research

Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes

Abstract

Functionalized carbonaceous materials with hierarchical structure and developed porosity are highly desired in energy storage and conversion fields. In this work, a facile and scalable hydrothermal methodology was established to synthesise three-dimensional (3D) N-doped carbonaceous aerogels using biomass-based starting materials and polypyrrole as N-source. The effect of different calcination temperatures on the structural properties, type and content of N-species and electrochemical performance of the 3D N-doped carbonaceous aerogels were uncovered. Thanks to the combinatorial effect of the appropriate N content and porous structure, the obtained samples exhibited excellent electrochemical performance, in particular, an outstanding specific capacitance of 281.0 F g-1 achieved on the sample calcined at 600 °C. This methodology offers a new fabrication strategy to prepare nanoscale carbonaceous materials with desirable morphology and hierarchical architecture of great potentials for the applications in energy fields

    Similar works

    Full text

    thumbnail-image

    Available Versions