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Abstract. We describe a new pose-estimation algorithm via integration
of the strength in both empirical mode decomposition �EMD� and mutual
information. While mutual information is exploited to measure the simi-
larity between facial images to estimate poses, EMD is exploited to de-
compose input facial images into a number of intrinsic mode function
�IMF� components, which redistribute the effect of noise, expression
changes, and illumination variations as such that, when the input facial
image is described by the selected IMF components, all the negative
effects can be minimized. Extensive experiments were carried out in
comparisons to existing representative techniques, and the results show
that the proposed algorithm achieves better pose-estimation perfor-
mances with robustness to noise corruption, illumination variation, and
facial expressions. © 2010 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.3359510�
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Introduction

acial pose is an important visual cue to determine a hu-
an’s identity and activities across different scenarios. Es-

imation of facial poses from video sequences is important
or both computer vision and multimedia content analysis,
uch as scene understanding, event estimation, etc., or ac-
ivity analysis in video surveillances.1,2 Over the past de-
ades, facial pose estimation remains an active research
rea in which a range of techniques has been reported to
nvestigate the pose-estimation problem, such as support
ector classification,3 eigenspace from Gabor filters,4 mani-
old learning,5 independent component analysis,6 and a
wo-stage framework based on Gabor wavelets, bunch
raphs,7 etc.

Recently, mutual information �MI� is used to extract fa-
ial poses from video sequences.8 MI is widely used as a
owerful tool for finding similarities between two entities.
owever, the reported work8 directly applied MI to the
riginal facial images, and as a result, its estimation rate is
ubject to illumination changes and noises. In order to find
he fundamental nature of the facial images for accurate
acial pose estimation, which is robust to illumination
ariations and noises, a feature extraction processing stage
s necessary. Traditionally, decomposition techniques, such
s Fourier decomposition or wavelet decomposition using
asis functions, are selected to analyze real-world signals
s powerful tools for feature extraction.9,10 However, the
ain drawback of those approaches is that the basis func-

ions are fixed and not necessarily match the varying nature
f those input signals, such as facial images. In early stud-
es, Fourier analysis has been the dominating signal analy-
is tool for feature extraction. However, the signal to be

091-3286/2010/$25.00 © 2010 SPIE
ptical Engineering 037401-
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analyzed must be strictly periodic or stationary; otherwise,
the resulting Fourier spectrum will fail to characterize the
input signals and thus be inappropriate for further process-
ing, such as pose estimation, which is often nonstationary,
nonlinear, and hence the frequency components change
with time. Out of all existing time-frequency analysis meth-
ods, Wavelet transform maybe the best candidate and has
been widely reported for feature extraction in images and
videos. However, due to the limitation of Heisenberg-
Gabor inequality, wavelet transform cannot achieve fine
resolutions in both time domain and frequency domain
simultaneously.11 Therefore, it fails to separate those sig-
nals with high-frequency noises, where the time scales are
often too small.

To overcome this problem, we introduce a new concept
of empirical mode decomposition �EMD� based on the
work reported by Huang et al.12 for nonstationary and non-
linear signal processing to extract features for a new algo-
rithm design toward efficient and effective pose estimation.
Motivated by the fact that EMD can decompose any com-
plicated signal into a sum of intrinsic mode function �IMF�
components holding the highest local frequency from the
rest, we combine the strength of EMD and MI to propose a
new pose-estimation algorithm by utilizing EMD as a band-
pass filter in this paper. While MI is applied to characterize
the similarity between poses, EMD is exploited to decom-
pose the input video frames into IMF components, enabling
the proposed algorithm to minimize the effects of noise and
illumination variations when extracting the feature face for
pose estimation. Compared to existing approaches, exten-
sive experiments support that our proposed algorithm is
robust to noises, illuminations, facial expressions, and sig-
nificantly performs better than representative existing
benchmarks.

The rest of paper is organized as follows: Section 2 de-
March 2010/Vol. 49�3�1
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cribes the EMD algorithm and the details of extracting the
eature faces based on EMD. Section 3 presents the algo-
ithm for automated facial pose estimation. In Section 4,
xperimental results and relevant discussions are described,
nd finally, conclusions are given in Section 5.

Feature Face Extraction

.1 EMD
he joint space–spatial frequency representations have re-
eived special attention in the fields of image processing,
omputer vision, and pattern recognition. Because there ex-
st some crucial restrictions in Fourier transform and wave-
et transform explained in Section 1, they are not appropri-
te for post estimation. Huang et al.12 presented a
ultiresolution decomposition technique, referred to as
MD, which was originally proposed for the study of ocean
aves,12 and was later found potentially applicable to geo-
hysical exploration, underwater acoustic signals, noise re-
oval filter, biomedicine, pattern recognition, etc.13–17. The
ajor advantage of using EMD is that the basis functions

an be directly derived from the signal itself based on the
ocal characteristic time scale of the data, which provides
etter characterization than those given in advance.12 It is a
ully data-driven approach and often brings not only high
ecomposition efficiency but also sharp frequency and time
ocalizations.

Essentially, EMD decomposes a signal into a sum of
scillatory functions, namely, IMFs, which �i� have the
ame number of extrema and zero crossings or differ at
ost by one and �ii� are symmetric with respect to local

ero mean, where the mean value of the envelope defined
y the local maxima and the envelope defined by the local
inima is zero at any point. The IMF components are ob-

ained from the signal by the means of an algorithm called
he sifting process. This algorithm extracts each mode lo-
ally and excludes the highest-frequency oscillations out of
he original signal.

Given those two definitive requirements of an IMF, the
ifting process to extract the first IMF c1�t� from a given
ignal x�t�, t=1, . . . ,T is designed as such that, initially,
�t�=x�t�, and then is subjected to an iteration process that
an be described as follows:

1. Identify all the local maxima and minima of s�t�.
2. Generate its upper and lower envelopes, eup�t� and

elow�t�, by cubic spline interpolation.
3. Calculate the mean envelope by m�t�= �eup�t�

+elow�t�� /2.
4. Sifting: d�t�=s�t�−m�t�.
5. Check the properties of d�t�:

If d�t� is not an IMF, then let s�t�=d�t� and go back to
step 1.
If d�t� is an IMF, then let c1�t�=d�t� and end the
iteration.

he residue r1�t�=x�t�−c1�t� is treated as the new input
i.e., s�t�=r1�t��, and the same iteration is applied to the
ew input to extract the next IMF and produce the next
esidue. Such an iteration carries on until the sifting process
s stopped by any of the following criteria: after extracting
ptical Engineering 037401-
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n IMFs, the residue, rn�t� is either an IMF or a monotonic
function. rn�t� can be interpreted as the dc component of
the signal. After that, the original signal can be recon-
structed via the following equation:

x�t� = �
i=1

n

ci�t� + rn�t� . �1�

It should be noted that in step 2 we adopt the boundary
conditions proposed in Ref. 18 to treat the end effects of the
spline fitting, which is achieved by adding extrema by mir-
ror symmetry with respect to the extrema that are closest to
the edges. EMD aims to capture information about local
trends in the signal by measuring and quantizing oscilla-
tions. Such oscillations can be quantized by a local high
frequency or local detail and correspondingly a local low
frequency or local trend. The source signal being decom-
posed into these local details and trends can be iteratively
reduced to characteristic signals. If we use EMD to decom-
pose facial images into their IMFs, then there is a strong
likelihood that the effects of noise and illumination will be
isolated into one or more IMFs.

In order to better understand the way EMD behaves in
stochastic situations involving broadband noise, Ref. 19 re-
ports on numerical experiments based on fractional Gauss-
ian noise �FGN�. In such a case, it turns out that EMD acts
essentially as a dyadic filter bank resembling those in-
volved in wavelet decompositions. FGN is defined as the
increment process of fractional Brownian motion.20 In dis-
crete time, FGN corresponds to a time series �yH�n�, n
= . . . ,−1 ,0 ,1 , . . .� indexed by a real-valued parameter 0
�H�1 �its Hurst exponent�, and such that its autocorrela-
tion sequence RxH

�k�ªE�yH�n�yH�n+k�� can be worked out
as

RxH
�k� =

�2

2
��k − 1�2H − 2�k�2H + �k + 1�2H� . �2�

As is well known, the special case H=1 /2 reduces to white
noise, whereas other values induce nonzero correlations,
either negative when 0�H�1 /2 or positive when 1 /2
�H�1 �long-range dependence�.

Figure 1 �Ref. 19� illustrates the case of fractional
Gaussian noise, where EMD can be interpreted as a filter
bank of overlapping bandpass filters for modes of indices
k�2, the mode 1 corresponding essentially to a half-band
high-pass filter �although it contains a non-negligible low-
pass part in the lower half-band�. Moreover, each mode of
index �k+1�, k�2, occupies a frequency domain that is
roughly the upper half-band of that of the previous residual
of index k. The collection of all such filters tends to orga-
nize in a filter bank structure that is reminiscent of what is
classically observed in wavelet decompositions in similar
situations.21 It is worth pointing out that similar results
have been obtained independently by Wu and Huang22 in
the case of white noise.

On the basis of the above observation, if we set cn+1
=rn�t� as the last IMF, then a general purpose time-space
filter can be designed as
March 2010/Vol. 49�3�2
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lh�t� = �
i=l

h

ci�t� , �3�

here l ,h� �1, . . . ,n+1� , l�h. For example, when l=1
nd h�n+1, it is a high-pass filtered signal; when l�1
nd h=n+1, it is a low-pass filtered signal; when 1� l
h�n+1, it is a bandpass filtered signal. From Eq. �3�, it

an be seen that EMD allows us to selectively reconstruct
he input signal by ignoring those IMFs whose contribu-
ions to the signal are undesirable. For pose estimation,
uch contributions include unwanted noise, illumination
hanges, and expression variations. In this paper, Eq. �3�
orms the basis functions for representing face data as de-
cribed below, where we use it as a bandpass filter.

.2 Feature Face Extraction
n general, a facial image is often contaminated by noise
nd uneven illumination in many multimedia processing
pplications, such as computer-aided media content analy-
is, determination of human identity, activities across dif-
erent scenarios, etc. Therefore, a feature face with noise
nd illumination invariant in the facial pose estimation is
specially important in these applications. From Refs. 17
nd 23, it can be deduced that majority of noise is repre-
ented by the highest local information �the first IMF� and
he majority of illumination effect is represented by the last
everal IMFs, which motivated us to apply EMD as a band-
ass filter to decompose input signals, and only those IMFs
hat describe the distinct facial pose characteristic are used
s discriminating features for facial pose estimation.

To illustrate how EMD can be used as a bandpass filter,
he process of decomposing signals extracted from facial
mages are shown in Fig. 2. According to the property of
he EMD procedures, the data are decomposed into several
undamental components, each with a distinct time scale.
ne example is shown in Fig. 2�c�, which includes the
riginal signal extracted from the middle row of Fig. 2�a�

ig. 1 Illustration of EMD behavior, where 5000 independent time
eries of 512 points each have been generated, the average spectra
f the seven first IMFs are plotted as a function of normalized fre-
uency, and the value of Hurst exponent varies in 0.2, 0.5, and 0.8.
ptical Engineering 037401-
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and its decomposed four IMFs and one residue. More spe-
cifically, the first IMF associated with the smallest time
scale corresponds to the fastest time variation of data. As
the decomposition process proceeds, the time scale is in-
creasing, and hence, the mean frequency of the mode is
decreasing. Figure 2�d� shows us the EMD result of the
middle-row signal extracted from Fig. 2�b�, which has illu-
mination changes from right to left. Comparing Figs. 2�c�
and 2�d�, it can be seen that the IMFs decomposed from
these two different signals are nearly the same. The differ-
ence just exists in the residues, which reflect the illumina-
tion tendency of the signals such as the dc component in
the data. It can be required that the inhomogeneous illumi-
nation correction can be performed after subtracting the
residue from the original signal.

Because the EMD sifting process first extracts the high-
est frequency, the first modes correspond generally to the
noise. It can be observed by comparing Fig. 2�c� with Fig.
2�f�, which is the EMD result from a Gaussian white-noise
corrupted signal. Figures 2�c� and 2�f� have very similar
low-frequency IMFs and residues. The difference is that
Fig. 2�f� has one more decomposed IMF, which is reflected
by the first IMF. To illustrate what the role of the first IMF
in Fig. 2�f� is, the reconstruction is shown in Fig. 2�g� in
which the original data without noise from Fig. 2�c� is plot-
ted as a blue line and partial sum of the IMFs is displayed
as a red line. The red line is the summation of the second to
the fifth IMFs and the residue from Fig. 2�f�. It can be seen
that it matches the shape of the original data well. There-
fore, the information of the noise is contained in the very
first modes. In fact, illumination variation can be treated as
a type of noise, which is related to low-frequency oscilla-
tions or signal tendency. Therefore, in this paper we adopt
l=2 and h=n in Eq. �3� to form the bandpass filter for
low-level processing �filtering or denoising� to reduce illu-
mination and noise effects.

There are a number of 2-D EMD techniques that have
been reported in the literature. For example, Nunes et al.24

proposed a 2-D EMD using a radial basis function for sur-
face interpretation; Damerval et al.25 presented a fast algo-
rithm for bidimensional EMD, Xu et al.26 provided a 2-D
EMD by finite elements; and Xu et al.27 proposed an im-
proved bidimensional EMD based on structural extrema.
However, as reported by Huang and Wu in Ref. 28, all
these 2-D approaches are computationally expensive and
provide different results for the same image because of dif-
ferent interpolation methods. Though the spline-fitted sur-
face serves the purpose well, the fittings offer only an ap-
proximation and could not go through all the actual data
points. We have also carried out empirical studies on 2-D
EMD, which indicate that there exist a range of challenges
and difficulties for 2-D EMD, and hence, we adopted the
original version of EMD proposed by Huang et al. in Ref.
12 to decompose images row by row. It is a direct method
to extend 1-D EMD to process 2-D images, in which our
essential purpose is to illustrate one specific aspect of EMD
�i.e., the way it filters out the noise� in a real-world appli-
cation �facial pose estimation�. To associate with facial
pose estimation, by treating each row of a facial image
separately, we can string 2-D facial images into 1-D vec-
tors. Application of EMD to these vectors yields a set of
vector IMFs that are then reshaped into matrix IMFs, as
March 2010/Vol. 49�3�3
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Fig. 2 �a� The original image; �b� the original image with light from right to left; �c� EMD result of the
middle row signal of �a�; �d� EMD result of the middle row signal of �b�; �e� the noise corrupted image;
�f� EMD result of the middle row signal of �e�; �g� the original signal �solid line� of �c� and the recon-
structed signal without the first IMF �dashed line� of �f�.
ptical Engineering March 2010/Vol. 49�3�037401-4
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hown in Fig. 3, in which the facial face is decomposed
nto several IMF faces showing the details from fine to
oarse.

By comparing Figs. 3�a� and 3�b�, we can see that the
rst IMF face of the noise corrupted image contains the
ajority of the highest-frequency oscillations �i.e., the

ariation of noise�. Although its second IMF face is also
ffected by noise oscillations, it still gives us the character-
stics of this face image. The remaining IMFs of both Figs.
�a� and 3�b� match very well. Figure 3�c� is an example to
nvestigate the effect of illumination changes. With the
omparison of the last images of Figs. 3�a� and 3�c�, it can
e seen that the residue is responsible for the majority of
he illumination effect. Figure 3�d� illustrates the EMD re-
ults of one facial image contaminated by noise and uneven
llumination at the same time. It can be seen that both types
f noise can be separated well. From the above analysis, it
an be concluded that the first IMF represents the effect of
igh-frequency noise and its residue relates to the illumina-
ion tendency. Therefore, when facial images are recon-
tructed without those two components, their processing
ould be made robust and, hence, their performances in
ose estimation could be improved.

Given the facial image, X= �x1�t� , . . . ,xi�t� , . . . ,xM�t���,
=1 , . . . ,N, each row xi�t� can be decomposed into xi�t�

(b)

(a)

(c)

(d)

Fig. 3 �a� The original facial image and its dec
decomposed IMFs; �c� the original image with lig
the image contaminated by noise and uneven i

Fig. 4 Six pose
ptical Engineering 037401-
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=� j=1
ni cij�t�+rni

�t� by the EMD. Removing the first IMF
ci1�t� and the residue rni

�t� of each row, the feature face can
be reconstructed by

X̃ = 	
x̃1�t�
. . .

x̃i�t�
. . .

x̃M�t�

 = 	

�
j=2

n1

c1j�t�

. . .

�
j=2

ni

cij�t�

. . .

�
j=2

nM

cMj�t�


 . �4�

Selective reconstruction of facial images using IMFs that
do not contain high-frequency noise and illumination ef-
fects enables us to reconstruct the fundamental nature of
the data for accurate facial pose estimation.

3 Facial Pose Estimation
Existing work8 on pose estimation is established on the
setup that, given N people for whom the pose is to be

ed IMFs; �b� the noise corrupted image and its
right to left and its decomposed IMFs; and �d�

tion and its decomposed IMFs.

MPI database.
ompos
ht from

llumina
s in the
March 2010/Vol. 49�3�5
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stimated, a database of template images: O
O1�O2� . . . �ON=�rOr, is created, where Or=� jOj,r

j=1, . . . ,J�, contains J different poses for the r’th person.
herefore, let the input video for the r’th person be parti-

ioned into a set of K frames F1r , . . . ,FKr, his or her pose
an be estimated via examination of each video frame Fkr
k=1, . . . ,K� in comparison to the images in the set Or

� jOj,r �j=1, . . . ,J� to determine which pose set Oj,r pro-
ides the best match between the template and the input
ideo frame.

In Ref. 8, mutual information is used to measure the
ependency of the information contained in a test frame Fkr
nd a reference frame f i, f i�Oj,r, which is defined as
ollows:29,30

I�FKr, f i� = H�Fkr� + H�f i� − H�Fkr, f i� , �5�

�Fkr� = − �
u

pFkr
�u�log pFkr

�u� , �6�

Fig. 5 Examples of 38 different faci

Fig. 6 Samples of the VidTIMIT video sequenc
head to the left, right, back to the center, up, do
ptical Engineering 037401-
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H�Fkr, f i� = − �
u,v

pFkrfi
�u,v�log pFkrfi

�u,v� . �7�

In order to calculate the MI between these two video
frames, which have L pixels each, they consider pixel val-
ues as outcomes A= �a1 ,a2 , . . . ,aL� of a random variable.
The probability pFkr

in �6� is estimated by the histogram of
the frame Fkr, while the joint probability pFkrfi

is estimated
by the joint histogram of the frames Fkr and f i.

The closer the value of MI between these two frames is
to zero, the less information one frame contains about the
other. Therefore, the frame Fkr is assigned to the pose class
corresponding to the maximum MI�Fkr , f i�. Because the
pixel values of the images are used directly in Ref. 8, its
estimation rate is very sensitive to illumination changes and
noise. In order to obtain noise and illumination-invariant
facial pose estimation algorithm, a new algorithm based on
the feature face extracted by EMD and MI is proposed
below.

First, we apply EMD to every partitioned video frame

essions in the MPI video sequence.

person starts from the frontal pose, turns her
d then returns to center.
al expr
e. The
wn, an
March 2010/Vol. 49�3�6
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kr and the template image f i. Consequently, the feature

ace F̃kr for the video frame Fkr and the feature face f̃ i for
he template image f i can be obtained based on Eq. �4�. By
sing MI, the pose estimation can be designed as such that

e calculate the mean MI between F̃kr and f̃ i as follows:

I�Fkr,Oj,r� =
1

N�Oj,r�
�

f i�Oj,r

MI�F̃kr, f̃ i� , �8�

here f i�Oj,r and N�Oj,r� stands for the number of tem-

lates inside Oj,r. The MI of two feature faces, F̃kr and f̃ i, is
efined as follows:

I�F̃kr, f̃ i� = H�F̃kr� + H� f̃ i� − H�F̃kr, f̃ i� , �9�

�F̃kr� = − �
u

pF̃kr
�u�log pF̃kr

�u� , �10�

�F̃kr, f̃ i� = − �
u,v

pF̃krf̃ i
�u,v�log pF̃krf̃ i

�u,v� , �11�

here H�F̃kr� and H� f̃ i� denote the marginal entropy values

f F̃kr and f̃ i, respectively, and H�F̃kr , f̃ i� is the joint entropy
f the joint probability distribution of the image intensities.
he probability pF̃kr

can be estimated by the histogram of

he frame F̃kr, while the joint probability density function

pF̃krf̃ i
can be estimated by a joint histogram of F̃kr and f̃ i.

able 1 Comparison on the MPI database �estimation rate �in
ercent��

IMF1+MI Residue+MI
The

Proposed MIa

Original images 94.4 85.0 93.1 86.9

Corrupted images
v=0.01

31.8 79.8 87.3 85.4

Corrupted images
v=0.02

30.3 79.2 86.0 84.7

Corrupted images
v=0.03

29.5 79.4 85.4 84.6

ig. 7 Examples of noise corrupted images: �a� the original image
b� corrupted image by variance v=0.01, �c� corrupted image by
ariance v=0.02, and �d� corrupted image by variance v=0.03.
ptical Engineering 037401-
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Therefore, the frame Fkr is assigned to the pose class
corresponding to the maximum MI�Fkr ,Oj,r�, which is
given as follows:

pose = arg max
j

MI�Fkr,Oj,r� . �12�

4 Experimental Results and Discussions
In this section, extensive experiments are designed to
evaluate the proposed facial pose-estimation algorithm in
comparison to the existing MI based method in terms of
their robustness to facial expressions, noise, and illumina-
tion variations. To make evaluations comprehensive, our
experiments are performed on two publicly available face
video databases:

1. Face Video Database of the Max Planck Institute
�MPI� for Biological Cybernetics.31,32 The cameras
recorded 25 fps at 786�576 video resolution, nonin-
terlaced. On the basis of the camera views, we have
six different poses as shown in Fig. 4. From the video
database, we extracted 38 action units for each pose,
which illustrate different facial expressions. Ex-

Table 2 Estimation rate �in percent� on the MPI database.

IMF1+MI Residue+MI Proposed MIa

Original images 94.4 85.0 93.1 86.9

Light from right to left 90.8 69.5 90.5 81.0

Light from down to top 94.4 53.6 93.1 66.1

a

(b)

(a)

Fig. 8 Examples of images with uneven lighting change. �a� Light
from right to left and the corrupted image and �b� light from down to
up and the corrupted image.
Reference 8.
 Reference 8.
March 2010/Vol. 49�3�7
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amples are shown in Fig. 5. As a result, we have 228
video sequences �6 poses�38 action units� in total to
be processed.

2. VidTIMIT Database.33 It is comprised of video and
corresponding audio recordings of 43 people of three
sessions recorded in different weeks. The content of
each session is arranged as such that the subject per-
formed a head-rotation sequence as shown in Fig. 6.
The video of each person is stored as a numbered
sequence of JPEG images with a resolution of

Table 3 Estimation rate �in percent� on the MPI database.

IMF1+MI Residue+MI Proposed MIa

riginal images 94.4 85.0 93.1 86.9

Noise+Light
�right to left�

29.6 66.8 84.8 76.2

Noise+Light
�down to top�

31.7 51.7 87.1 57.3

Reference 8.
ptical Engineering 037401-

Downloaded from SPIE Digital Library on 19 Apr 2010 to 2
512�384 pixels. In total, there are 1806 �3 sessions
�9 poses�2 tests to every session�43 persons�
tests to be carried out.

In our experimental framework, video is processed
frame by frame. To achieve a better and more accurate
verification rate, the algorithm resizes each video when the
subject is in frontal position, according to a factor produced
by a given standard distance between the right and left eyes
using the method described in Ref. 34. In this way, the
scaling problem occurring in different sessions of the same
person can be resolved. From Ref. 8, we know that the best
pose-estimation results are given for a specific dimension
of the tracker bounding box where the face area is well
described. In this paper, the size of the bounding box, in
which the examined area only contains facial information,
is 220�288 and 200�250, for the MPI and VidTIMIT
databases, respectively. For each of the persons examined,
a ground-truth image representing the required pose is
used. This image is always taken from a different session
from the one examined. The ground-truth constitutes Oj,r in
Eq. �8�, while Fkr is every following frame of the examined
video input. In addition, the estimation rate on a database
used in this paper is defined as
stimation Rate =
No. frames�pose correctly estimated�

No. frames in every video � #poses � #sessions � #tests to every session � #persons
. �13�
.1 Robustness to Noise
n this section, experiments are designed to assess the ro-
ustness of the proposed algorithm. Considering the fact
hat the selected MPI database has 38 different facial ex-
ressions for each pose, we choose the normal facial ex-
ression as the ground-truth images for each pose, as
hown in Fig. 4. Specifically, the video sequences are cor-
upted by Gaussian white noise with mean m=0 and vari-
nce set as v=0.01, 0.02, and 0.03. To quantify the differ-
nce between the corrupted image and the original image,
he peak signal-to-nose ratio �PSNR� values are calculated,
hich is 30.11, 29.64, and 29.39 dB, for v=0.01, 0.02, and
.03, respectively. Some samples of such noise corrupted
mages are shown in Fig. 7. We then applied the proposed
lgorithm to these noise-corrupted images to complete its
ose estimation. For benchmarking purposes, we also

Table 4 Comparisons on the VidTIM

Method Right Mid-Right Frontal Mid

MIa 90.0 70.0 99.8 6

Proposed 96.7 66.7 99.9 7

aReference 8.
tested the MI pose-estimation technique reported in Ref. 8,
and all the results are summarized in Table 1.

It can be seen that when the video sequences in MPI
database are corrupted by adding noise, the pose-stimation
results are affected, which are decreased compared to the
results tested on the original database, no matter which fea-
tures we use. Especially, when the first IMF face is selected
for pose estimation, the results become very poor with es-
timation rate of �30%. However, when the residue faces
are selected for pose estimation, the results did not change
too much by varying levels of the added noise and the
estimation rate is fixed at �79%. Such huge difference
confirms that the first IMF face contains the majority of the
highest-frequency oscillations, which are essentially the
variation of noises. In other words, without the local infor-
mation of the first IMF, the proposed algorithm achieves a

abase �estimation rate �in percent��

Left Up Mid-Up Mid-Down Down

83.3 85.0 90.0 55.0 95.0

90.5 95.0 93.3 61.7 93.3
IT dat

-Left

8.3

0.0
March 2010/Vol. 49�3�8

02.116.81.141. Terms of Use:  http://spiedl.org/terms



c
f
a
a
a
9
t
s
o

4
T
i
t
t
t
I
i
a
c
i
t
c
a
c
c
I
o
i
o
c
m
R

n
s
M
w
h
f
r
i
g
t
o

Qing, Jiang, and Yang: Empirical mode decomposition-based facial pose estimation inside video sequences

O

ertain level of robustness to noises. In addition, with the
eature face proposed in this paper, better results are
chieved than using the original intensities of facial image
nd the proposed algorithm outperforms the benchmark8 in
ll tests. Although the proposed method is able to estimate
3.1% of the required poses on the original database, given
he fact that there are large facial expression variations in-
ide the database, the benchmark can only estimate 86.9%
f the required poses.

.2 Robustness to Illumination
he proposed algorithm has also been tested with respect to

ts sensitivity to illumination on the MPI database. Two
ypical uneven illumination variations are added to the da-
abase as shown in Fig. 8. The simulation results are illus-
rated in Table 2. It can be seen that the results of the first
MF face and the proposed method are not affected by the
llumination changes. However, the results of the residue
nd the method in Ref. 8 are very sensitive to lighting
hanges and their estimation rates are deteriorated. This
llustrates that the decomposed residue by EMD contains
he majority of illumination variations. For vertical light
hanges, the pixel values of each row in the corrupted im-
ge presents the effect of being added a constant value
ompared to the original image. Following the EMD de-
omposition, such effect will not have any impact on the
MFs but the residues. In other words, the IMFs of the
riginal image will remain the same as that of the corrupted
mage and the difference only exists in the residues, which
ften present a constant value. Therefore, under such cir-
umstance of corruptions, the proposed algorithm can still
aintain the 93.1% estimation rate, while the benchmark in
ef. 8 can only achieve an estimation rate of 66.1%.

In practical applications, a facial image is often contami-
ated by noise and uneven illumination variations at the
ame time. Table 3 illustrates the simulation results on the
PI database when images are corrupted by Gaussian
hite noise with mean m=0 and variance v=0.01, and in-
omogeneous illumination changes from right to left or
rom down to top. It can be seen that the proposed algo-
ithm can still find correctly 84.8 or 87.1% poses when
mages are contaminated by noise and illumination to-
ether. However, under such circumstance of corruptions,
he benchmark in Ref. 8 can only achieve an estimation rate
f 76.2 or 57.3%.

Fig. 9 Successful pose estimation. The first row
results produced.
ptical Engineering 037401-
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4.3 Comparisons on the VidTIMIT Database
To further evaluate the proposed algorithm in comparison
to existing efforts, we used the VidTIMIT database to test
the proposed algorithm on nine poses with different video
sessions, while the algorithm reported in Ref. 8 only tested
seven poses. The results of the comparison on each pose are
given in Table 4. It can be seen that both of these methods
can achieve the highest estimation rate when dealing with
the frontal pose. However, the lowest estimation rate of the
mid-down pose for MI in Ref. 8 is 55.0%, whereas it is
61.7% for the proposed. Furthermore, the average estima-
tion rate of all the poses is 81.82% for MI in Ref. 8 and
85.23% for the proposed. Therefore, the proposed algo-
rithm achieves better performances for almost all poses and
some examples of successful estimation are presented in
Fig. 9.

5 Conclusions
In this paper, a new facial pose-estimation algorithm is pro-
posed based on the EMD and MI. In order to be invariant to
noise and illumination, a new feature face is designed,
which is reconstructed by using IMFs that do not contain
noise and illumination effects. In comparison to existing
work, the proposed algorithm achieves the following ad-
vantages: �i� utilizes EMD as a bandpass filter to extract
discriminating feature faces for facial pose estimation; �ii�
being robust to Gaussian white noise corruption, uneven
illumination variation and varying facial expressions; and
�iii� outperforms the existing MI-based pose-estimation
algorithm8 with more poses tested for evaluation in terms
of both pose-estimation accuracy and pose-estimation
variations. Experimental results on both the MPI and the
VidTIMIT video databases validate the advantages of the
proposed algorithm and show that EMD is proved to be a
powerful tool for feature extraction and its application to
pose estimation provides excellent potential for further
multimedia content analysis and pattern recognitions
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