231 research outputs found

    Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets.

    Get PDF
    Since 2006, a rapid development has been achieved in a subject area, so called electro-spinning/netting (ESN), which comprises the conventional electrospinning process and a unique electro-netting process. Electro-netting overcomes the bottleneck problem of electrospinning technique and provides a versatile method for generating spider-web-like nano-nets with ultrafine fiber diameter less than 20 nm. Nano-nets, supported by the conventional electrospun nanofibers in the nano-fiber/nets (NFN) membranes, exhibit numerious attractive characteristics such as extremely small diameter, high porosity, and Steiner tree network geometry, which make NFN membranes optimal candidates for many significant applications. The progress made during the last few years in the field of ESN is highlighted in this review, with particular emphasis on results obtained in the author's research units. After a brief description of the development of the electrospinning and ESN techniques, several fundamental properties of NFN nanomaterials are addressed. Subsequently, the used polymers and the state-of-the-art strategies for the controllable fabrication of NFN membranes are highlighted in terms of the ESN process. Additionally, we highlight some potential applications associated with the remarkable features of NFN nanostructure. Our discussion is concluded with some personal perspectives on the future development in which this wonderful technique could be pursued

    Review of Research on Cruise Tourism of China in Recent Five Years

    Get PDF
    At present, domestic research on cruise tourism focus mainly on the following aspects: training cruise tourism talents; cruise industry development and its impact on regional economic; development and marketing of cruise tourism market; environment and strategies of regional development of cruise tourism; construction of cruise port (terminal) and competitiveness evaluation of it; cruise business model and performance. Finally, we give our prospect of domestic cruise tourism research. Key words: Cruise tourism; Review; China; Recent five year

    Consistent Attack: Universal Adversarial Perturbation on Embodied Vision Navigation

    Full text link
    Embodied agents in vision navigation coupled with deep neural networks have attracted increasing attention. However, deep neural networks have been shown vulnerable to malicious adversarial noises, which may potentially cause catastrophic failures in Embodied Vision Navigation. Among different adversarial noises, universal adversarial perturbations (UAP), i.e., a constant image-agnostic perturbation applied on every input frame of the agent, play a critical role in Embodied Vision Navigation since they are computation-efficient and application-practical during the attack. However, existing UAP methods ignore the system dynamics of Embodied Vision Navigation and might be sub-optimal. In order to extend UAP to the sequential decision setting, we formulate the disturbed environment under the universal noise δ\delta, as a δ\delta-disturbed Markov Decision Process (δ\delta-MDP). Based on the formulation, we analyze the properties of δ\delta-MDP and propose two novel Consistent Attack methods, named Reward UAP and Trajectory UAP, for attacking Embodied agents, which consider the dynamic of the MDP and calculate universal noises by estimating the disturbed distribution and the disturbed Q function. For various victim models, our Consistent Attack can cause a significant drop in their performance in the PointGoal task in Habitat with different datasets and different scenes. Extensive experimental results indicate that there exist serious potential risks for applying Embodied Vision Navigation methods to the real world

    Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    Get PDF
    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses.In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine.The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins

    DualTeacher: Bridging Coexistence of Unlabelled Classes for Semi-supervised Incremental Object Detection

    Full text link
    In real-world applications, an object detector often encounters object instances from new classes and needs to accommodate them effectively. Previous work formulated this critical problem as incremental object detection (IOD), which assumes the object instances of new classes to be fully annotated in incremental data. However, as supervisory signals are usually rare and expensive, the supervised IOD may not be practical for implementation. In this work, we consider a more realistic setting named semi-supervised IOD (SSIOD), where the object detector needs to learn new classes incrementally from a few labelled data and massive unlabelled data without catastrophic forgetting of old classes. A commonly-used strategy for supervised IOD is to encourage the current model (as a student) to mimic the behavior of the old model (as a teacher), but it generally fails in SSIOD because a dominant number of object instances from old and new classes are coexisting and unlabelled, with the teacher only recognizing a fraction of them. Observing that learning only the classes of interest tends to preclude detection of other classes, we propose to bridge the coexistence of unlabelled classes by constructing two teacher models respectively for old and new classes, and using the concatenation of their predictions to instruct the student. This approach is referred to as DualTeacher, which can serve as a strong baseline for SSIOD with limited resource overhead and no extra hyperparameters. We build various benchmarks for SSIOD and perform extensive experiments to demonstrate the superiority of our approach (e.g., the performance lead is up to 18.28 AP on MS-COCO). Our code is available at \url{https://github.com/chuxiuhong/DualTeacher}

    Kynurenine aminotransferase 3/glutamine transaminase L/cysteine conjugate beta-lyase 2 is a major glutamine transaminase in the mouse kidney

    Get PDF
    AbstractBackgroundKynurenine aminotransferase 3 (KAT3) catalyzes the transamination of Kynurenine to kynurenic acid, and is identical to cysteine conjugate beta-lyase 2 (CCBL2) and glutamine transaminase L (GTL). GTL was previously purified from the rat liver and considered as a liver type glutamine transaminase. However, because of the substrate overlap and high sequence similarity of KAT3 and KAT1, it was difficult to assay the specific activity of each KAT and to study the enzyme localization in animals.MethodsKAT3 transcript and protein levels as well as enzyme activity in the liver and kidney were analyzed by regular reverse transcription-polymerase chain reaction (RT-PCR), real time RT-PCR, biochemical activity assays combined with a specific inhibition assay, and western blotting using a purified and a highly specific antibody, respectively.ResultsThis study concerns the comparative biochemical characterization and localization of KAT 3 in the mouse. The results showed that KAT3 was present in both liver and kidney of the mouse, but was much more abundant in the kidney than in the liver. The mouse KAT3 is more efficient in transamination of glutamine with indo-3-pyruvate or oxaloacetate as amino group acceptor than the mouse KAT1.ConclusionsMouse KAT3 is a major glutamine transaminase in the kidney although it was named a liver type transaminase.General significanceOur data highlights KAT3 as a key enzyme for studying the nephrotoxic mechanism of some xenobiotics and the formation of chemopreventive compounds in the mouse kidney. This suggests tissue localizations of KAT3/GTL/CCBL2 in other animals may be carefully checked

    Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes

    Get PDF
    Pyridoxal 5′-phosphate (PLP) functions as a coenzyme in many enzymatic processes, including decarboxylation, deamination, transamination, racemization, and others. Enzymes, requiring PLP, are commonly termed PLP-dependent enzymes, and they are widely involved in crucial cellular metabolic pathways in most of (if not all) living organisms. The chemical mechanisms for PLP-mediated reactions have been well elaborated and accepted with an emphasis on the pure chemical steps, but how the chemical steps are processed by enzymes, especially by functions of active site residues, are not fully elucidated. Furthermore, the specific mechanism of an enzyme in relation to the one for a similar class of enzymes seems scarcely described or discussed. This discussion aims to link the specific mechanism described for the individual enzyme to the same types of enzymes from different species with aminotransferases, decarboxylases, racemase, aldolase, cystathionine β-synthase, aromatic phenylacetaldehyde synthase, et al. as models. The structural factors that contribute to the reaction mechanisms, particularly active site residues critical for dictating the reaction specificity, are summarized in this review

    Gas Sensors Based on Electrospun Nanofibers

    Get PDF
    Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various sensing techniques such as acoustic wave, resistive, photoelectric, and optical techniques. The results of sensing experiments indicate that the nanofiber-based sensors showed much higher sensitivity and quicker responses to target gases, compared with sensors based on flat films

    Modified subxiphoid approach for surgical resection of a retrosternal goiter

    Get PDF
    BackgroundsUnilateral Video-Assisted Thorascopic Surgery (VATS) is a traditional minimally invasive transthoracic approach for the surgical resection of a subxiphoid goiter. Recently, the subxiphoid approach was recommended for an anterior mediastinal mass. This study aims to investigate the feasibility and efficacy of a modified subxiphoid VATS for the resection of a retrosternal goiter as an alternative transthoracic approach.MethodsWe retrospectively collected all patients who underwent subxiphoid VATS for the resection of a retrosternal goiter from June 2017 to June 2021 in the Zhongshan Hospital or the Zhongshan Hospital Xiamen branch. Ten patients were found. Patient characteristics, perioperative data, and surgical information were collected and further analyzed.ResultsIn our study, all 10 patients underwent a thoracoscopic subxiphoid resection of a retrosternal goiter. The mean age was 49.4 years, and all were female. The majority of patients (70%) were asymptomatic. All patients were assessed by CT imaging before surgery. The mean postoperative hospital stay was 4.9 days. The drainage tube was removed 3 days after operation, and the average drainage volume was 73.1 ml. Postoperative pain was mild, with an average pain grade of 2.4 (measured on a scale from 0 to 10, with lower scores indicating less pain). There were no conversions or perioperative complications in these 10 patients.ConclusionsMost retrosternal goiters can be completely resected through the modified subxiphoid approach after an adequate preoperative evaluation and careful intraoperative management. This thoracoscopic subxiphoid approach is feasible and safe for retrosternal goiter resection

    Elucidating the Roles of Nafion/Solvent Formulations in Copper-Catalyzed CO2 Electrolysis

    Get PDF
    Nafion ionomer, composed of hydrophobic perfluorocarbon backbones and hydrophilic sulfonic acid side chains, is the most widely used additive for preparing catalyst layers (CLs) for electrochemical CO2 reduction, but its impact on the performance of CO2 electrolysis remains poorly understood. Here, we systematically investigate the role of the catalyst ink formulation on CO2 electrolysis using commercial CuO nanoparticles as the model pre-catalyst. We find that the presence of Nafion is essential for achieving stable product distributions due to its ability to stabilize the catalyst morphology under reaction conditions. Moreover, the Nafion content and solvent composition (water/alcohol fraction) regulate the internal structure of Nafion coatings, as well as the catalyst morphology, thereby significantly impacting CO2 electrolysis performance, resulting in variations of C2+ product Faradaic efficiency (FE) by >3×, with C2+ FE ranging from 17 to 54% on carbon paper substrates. Using a combination of ellipsometry and in situ Raman spectroscopy during CO2 reduction, we find that such selectivity differences stem from changes to the local reaction microenvironment. In particular, the combination of high water/alcohol ratios and low Nafion fractions in the catalyst ink results in stable and favorable microenvironments, increasing the local CO2/H2O concentration ratio and promoting high CO surface coverage to facilitate C2+ production in long-term CO2 electrolysis. Therefore, this work provides insights into the critical role of Nafion binders and underlines the importance of optimizing Nafion/solvent formulations as a means of enhancing the performance of electrochemical CO2 reduction systems
    • …
    corecore