research

Determination of Density of Trap States at Y\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e-Stabilized ZrO\u3csub\u3e2\u3c/sub\u3e/Si Interface of Yba\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e7-δ\u3c/sub\u3e/Y\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e-Stabilized ZrO\u3csub\u3e2\u3c/sub\u3e/Si Capacitors

Abstract

Yba2Cu3O7-δ/yttria‐stabilized zirconia (YSZ)/silicon superconductor‐insulator‐semiconductor capacitors are characterized with current‐voltage and capacitance‐voltage (C‐V) measurements at different temperatures between 223 and 80 K. As a result of ‘‘freezing’’ of mobile ions in YSZ, effects of trapped charge at the YSZ/Si interface dominate the device electrical properties at superconducting temperatures. Density of interface states and its temperature dependence are determined using a modified high frequency C‐V method, in which the temperature dependences of band gap, Fermi level, and active dopant and intrinsic carrier concentrations are considered. At superconducting temperatures, e.g., 80 K, the interface state density within the band gap is reduced to lower than 1×1011 cm−2 eV at midgap. The low interface state density at the YSZ/Si interface is important for acceptable performance and reliability devices made up of such capacitors

    Similar works