded within blood cells and reticuloendothelial structure, diagnosing VL remains challenging.Case presentationHerein, we reported a case of VL in a 17-month-old boy with acute lymphoblastic leukemia (ALL). The patient was admitted to West China Second University Hospital, Sichuan University, due to repeated fever after chemotherapy. After admission, chemotherapy-related bone marrow suppression and infection were suspected based on clinical symptoms and laboratory test results. However, there was no growth in the conventional peripheral blood culture, and the patient was unresponsive to routine antibiotics. Metagenomics next-generation sequencing (mNGS) of peripheral blood identified 196123 L. donovani reads, followed by Leishmania spp amastigotes using cytomorphology examination of the bone marrow specimen. The patient was given pentavalent antimonials as parasite-resistant therapy for 10 days. After the initial treatment, 356 L. donovani reads were still found in peripheral blood by mNGS. Subsequently, the anti-leishmanial drug amphotericin B was administrated as rescue therapy, and the patient was discharged after a clinical cure.ConclusionOur results indicated that leishmaniasis still exists in China. Unbiased mNGS provided a clinically actionable diagnosis of a specific infectious disease from an uncommon pathogen that eluded conventional testing
Recommended from our members
Precise isolation and structural origin of an ultra-specific nanobody against chemical compound
Highly specific antibodies are the key reagents for developing immunoassays with a low false positive rate for environmental monitoring. Here, we provide evidence that nanobodies have the potential to achieve higher specificity than conventional antibodies and explain why from their structural features. Using sulfadimethoxine (SDM) as a model analyte, we constructed an immune phage display library and precisely isolated an ultra-specific nanobody (H1-17) by a crucial homologous antigen counter selection strategy. H1-17 showed no observable cross-reactivity (CR) with other structural analogs of 41 SDM tested, which has never been achieved by conventional antibodies. The structurally original specificity of H1-17 was illuminated and compared with that of one conventional antibody by homology modeling and site-directed mutagenesis validation. It was found that the noncanonical disulfide bond (C50-C104) of H1-17 helped CDR3 form a tailor-made binding pocket and divide it into two parts to accommodate the common structure of sulfonamides and the characteristic methoxyl group of SDM, respectively. Besides, the mutual-checking hydrogen bonds also played important roles in the specific recognition. Lastly, immunoassays with zero false positive rate were developed to screen SDM in water and milk samples, indicating that nanobodies could be reliable reagents for the accurate detection of chemical compounds
Direct visualization of electric current induced dipoles of atomic impurities
Learning the electron scattering around atomic impurities is a fundamental
step to fully understand the basic electronic transport properties of realistic
conducting materials. Although many efforts have been made in this field for
several decades, atomic scale transport around single point-like impurities has
yet been achieved. Here, we report the direct visualization of the electric
current induced dipoles around single atomic impurities in epitaxial bilayer
graphene by multi-probe low temperature scanning tunneling potentiometry as the
local current density is raised up to around 25 A/m, which is considerably
higher than that in previous studies. We find the directions of these dipoles
which are parallel or anti-parallel to local current are determined by the
charge polarity of the impurities, revealing the direct evidence for the
existence of the carrier density modulation effect proposed by Landauer in
1976. Furthermore, by tuning local current direction with contact
probes, these dipoles are redirected correspondingly. Our work paves the way to
explore the electronic quantum transport phenomena at single atomic impurity
level and the potential future electronics toward or beyond the end of Moore's
Law
Gene content evolution in the arthropods
Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity
Improving the corrosion resistance of MgZn1.2GdxZr0.18 (x =0, 0.8, 1.4, 2.0) alloys via Gd additions
Funding Information: This research was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0301101 ), the National Natural Science Foundation of China (Grant No. 51971054 ) and the Fundamental Research Funds for the Central Universities (Grant Nos. N180904006 and N2009006 ). Publisher Copyright: © 2020 Elsevier LtdEffects of Gd addition on microstructure, corrosion behavior and mechanism of cast and extruded MgZn1.2GdxZr0.18 alloys are investigated through microstructure observation, weight loss and electrochemical tests. Increasing Gd from 0 to 2.0 at.%, grains are refined, MgZn2 phase, W-phase and X-phase are formed successively, and basal texture intensity is decreased. The significantly decreased grain size by extrusion and Gd addition induces formation of protective Gd2O3 and MgO layer. The extruded MgZn1.2Gd2.0Zr0.18 alloy shows decreased corrosion rate of 3.72 ± 0.36 mm/year, owing to fine and homogeneous microstructure, dual-role (micro-anode and barrier) of X-phase, compact oxidation layer and basal crystallographic texture.Peer reviewe
Genome of the Asian Longhorned Beetle (\u3cem\u3eAnoplophora glabripennis\u3c/em\u3e), a Globally Significant Invasive Species, Reveals Key Functional and Evolutionary Innovations at the Beetle-Plant Interface
Background: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. Results: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Conclusions: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants
Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface
Background
Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle.
Results
The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates.
Conclusions
Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants
- …