4,263 research outputs found
A SVM bases AI design for interactive gaming
Interactive gaming requires automatic processing on large volume of random data produced by players on spot, such as shooting, football kicking, boxing etc. In this paper, we describe an artificial intelligence approach in processing such random data for interactive gaming by using a one-class support vector machine (OC-SVM). In comparison with existing techniques, our OC-SVM based interactive gaming design has the features of: (i): high speed processing, providing instant response to the players: (i) winner selection and control by one parameter, which can be pre-designed and adjusted according to the game design needs, i.e. level of difficulties: Experiments on numerical simulation support that the proposed design is robust to random noise, accurate in picking up winning data, and convenient for all interactive gaming design
Empirical mode decomposition-based facial pose estimation inside video sequences
We describe a new pose-estimation algorithm via integration of the strength in both empirical mode decomposition (EMD) and mutual information. While mutual information is exploited to measure the similarity between facial images to estimate poses, EMD is exploited to decompose input facial images into a number of intrinsic mode function (IMF) components, which redistribute the effect of noise, expression changes, and illumination variations as such that, when the input facial image is described by the selected IMF components, all the negative effects can be minimized. Extensive experiments were carried out in comparisons to existing representative techniques, and the results show that the proposed algorithm achieves better pose-estimation performances with robustness to noise corruption, illumination variation, and facial expressions
Determination of Density of Trap States at Y\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e-Stabilized ZrO\u3csub\u3e2\u3c/sub\u3e/Si Interface of Yba\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e7-δ\u3c/sub\u3e/Y\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e-Stabilized ZrO\u3csub\u3e2\u3c/sub\u3e/Si Capacitors
Yba2Cu3O7-δ/yttria‐stabilized zirconia (YSZ)/silicon superconductor‐insulator‐semiconductor capacitors are characterized with current‐voltage and capacitance‐voltage (C‐V) measurements at different temperatures between 223 and 80 K. As a result of ‘‘freezing’’ of mobile ions in YSZ, effects of trapped charge at the YSZ/Si interface dominate the device electrical properties at superconducting temperatures. Density of interface states and its temperature dependence are determined using a modified high frequency C‐V method, in which the temperature dependences of band gap, Fermi level, and active dopant and intrinsic carrier concentrations are considered. At superconducting temperatures, e.g., 80 K, the interface state density within the band gap is reduced to lower than 1×1011 cm−2 eV at midgap. The low interface state density at the YSZ/Si interface is important for acceptable performance and reliability devices made up of such capacitors
Donor complex formation due to a high-dose Ge implant into Si
To investigate boron deactivation and/or donor complex formation due to a high‐dose Ge and C implantation and the subsequent solid phase epitaxy, SiGe and SiGeC layers were fabricated and characterized. Cross‐sectional transmission electron microscopy indicated that the SiGe layer with a peak Ge concentration of 5 at. % was strained; whereas, for higher concentrations, stacking faults were observed from the surface to the projected range of the Ge as a result of strain relaxation. Photoluminescence (PL) results were found to be consistent with dopant deactivation due to Ge implantation and the subsequent solid phase epitaxial growth of the amorphous layer. Furthermore, for unstrained SiGe layers (Ge peak concentration ≥7 at. %), the PL results support our previously proposed donor complex formation. These findings were confirmed by spreading resistance profiling. A model for donor complex formation is proposed
Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes
Functionalized carbonaceous materials with hierarchical structure and developed porosity are highly desired in energy storage and conversion fields. In this work, a facile and scalable hydrothermal methodology was established to synthesise three-dimensional (3D) N-doped carbonaceous aerogels using biomass-based starting materials and polypyrrole as N-source. The effect of different calcination temperatures on the structural properties, type and content of N-species and electrochemical performance of the 3D N-doped carbonaceous aerogels were uncovered. Thanks to the combinatorial effect of the appropriate N content and porous structure, the obtained samples exhibited excellent electrochemical performance, in particular, an outstanding specific capacitance of 281.0 F g-1 achieved on the sample calcined at 600 °C. This methodology offers a new fabrication strategy to prepare nanoscale carbonaceous materials with desirable morphology and hierarchical architecture of great potentials for the applications in energy fields
Thermally Activated Reversible Threshold Shifts in Yba\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e7-δ\u3c/sub\u3e/Yttria-Stabilized Zirconia/Si Capacitors
Yba2Cu3O7-δ/yttria‐stabilized zirconia (YSZ)/silicon superconductor–insulator–semiconductor capacitors are characterized with capacitance‐voltage (C‐V) measurements at different gate‐voltage sweep rates and under bias‐temperature cycling. It is shown that ionic conduction in YSZ causes both hysteresis and stretch‐out in room‐temperature C‐V curves. A thermally activated process with an activation energy of about 39 meV in YSZ and/or at YSZ/Si interface is attributed to trapping/detrapping mechanisms in the SiOx interfacial layer between YSZ and Si. The negative mobile ions in YSZ can be moved by an applied electric field at room temperature and then ‘‘frozen’’ with decreasing temperature, giving rise to adjustable threshold voltages at low temperatures
Energy scaling law for nanostructured materials
The equilibrium binding energy is an important factor in the design of
materials and devices. However, it presents great computational challenges for
materials built up from nanostructures. Here we investigate the binding-energy
scaling law from first-principles calculations. We show that the equilibrium
binding energy per atom between identical nanostructures can scale up or down
with nanostructure size. From the energy scaling law, we predict finite
large-size limits of binding energy per atom. We find that there are two
competing factors in the determination of the binding energy: Nonadditivities
of van der Waals coefficients and center-to-center distance between
nanostructures. To uncode the detail, the nonadditivity of the static multipole
polarizability is investigated. We find that the higher-order multipole
polarizability displays ultra-strong intrinsic nonadditivity, no matter if the
dipole polarizability is additive or not.Comment: 13 pages, 4 figures, 7 table
Investigation of the Scanning Microarc Oxidation Process
Scanning microarc oxidation (SMAO) is a coating process which is based on conventional microarc oxidation (MAO). The key difference is that deposition in SMAO is achieved by using a stainless steel nozzle to spray an electrolyte stream on the substrate surface as opposed to immersing the workpiece in an electrolyzer. In the present study, SMAO discharge characteristics, coating morphology, and properties are analyzed and compared to results obtained from MAO under similar conditions. Results show that MAO and SMAO have comparable spark and microarc lifetimes and sizes, though significant differences in incubation time and discharge distribution were evident. Results also showed that the voltage and current density for MAO and SMAO demonstrate similar behavior but have markedly different transient and steady-state values. Results obtained from coating A356 aluminum sheet show that oxide thickness and growth rate in SMAO are strongly dependent on interelectrode spacing and travel speed. Analysis of the SMAO coating morphology and structure showed that a denser and slightly harder layer was deposited in comparison to MAO and is attributed to reduced porosity and increased formation of α-Al2O3. Preliminary results indicate that SMAO represents a viable process for coating of aluminum surfaces
- …
