87 research outputs found

    Biocompatibility and safety evaluation of a silk fibroin-doped calcium polyphosphate scaffold copolymer in vitro and in vivo

    Get PDF
    For the reconstruction of cartilage and bone defects, bone repair scaffolds with porous network structures have been extensively studied. In our previous study, CPP-type bioceramics showed higher compressive strength and enhanced degradation after silk fibroin doping, and SF/CPP could be considered a suitable bioceramic for bone tissue-engineering. The aim of this study was to evaluate the biocompatibility and safety of SF/CPP in vitro and in vivo. The cell biocompatibility was evaluated with regard to the cytotoxicity of the scaffolds using co-culture and MTT tests in vitro. The in vivo biocompatibility of SF/CPP was evaluated by implanting the scaffolds in the subcutaneous and intramuscular regions of experimental animals. We established an experimental animal model to prepare critical-sized cranial defects and evaluated the biodegradability and osteoconductivity of the scaffolds in vivo. The results indicated that the SF/CPP scaffold yielded better biocompatibility and safety performance than the CPP scaffold in vitro and in vivo. Immunohistochemistry staining in vivo for OPN and OCN also indicated that SF/CPP has potential to promote the regeneration of critical-sized cranial defects. The SF/CPP scaffold has good biocompatibility and safety for experimental animals and could also serve as a potential effective bioceramic for a range of bone regeneration applications

    Genomic selection analysis of morphological and adaptation traits in Chinese indigenous dog breeds

    Get PDF
    The significant morphological differences and abundant germplasm resources of Chinese indigenous dog breeds can be attributed to the diverse geographical environment, including plateaus, mountains, and a long history of raising dogs. The combination of both natural and artificial selection during the past several thousand years has led to hundreds of dog breeds with distinct morphological traits and environmental adaptations. China is one of the earliest countries to domesticate dogs and there are more than 50 ancient indigenous dog breeds. In this study, the run of homozygosity (ROH) and proportion of the autosomal genome covered by ROHs (FROH) were calculated for 10 dog breeds that are the most representative Chinese indigenous dogs based on 170K SNP microarray. The results of FROH showed that the Chuandong hound dogs (HCSSC) have the highest level of inbreeding among the tested breeds. The inbreeding in HCSSC occurred more recently than the Liangshan dogs (SCLSQ) dogs because of more numbers of long ROHs in HCSSC dogs, and the former also have higher inbreeding degree. In addition, there are significant differences in the inbreeding degree among different subpopulations of the same breed, such as the Thin dogs from Shaanxi and Shandong province. To explore genome-wide selection signatures among different breeds, including coat color, ear shape, and altitude adaptability, we performed genome selection analyses of FST and cross population extended haplotype homozygosity (XP-EHH). For the coat color, the FST analysis between Xiasi dogs (XSGZ) and HCSSC dogs was performed and identified multiple genes involved in coat color, hair follicle, and bone development, including MC1R, KITLG, SOX5, RSPO2, and TBX15. For the plateau adaptability, we performed FST and XP-EHH analyses between dogs from Tibet (Tibetan Mastiffs and Nyingchi dogs) and plain regions (Guangxi Biwei dogs GXBWQ and Guandong Sharpei dogs). The results showed the EPAS1 gene in dogs from Tibet undergo strong selection. Multiple genes identified for selection signals based on different usage of dogs. Furthermore, the results of ear shape analyses showed that MSRB3 was likely to be the main gene causing the drop ear of domestic dogs. Our study provides new insights into further understanding of Chinese indigenous dogs

    Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications

    Get PDF
    Sensitivity analysis (SA) aims to identify the key parameters that affect model performance and it plays important roles in model parameterization, calibration, optimization, and uncertainty quantification. However, the increasing complexity of hydrological models means that a large number of parameters need to be estimated. To better understand how these complex models work, efficient SA methods should be applied before the application of hydrological modeling. This study provides a comprehensive review of global SA methods in the field of hydrological modeling. The common definitions of SA and the typical categories of SA methods are described. A wide variety of global SA methods have been introduced to provide a more efficient evaluation framework for hydrological modeling. We review, analyze, and categorize research into global SA methods and their applications, with an emphasis on the research accomplished in the hydrological modeling field. The advantages and disadvantages are also discussed and summarized. An application framework and the typical practical steps involved in SA for hydrological modeling are outlined. Further discussions cover several important and often overlooked topics, including the relationship between parameter identification, uncertainty analysis, and optimization in hydrological modeling, how to deal with correlated parameters, and time-varying SA. Finally, some conclusions and guidance recommendations on SA in hydrological modeling are provided, as well as a list of important future research directions that may facilitate more robust analyses when assessing hydrological modeling performance

    Study on the preparation and properties of UV curable polyurethane materials modified by organic silicon

    No full text
    In this paper, polyester polyol, toluene diisocyanate (TDI) and hydroxyethyl acrylate (HEA) were taken as the raw materials to synthesize polyurethane acrylate. UV curable organic silicon nano sol was synthesized by γ-methacryloxypropyltrime-thoxysilane. The UV curable polyurethane materials modified by organic silicon were prepared based on the UV curable organic silicon nano sol and synthesized polyurethane acrylate. This paper studies on the mechanical properties of organic silicon modified UV curable polyurethane materials and puts forward the micro model that inorganic phase is bonded to the resin in the form of chemical bonds. The results show that the heat resistance and mechanical properties of hybrid materials are improved with the increase of the nano silica sol’s contents , the abrasion resistance of hybrid coatings is also improved and the silica nano particles are well dispersed in the organic phase

    Study on the preparation and properties of UV curable polyurethane materials modified by organic silicon

    No full text
    In this paper, polyester polyol, toluene diisocyanate (TDI) and hydroxyethyl acrylate (HEA) were taken as the raw materials to synthesize polyurethane acrylate. UV curable organic silicon nano sol was synthesized by γ-methacryloxypropyltrime-thoxysilane. The UV curable polyurethane materials modified by organic silicon were prepared based on the UV curable organic silicon nano sol and synthesized polyurethane acrylate. This paper studies on the mechanical properties of organic silicon modified UV curable polyurethane materials and puts forward the micro model that inorganic phase is bonded to the resin in the form of chemical bonds. The results show that the heat resistance and mechanical properties of hybrid materials are improved with the increase of the nano silica sol’s contents , the abrasion resistance of hybrid coatings is also improved and the silica nano particles are well dispersed in the organic phase

    Research on Surface Defect Detection of Camera Module Lens Based on YOLOv5s-Small-Target

    No full text
    For the problem of low resolution of camera module lens surface defect image, small target and blurred defect details leading to low detection accuracy, a camera module lens surface defect detection algorithm YOLOv5s-Defect based on improved YOLOv5s is proposed. Firstly, to solve the problems arising from the anchor frame generated by the network through K-means clustering, the dynamic anchor frame structure DAFS is introduced in the input stage. Secondly, the SPP-D (Spatial Pyramid Pooling-Defect) improved from the SPP module is proposed. The SPP-D module is used to enhance the reuse rate of feature information in order to reduce the loss of feature information due to the maximum pooling of SPP modules. Then, the convolutional attention module is introduced to the network model of YOLOv5s, which is used to enhance the defective region features and suppress the background region features, thus improving the detection accuracy of small targets. Finally, the post-processing method of non-extreme value suppression is improved, and the improved method DIoU-NMS improves the detection accuracy of small targets in complex backgrounds. The experimental results show that the mean average precision [email protected] of the YOLOv5s-Small-Target algorithm is 99.6%, 8.1% higher than that of the original YOLOv5s algorithm, the detection speed FPS is 80 f/s, and the model size is 18.7M. Compared with the traditional camera module lens surface defect detection methods, YOLOv5s-Small-Target can detect the type and location of lens surface defects more accurately and quickly, and has a smaller model volume, which is convenient for deployment in mobile terminals, meeting the demand for real-time and accuracy of camera module lens surface defect detection

    Experimental Investigation on Direct Micro Milling of Cemented Carbide

    No full text
    Cemented carbide is currently used for various precise molds and wear resistant parts. However, the machining of cemented carbide still is a difficult challenge due to its superior mechanical properties. In this paper, an experimental study was conducted on direct micro milling of cemented carbide with a polycrystalline diamond (PCD) micro end mill. The cutting force characteristics, surface formation, and tool wear mechanisms were systematically investigated. Experimental results show that cemented carbide can be removed with ductile cutting utilizing the PCD tool with a large tool tip radius. Micro burrs, brittle pits, and cracks are the observed surface damage mechanisms. The tool wear process presents microchipping on the cutting edge and exfoliating on the rake face in the early stage, and then severe abrasive and adhesive wear on the bottom face in the following stage

    Conditions for the enrichment of karst hydrothermal resources in Bohai Bay Basin

    No full text
    Drilling for karst hydrothermal resources in eastern China has posed challenges, including disparities between the temperature and yield of geothermal water. It is evident that relying solely on geothermal anomalies or indications of karst reservoirs is inadequate for the exploration of karst hydrothermal resources. This study seeks to elucidate the cause of geothermal sweet spots by analyzing the interplay between geothermal anomalies and karst reservoirs and the underlying geological conditions for karst hydrothermal enrichment. Key findings include: (1) the Bohai Bay Basin has been geologically favorable for the development of karst hydrothermal resources since the Mesozoic era; (2) the karst hydrothermal enrichment varies significantly between the basin’s margin and its interior. On the basin margin, the enrichment is largely driven by groundwater activity and faults, particularly where faults facilitate the upwelling of geothermal water. In contrast, within the basin’s interior, karst hydrothermal resources are predominantly influenced by buried hills and are especially enriched in areas facilitating the discharge of deep geothermal waters
    • …
    corecore