11 research outputs found

    Overexpressed transferrin receptor implied poor prognosis and relapse in gastrointestinal stromal tumors

    Get PDF
    Ferroptosis, as a novel-induced programmed cell death, plays critical roles in the pathogenesis of cancers. However, the promising biomarkers of ferroptosis in gastrointestinal stromal tumor (GIST) remain to be elucidated. Herein, the expression of ferroptosis-related genes was analyzed in GIST. Among the 64 ferroptosis-related genes, transferrin receptor (TFRC) expression presented a remarkable upregulation in high-risk patients through Gene Expression Omnibus (GEO) dataset analysis, as well as its significant change after imatinib was treated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of TFRC-relevant genes revealed that TFRC expression was closely associated with cell growth pathways and metabolism-related pathways. Furthermore, patients at high risk of recurrence were more likely to exhibit high TFRC expression by immunohistochemistry. Additionally, high TFRC expression indicated an undesirable state of patient relapse, which could serve as a powerful significant independent predictor of recurrence-free survival (RFS). In summary, we systematically summarize the expression characteristics and clinical relevance of TFRC and show that TFRC can be used as a prognostic factor, which can be considered a potential therapeutic target in GIST

    Evidence for Positive Selection on a Number of MicroRNA Regulatory Interactions during Recent Human Evolution

    Get PDF
    MicroRNA (miRNA)–mediated gene regulation is of critical functional importance in animals and is thought to be largely constrained during evolution. However, little is known regarding evolutionary changes of the miRNA network and their role in human evolution. Here we show that a number of miRNA binding sites display high levels of population differentiation in humans and thus are likely targets of local adaptation. In a subset we demonstrate that allelic differences modulate miRNA regulation in mammalian cells, including an interaction between miR-155 and TYRP1, an important melanosomal enzyme associated with human pigmentary differences. We identify alternate alleles of TYRP1 that induce or disrupt miR-155 regulation and demonstrate that these alleles are selected with different modes among human populations, causing a strong negative correlation between the frequency of miR-155 regulation of TYRP1 in human populations and their latitude of residence. We propose that local adaptation of microRNA regulation acts as a rheostat to optimize TYRP1 expression in response to differential UV radiation. Our findings illustrate the evolutionary plasticity of the microRNA regulatory network in recent human evolution

    Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors

    No full text
    Highly stretchable graphene–nanocellulose composite nanopaper is fabricated for strain-sensor applications. Three-dimensional macroporous nanopaper from crumpled graphene and nanocellulose is embedded in elastomer matrix to achieve stretchability up to 100%. The stretchable graphene nanopaper is demonstrated for efficient human-motion detection applications

    Stretchable and Wearable Electrochromic Devices

    No full text
    Stretchable and wearable WO<sub>3</sub> electrochromic devices on silver nanowire (AgNW) elastic conductors are reported. The stretchable devices are mechanically robust and can be stretched, twisted, folded, and crumpled without performance failure. Fast coloration (1 s) and bleaching (4 s) time and good cyclic stability (81% retention after 100 cycles) were achieved at relaxed state. Proper functioning at stretched state (50% strain) was also demonstrated. The electrochromic devices were successfully implanted onto textile substrates for potential wearable applications. As most existing electrochromic devices are based on rigid technologies, the innovative devices in their soft form hold the promise for next-generation electronics such as stretchable, wearable, and implantable display applications
    corecore