147 research outputs found

    The effect on the seasonal dynamics of soil N transformation resulting from biochar application in karst mountains

    Get PDF
    Nitrogen (N) is frequently a limiting element for primary productivity in karst ecosystems due to its low availability. N mineralization drives N availability and is important for improving N use efficiency in soils. While the use of biochar in agricultural and forest ecosystems has attracted great attention recently, little has been reported on the seasonal dynamics of soil N transformation in karst and its response to biochar application. Therefore, we conducted a pot experiment over 1 year using two types of biochar (rice husk biochar and wood biochar) as soil amendments. The results demonstrated that in the karst mountain region, the soil had the highest content of mineral N (19.41 mg/kg) during summer and the lowest content of mineral nitrogen (3.74 mg/kg) during winter. There was a significant positive correlation (p < 0.01) between soil mineral N content and temperature, and between soil temperature and urease activity. Thus, the higher temperatures during summer enhance soil urease activity, making it easier for soil N mineralization to occur, and increasing soil mineral N content. The soil mineral N content of the CK treatment was 2.61–209.42% higher than the other treatments, indicating that the biochar application reduced the soil mineral N content, which was supported by the negative net N mineralization. This may be due to biochar facilitating the adsorption and immobilization of nitrogen. The soil mineral N content of rice husk biochar was significantly higher than that of woody biochar by 109.55%, indicating that woody biochar would adsorb more N or more readily stimulate N immobilization than rice husk biochar. Furthermore, soil N immobilization (negative net N mineralization) after biochar application varied according to the season. The higher temperatures during summer promoted soil N immobilization more with biochar application. These results are crucial to understanding soil N transformation in karst mountains and guiding effective soil management

    Solar Radiation Parameters for Assessing Temperature Distributions on Bridge Cross-Sections

    Get PDF
    Solar radiation is one of the most important factors influencing the temperature distribution on bridge girder cross-sections. The bridge temperature distribution can be estimated using estimation models that incorporate solar radiation data; however, such data could be cost- or time-prohibitive to obtain. A review of literature was carried out on estimation models for solar radiation parameters, including the global solar radiation, beam solar radiation and diffuse solar radiation. Solar radiation data from eight cities in Fujian Province in southeastern China were obtained on site. Solar radiation models applicable to Fujian, China were proposed and verified using the measured data. The linear Ångström–Page model (based on sunshine duration) can be used to estimate the daily global solar radiation. The Collares-Pereira and Rabl model and the Hottel model can be used to estimate the hourly global solar radiation and the beam solar radiation, respectively. Three bridges were chosen as case study, for which the temperature distribution on girder cross-sections were monitored on site. Finite element models (FEM) of cross-sections of bridge girders were implemented using the Midas program. The temperature–time curves obtained from FEM showed very close agreement with the measured values for summertime. Ignoring the solar radiation effect would result in lower and delayed temperature peaks. However, the influence of solar radiation on the temperature distribution in winter is negligible

    Paeoniflorin inhibits the growth of bladder carcinoma via deactivation of STAT3

    Get PDF
    Bladder cancer (BCa) is one of the most common urinary cancers. The present study aims to investigate whether Paeoniflorin (Pae) can exert inhibitory effects on BCa. The results showed that Pae inhibited proliferation of human BCa cell lines in a concentration- and time-dependent manner. Pae and cisplatin (Cis) synergistically inhibited the growth of tumours in RT4-bearing mice. Pae treatment neutralized the body loss induced by Cis. Moreover, Pae induced apoptosis in RT4 cells and increased the activities of caspase3, caspase8 and caspase9. Western blotting and immunohistochemical analysis revealed that the phosphorylated signal transducer and activator of transcription-3 (p-STAT3) level were decreased in Pae-treated RT4 cells and Pae-treated tumour-bearing mice. Furthermore, STAT3 transcriptional target B-cell lymphoma-2 was decreased in Pae-treated RT4 cells. Interestingly, Pae prevented translocation of STAT3 to the nucleus in RT4 cells. Collectively, Pae inhibits the growth of BCa, at least in part, via a STAT3 pathway

    Gas-Bearing Property in Deep Marine Shale and Its Micro Controlling Factors: Evidence from the Lower Silurian Longmaxi Formation in Southern Sichuan, China

    Get PDF
    AbstractThe gas content in shale reservoirs is often determined by the micro storage and sealing capacities of the reservoir. Deep shale reservoirs are in the high- or over-thermale maturity stage and have complex pore structure and connectivity, which are highly heterogeneous in vertical distribution. Research on the gas-bearing property of deep shale reservoirs is limited by these complex microscopic conditions. To analyze the gas-bearing characteristics of deep shale reservoirs, this work collected and summarized data on total organic carbon content, mineral composition, porosity, water saturation, and gas content measured on-site for the Longmaxi Formation in the Sichuan Basin in southern Sichuan, China. Then, experimental methods, such as X-ray photoelectron spectroscopy, transmission electron microscope, low-pressure N2 adsorption, spontaneous imbibition, and high-pressure methane adsorption, were used to analyze the micro storage and sealing capacities of the deep shale reservoirs. The results show that, different from shallow shale reservoirs (<3500 m), deep shale reservoirs have a higher graphitization degree and water saturation. An abundance of graphite structures often leads to weak resistance of organic matter to compression, deformation, or even collapse of pores in organic matter and severe damage to the gas storage space. However, a higher degree of graphitization can enhance the ability of the shale reservoirs to adsorb gas and self-sealing. The high water saturation in the reservoirs can interact with clay minerals and negatively affect the gas accumulation, storage, and transmission capacities of the shale reservoirs. However, the upper shale reservoirs with higher water saturation can seal the lower shale reservoirs, helping it preserve shale gas. Based on the vertical distribution of graphite structure, clay minerals contents, lithofacies, and water content in deep shale reservoirs, the essential microscopic conditions for deep shale reservoirs to have high gas content were proposed. This paper provides a detailed explanation and evaluation of deep shale’s storage and sealing capacities at the microscopic scale and can serve as a reference for further identifying the patterns for high-yield and rich shale gas reservoirs and improving deep shale gas exploration technologies

    Air Quality over China

    Get PDF
    The strong economic growth in China in recent decades, together with meteorological factors, has resulted in serious air pollution problems, in particular over large industrialized areas with high population density. To reduce the concentrations of pollutants, air pollution control policies have been successfully implemented, resulting in the gradual decrease of air pollution in China during the last decade, as evidenced from both satellite and ground-based measurements. The aims of the Dragon 4 project “Air quality over China” were the determination of trends in the concentrations of aerosols and trace gases, quantification of emissions using a top-down approach and gain a better understanding of the sources, transport and underlying processes contributing to air pollution. This was achieved through (a) satellite observations of trace gases and aerosols to study the temporal and spatial variability of air pollutants; (b) derivation of trace gas emissions from satellite observations to study sources of air pollution and improve air quality modeling; and (c) study effects of haze on air quality. In these studies, the satellite observations are complemented with ground-based observations and modeling

    Altered DNA methylation within DNMT3A, AHRR, LTA/TNF loci mediates the effect of smoking on inflammatory bowel disease

    Get PDF
    This work aims to investigate how smoking exerts effect on the development of inflammatory bowel disease (IBD). A prospective cohort study and a Mendelian randomization study are first conducted to evaluate the association between smoking behaviors, smoking-related DNA methylation and the risks of Crohn’s disease (CD) and ulcerative colitis (UC). We then perform both genome-wide methylation analysis and co-localization analysis to validate the observed associations. Compared to never smoking, current and previous smoking habits are associated with increased CD (P = 7.09 × 10−10) and UC (P < 2 × 10−16) risk, respectively. DNA methylation alteration at cg17742416 [DNMT3A] is linked to both CD (P = 7.30 × 10−8) and UC (P = 1.04 × 10−4) risk, while cg03599224 [LTA/TNF] is associated with CD risk (P = 1.91 × 10−6), and cg14647125 [AHRR] and cg23916896 [AHRR] are linked to UC risk (P = 0.001 and 0.002, respectively). Our study identifies biological mechanisms and pathways involved in the effects of smoking on the pathogenesis of IBD
    corecore