67 research outputs found

    Identification and characterization of class 1 integrons among Pseudomonas aeruginosa isolates from patients in Zhenjiang, China

    Get PDF
    SummaryObjectivesThe role of integrons in the spread of antibiotic resistance has been well established. The aim of this study was to investigate the resistance profiles of Pseudomonas aeruginosa isolated from patients in Zhenjiang to 13 antibiotics, and to identify the structure and dissemination of class 1 integrons.MethodsThe Kirbyā€“Bauer disk diffusion assay was used to determine the rate of P. aeruginosa resistance. Class 1 integrons from multidrug-resistant isolates were amplified by PCR, and their PCR products were sequenced. We also analyzed the integron structures containing the same gene cassettes by restriction fragment length polymorphism (RFLP). Isolates were genotyped by pulsed-field gel electrophoresis (PFGE).ResultsThe resistance rates were between 29.6% and 90.1%. The prevalence of class 1 integrons was 38.0%. These integrons included five gene cassettes (aadB, aac6-II, blaPSE-1, dfrA17, and aadA5). The dfrA17 and aadA5 gene cassettes were found most often.ConclusionsClass 1 integrons were found to be widespread in P. aeruginosa isolated from clinical samples in the Zhenjiang area of China. The antibiotic resistance rates in class 1 integron-positive strains of P. aeruginosa were noticeably higher than those in class 1 integron-negative strains. PFGE showed that particular clones were circulating among patients

    MicroRNA-181a modulates gene expression of zinc finger family members by directly targeting their coding regions

    Get PDF
    MicroRNAs (miRNAs) are small endogenous, non-coding RNAs that specifically bind to the 3ā€² untranslated region (3ā€²UTR) of target genes in animals. However, some recent studies have demonstrated that miRNAs also target the coding regions of mammalian genes. Here, we show that miRNA-181a downregulates the expression of a large number of zinc finger genes (ZNFs). Bioinformatics analysis revealed that these ZNFs contain many miR-181a seed-matched sites within their coding sequences (CDS). In particular, miR-181a 8-mer-matched sequences were mostly localized to the regions coding for the ZNF C2H2 domain. A series of reporter assays confirmed that miR-181a inhibits the expression of ZNFs by directly targeting their CDS. These inhibitory effects might be due to the multiple target sites located within the ZNF genes. In conclusion, our findings indicate that some miRNA species may regulate gene family by targeting their coding regions, thus providing an important and novel perspective for decoding the complex mechanism of miRNA/mRNA interplay

    Bottom-Up Assembly of Hydrogels from Bacteriophage and Au Nanoparticles: The Effect of Cis- and Trans-Acting Factors

    Get PDF
    Hydrogels have become a promising research focus because of their potential for biomedical application. Here we explore the long-range, electrostatic interactions by following the effect of trans-acting (pH) and cis-acting factors (peptide mutation) on the formation of Au-phage hydrogels. These bioinorganic hydrogels can be generated from the bottom-up assembly of Au nanoparticles (Au NP) with either native or mutant bacteriophage (phage) through electrostatic interaction of the phage pVIII major capsid proteins (pVIII). The cis-acting factor consists of a peptide extension displayed on the pVIII that mutates the phage. Our results show that pH can dictate the direct-assembly and stability of Au-phage hydrogels in spite of the differences between the native and the mutant pVIII. The first step in characterizing the interactions of Au NP with phage was to generate a molecular model that identified the charge distribution and structure of the native and mutant pVIII. This model indicated that the mutant peptide extension carried a higher positive charge relative to the native pVIII at all pHs. Next, by monitoring the Au-phage interaction by means of optical microscopy, elastic light scattering, fractal dimension analysis as well as Uv-vis and surface plasmon resonance spectroscopy, we show that the positive charge of the mutant peptide extension favors the opposite charge affinity between the phage and Au NP as the pH is decreased. These results show the versatility of this assembly method, where the stability of these hydrogels can be achieved by either adjusting the pH or by changing the composition of the phage pVIII without the need of phage display libraries

    The Asian arowana (<i>Scleropages formosus</i>) genome provides new insights into the evolution of an early lineage of teleosts

    Get PDF
    The Asian arowana (Scleropages formosus), one of the worldā€™s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas

    The Asian Arowana (Scleropages formosus) Genome Provides New Insights into the Evolution of an Early Lineage of Teleosts

    Get PDF
    The Asian arowana (Scleropages formosus), one of the worldā€™s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas

    Synthesis and Characterization of Multi-Walled Carbon Nanotube/Graphene Nanoplatelet Hybrid Film for Flexible Strain Sensors

    No full text
    Graphene nanoplatelet (GNP) and multi-walled carbon nanotube (MWCNT) hybrid films were prepared with the aid of surfactant Triton X-100 and sonication through a vacuum filtration process. The influence of GNP content ranging from 0 to 50 wt.% on the mechanical and electrical properties was investigated using the tensile test and Hall effect measurement, respectively. It showed that the tensile strength of the hybrid film is decreasing with the increase of the GNP content while the electrical conductivity exhibits an opposite trend. The effectiveness of the MWCNT/GNP hybrid film as a strain sensor is presented. The specimen is subjected to a flexural loading, and the electrical resistance measured by a two-point probe method is found to be function of applied strain. Experimental results demonstrate that there are two different linear strain-sensing stages (0&ndash;0.2% and 0.2&ndash;1%) in the resistance of the hybrid film with applied strain. The strain sensitivity is increasing with the increase of the GNP content. In addition, the repeatability and stability of the strain sensitivity of the hybrid film were conformed through the cyclic loading&ndash;unloading tests. The MWCNT/GNP hybrid film shows promising application for strain sensing

    Synthesis and Characterization of Multi-Walled Carbon Nanotube/Graphene Nanoplatelet Hybrid Film for Flexible Strain Sensors

    No full text
    Graphene nanoplatelet (GNP) and multi-walled carbon nanotube (MWCNT) hybrid films were prepared with the aid of surfactant Triton X-100 and sonication through a vacuum filtration process. The influence of GNP content ranging from 0 to 50 wt.% on the mechanical and electrical properties was investigated using the tensile test and Hall effect measurement, respectively. It showed that the tensile strength of the hybrid film is decreasing with the increase of the GNP content while the electrical conductivity exhibits an opposite trend. The effectiveness of the MWCNT/GNP hybrid film as a strain sensor is presented. The specimen is subjected to a flexural loading, and the electrical resistance measured by a two-point probe method is found to be function of applied strain. Experimental results demonstrate that there are two different linear strain-sensing stages (0&ndash;0.2% and 0.2&ndash;1%) in the resistance of the hybrid film with applied strain. The strain sensitivity is increasing with the increase of the GNP content. In addition, the repeatability and stability of the strain sensitivity of the hybrid film were conformed through the cyclic loading&ndash;unloading tests. The MWCNT/GNP hybrid film shows promising application for strain sensing

    Specifically expressed genes of the nematode Bursaphelenchus xylophilus involved with early interactions with pine trees.

    Get PDF
    As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. However, the pathogenesis-related genes of B. xylophilus are not well characterized. Thus, DNA microarrays were used to investigate differential gene expression in PWN where Pinus thunbergii was inoculated with nematodes, compared with those cultured on Botrytis cinerea. The microarrays comprised 31121 probes, 1310 (4.2%) of which were differentially regulated (changes of >2-fold, P < 0.01) in the two growth conditions. Of these 1310 genes, 633 genes were upregulated, whereas 677 genes were downregulated. Gene Ontology (GO) categories were assigned to the classes Cellular Component, Molecular Function, and Biological Process. The comparative gene expression analysis showed that a large number of the pathogenesis-related genes of B. xylophilus, such as pectate lyase genes, cytochrome P450s, UGTs, and ABC transporter genes, were highly expressed when B. xylophilus infected P. thunbergii. Annotation analysis indicated that these genes contributed to cell wall degradation, detoxification, and the reproduction process. The microarray results were validated using quantitative RT-PCR (qRT-PCR). The microarray data confirmed the specific expression of B. xylophilus genes during infection of P. thunbergii, which provides basic information that facilitates a better understanding of the molecular mechanism of PWD

    Numerical Simulation of Corroded Reinforced Concrete Beam Strengthened by a Steel Plate with Different Strengthening Schemes

    No full text
    This paper proposes 3D nonlinear finite element (FE) models to predict the response of corroded reinforced concrete (RC) beam strengthened using a steel plate. Five FE models are developed based on the tests carried out by the authors in a previous investigation, in which three models are used to simulate the corroded RC beams with different schemes. The FE models use the coupled damaged-plasticity constitutive law for concrete in tension and compression and consider the bond-slip between the corroded tensile steel bar and concrete. The cohesive element is also used to model the cohesive bond between the steel plate and concrete. The FE results of load-deflection and the crack distribution are compared with the test data. The FE results are consistent with the test results. The influence of the thickness of the steel plate, the thickness, and location of the U-shaped steel strip on the bearing capacity of the strengthened corroded beam is analyzed through FE models. The results show that the thickness of the steel plate on the bottom surface should not exceed 4ā€‰mm for the flexure-strengthened and combined strengthened beams with a 10% corrosion rate. It is most reasonable to improve the bearing capacity using the 3ā€‰mm and 2ā€‰mm of thick U-shaped steel strips for the shear-strengthened and combined strengthened beams, respectively. The most reasonable location of the U-shaped steel plate is at the end of the steel plate for beams with a 10% corrosion rate
    • ā€¦
    corecore