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Background: Gastric cancer (GC) and type 2 diabetes (T2D) contribute to each 
other, but the interaction mechanisms remain undiscovered. The goal of this 
research was to explore shared genes as well as crosstalk mechanisms between 
GC and T2D.

Methods: The Gene Expression Omnibus (GEO) database served as the source 
of the GC and T2D datasets. The differentially expressed genes (DEGs) and 
weighted gene co-expression network analysis (WGCNA) were utilized to 
identify representative genes. In addition, overlapping genes between the 
representative genes of the two diseases were used for functional enrichment 
analysis and protein–protein interaction (PPI) network. Next, hub genes were 
filtered through two machine learning algorithms. Finally, external validation 
was undertaken with data from the Cancer Genome Atlas (TCGA) database.

Results: A total of 292 and 541 DEGs were obtained from the GC (GSE29272) 
and T2D (GSE164416) datasets, respectively. In addition, 2,704 and 336 module 
genes were identified in GC and T2D. Following their intersection, 104 crosstalk 
genes were identified. Enrichment analysis indicated that “ECM-receptor 
interaction,” “AGE-RAGE signaling pathway in diabetic complications,” “aging,” 
and “cellular response to copper ion” were mutual pathways. Through the PPI 
network, 10 genes were identified as candidate hub genes. Machine learning 
further selected BGN, VCAN, FN1, FBLN1, COL4A5, COL1A1, and COL6A3 as 
hub genes.

Conclusion: “ECM-receptor interaction,” “AGE-RAGE signaling pathway in 
diabetic complications,” “aging,” and “cellular response to copper ion” were 
revealed as possible crosstalk mechanisms. BGN, VCAN, FN1, FBLN1, COL4A5, 
COL1A1, and COL6A3 were identified as shared genes and potential therapeutic 
targets for people suffering from GC and T2D.
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1 Introduction

As a prevalent tumor worldwide, gastric cancer (GC) has a relatively 
terrible prognosis. In 2020, estimates from GLOBOCAN revealed that 
GC ranked fourth for mortality and fifth for morbidity globally (1), which 
dramatically increased the burden of finance and medical care (2, 3). Type 
2 diabetes (T2D) is among the most prevalent endocrine diseases (4). A 
study representing 215 countries and regions has provided evidence that 
the global incidence of diabetes will increase, ranging from approximately 
10.5% in 2021 to 12.2% in 2045 (5, 6).

T2D is a risk factor for the emergence of certain cancers (7) and is 
connected to a higher cancer death rate (8, 9). According to cohort 
research involving over 46,000 patients, diabetes is linked to a 67% 
increase in GC risk (10). It is also one of the main non-cancer contributors 
to death in GC (11). Independent of conventional diabetes risk variables, 
a large-scale cohort investigation has verified that GC is linked to an 
elevated risk of diabetes (7). As the risk of developing T2D increases by 
35% (7) in GC, the mortality of GC survivors also significantly 
increases (12).

All those empirical observations suggest a strong bidirectional 
association underlying these two complex diseases. Though the 
associations between GC and T2D have been widely reported, the 
underlying genetic processes linking GC and T2D are still unknown. 
Fortunately, genetic exploration of disease–disease interaction has been 
possible through advances in sequencing and bioinformatics (4, 13–16). 
Meanwhile, with the continuous development of machine learning 
algorithms in medicine, numerous studies have applied them to the 
screening of feature biomarkers (17–19).

As is well known, exploring shared gene signatures between GC and 
T2D is of great significance for developing novel therapeutic strategies for 
joint prediction, prevention, and intervention. Therefore, the goal of our 
study was to uncover pivotal shared genes and related mechanisms 
between GC and T2D via bioinformatics and machine learning algorithms.

2 Materials and methods

2.1 Source of the dataset

“Stomach cancer” and “Type 2 diabetes” were used for digging the 
Gene Expression Omnibus (GEO) database1 for datasets related to 
either condition. The requirements comprised: (1) homo sapiens; (2) 
each dataset had a sample size of at least 15; (3) the tested tissues were 
gastric tissue or pancreatic islets; and (4) one disease group and one 
control group should be included in the dataset.

The annotation soft tables were downloaded from the relevant 
GPL platform. Probe ID and ensemble ID were converted to official 
gene symbols through R (v4.2.0) and Perl (v5.30.3), respectively.

2.2 Differentially expressed gene screen

GC-related datasets further identified the differentially expressed 
genes (DEGs) using limma (20) R (version 3.5.1), while T2D-related 

1 http://www.ncbi.nlm.nih.gov/geo/

datasets were analyzed using edge (21) R packages version 3.19. Raw 
datasets underwent normalization to identify potential mechanisms 
and relevant biological characteristics associated with pathways of 
DEGs in GC and T2D. Subsequently, the normalized datasets were 
transformed using the log2 function. When a replicated gene symbol 
is mapped to the identical gene, the average expression intensity is 
taken. DEGs need to meet | logFC| ≥ 1 as well as an adjusted p-value 
of < 0.05. DEGs were shown as heatmaps and volcano plots through 
ggplot2 (22) and pheatmap (23) packages.

2.3 Weighted gene co-expression network 
analysis

The GC and T2D datasets were subjected to WGCNA through the 
WGCNA (24) package. First, the goodSamplesGenes function was used 
to filter qualified samples and genes from the expression matrix to 
produce a scale-free co-expression. Outliers in the remaining samples 
were detected using cluster analysis. Next, “pickSoftThreshold” function 
was utilized to determine the network topology information, and the 
appropriate β value was selected as the soft threshold to construct the 
network to make the network meet the scale-free topology characteristics 
(25). Pearson analysis was used to compute the gene correlations matrix 
files. Then, the adjacency matrix was constructed by combining the gene 
correlations matrix and β. In the next step, we  first constructed a 
topological overlap matrix (TOM) by transforming the adjacency 
matrix, allowing us to assess the gene relationships and dissimilarities 
within the network. Subsequently, hierarchical clustering was used to 
group genes based on their similarity in expression profiles, and the 
dynamic tree-cut function was applied to identify distinct modules 
within the network. Additionally, we computed module eigengenes 
(MEs) by evaluating the correlation coefficients between each module 
and the gene expression patterns. This facilitated the identification of 
modules strongly associated with specific biological processes (BPs) or 
conditions within the dataset. Genes exhibiting strong connections 
within these modules were then selected for further investigation.

2.4 Identification of crosstalk genes

DEGs, as well as genes in related ME, were considered representative 
genes for the disease. Thus, crosstalk genes were defined as genes that 
overlapped between the GC-related and T2D-related representative genes.

2.5 Functional enrichment analysis

The top  10 pathways or BPs were selected based on their 
significance scores derived from the DAVID website’s2 analysis. 
Specifically, the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases were utilized (26, 27). The 
enrichment results were then processed using the ggplot2 (22) and 
stringr (28) packages in the R programming language to generate 
visualizations. ggplot2 was used for creating graphical representations 

2 https://david.ncifcrf.gov/summary.jsp
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of the enrichment results, while stringr facilitated data manipulation 
tasks, such as parsing and formatting pathway names for improved 
visualization clarity. This approach allowed for the clear visualization 
of the most relevant pathways and BPs implicated in the analyzed gene 
expression data.

2.6 Protein–protein interaction network

The STRING database3 (29) yielded PPI networks for crosstalk 
genes. The outcomes were then fully visualized using Cytoscape 
software Version 3.10.2 (30). MCODE with filter criteria including 
a degree cutoff of 2, a node score cutoff of 0.2, a k-core of 2, and a 
maximum depth of 100 and cytoHubba (using MCC) plugins were 
used to screen core gene clusters/hub genes (31–34). Candidate 
hub genes were defined as the top  10 genes ranked by the 
cytoHubba plugin and genes in the first cluster chosen by the 
MCODE plugin.

2.7 Machine learning

Support vector machine-recursive feature elimination (SVM-
RFE) (35) and least absolute shrinkage and selection operator 
(LASSO) algorithms were used to select hub genes for GC diagnosis. 
SVM-RFE minimizes the feature set and identifies predictive features 
by training a subset of features from various categories using 10-fold 
cross-validation (36). The SVM-RFE algorithm was implemented for 
hub gene selection utilizing the kernlab (37, 38), caret (39), and e1071 
(40) packages. LASSO regression could increase the predictability and 
understandability of a statistical model through variable selection 
(41). LASSO regression was carried out via glmnet (42) package, with 
a 10-fold cross-verification as the turning/penalty parameter. Hub 
genes of GC diagnosis were the intersection genes of the two machine 
learning algorithms.

2.8 External validation

To validate hub genes, we obtained clinical and gene data of 
GC cases from the Cancer Genome Atlas (TCGA) database.4 A 
volcano plot demonstrated differential expression of hub genes, as 
well as gene expression comparison between cancer groups and 
control groups, which was further illustrated in a boxplot using 
reshape2 (43) and ggpubr (44) packages. ROC curves for hub 
genes were constructed using pROC (45) and ggplot2 (22) 
packages. Furthermore, clinical data related to GC obtained 
through the TCGA database were used for survival analysis (46, 
47) within the R v4.2.0 environment for survival analysis. 
Additionally, the survminer package (48) was utilized for 
visualization purposes. This enabled us to assess the prognostic 
significance of identified hub genes, in relation to overall survival 
rates among GC patients.

3 https://cn.string-db.org/

4 https://portal.gdc.cancer.gov/

3 Results

3.1 Screening of differentially expressed 
genes

GSE29272 (GPL96 platform, expression profiling by array) 
and GSE164416 (GPL16791 platform, expression profiling by 
high-throughput sequencing) met our inclusion criteria. 
GSE29272 contained 134 GC samples and 134 control samples, 
while GSE164416 comprised 39 T2D samples and 18 
control samples.

Following the investigation of differential gene expression, 
292 DEGs (127 downregulated genes and 165 upregulated genes) 
were found in the GC dataset, and 541 DEGs (57 downregulated 
genes and 484 upregulated genes) were discovered in the T2D 
dataset. Figure  1 displays the volcano plot and heatmaps 
for DEGs.

3.2 Critical module recognition

Based on WGCNA, 21 modules were discovered in 
the GSE29272 (β = 8), which were represented in different 
colors. Through the Spearman correlation coefficient, the “blue” 
(r = −0.73, p = 3e-45, 1,863 genes), the “purple” (r = −0.68, 
p = 3e-37, 172 genes), and the “green” (r = 0.67, p = 9e-36, 669 
genes) had a high association with GC. Additionally, 31 modules 
were identified in the GSE164416 (β = 6) with the “grey60” 
(r = 0.72, p = 1e-09, 138 genes) and the “salmon” (r = −0.56, 
p = 1e-05, 228 genes) having a high association with T2D. The 
WGCNA results are shown in Figure 2.

3.3 Crosstalk genes between GC and T2D

After the intersection of the representative genes between GC and 
T2D, 104 genes were identified as the crosstalk genes bridging GC and 
T2D (Figure 3A; Supplementary Table S1).

3.4 Functional enrichment analysis of 
crosstalk genes

The bulk of crosstalk genes was concentrated in “Protein digestion 
and absorption,” “ECM-receptor interaction,” and “AGE-RAGE 
signaling pathway in diabetic complications” through the KEGG 
analysis (Figure 3B).

In accordance with the GO analysis, the crosstalk genes were 
primarily enriched in BP categories, including “aging,” “cellular 
response to copper ion,” and “cerebral cortex development” 
(Figure  3C). As for cellular component (CC) categories, the 
crosstalk genes were primarily found in “extracellular region,” 
“extracellular space,” and “extracellular matrix” (Figure 3D). The 
three most important molecular functions (MFs) of the crosstalk 
genes were “extracellular matrix structural constituent conferring 
tensile strength,” “extracellular matrix structural constituent,” and 
“calcium ion binding” (Figure 3E). More detailed information is 
listed in Supplementary Table S2.
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3.5 Identification of candidate hub genes

The PPI network identified 66 interacting node genes and 120 
edges in the crosstalk genes for subsequent machine learning 
filtration (Figure 4F). MCODE and cytoHubba plugins selected 10 
genes as closely related genes, respectively. Surprisingly, the 10 
genes (FN1, COL1A1, COL3A1, COL6A3, COL11A1, BGN, 
FBLN1, COL6A2, VCAN, and COL4A5) screened by these two 
plugins were the same.

3.6 Determining hub genes with machine 
learning

Seven candidate hub genes were selected through the LASSO 
regression algorithm (lambda was set to a minimum in order to 
minimize the regularization effect of the LASSO algorithm) 
(Figure 5A). In addition, nine candidate hub genes were screened 
through the SVM-RFE algorithm (Figure 5B). The Venn diagram 

revealed that the LASSO regression and SVM-RFE algorithms 
identified seven cross genes (BGN, COL1A1, VCAN, FN1, COL6A3, 
COL4A5, and FBLN1), which were determined to be hub genes for 
GC diagnosis in the final validation (Figure 5C).

3.7 External validation and survival analysis

The TCGA database consisted of 412 GC samples and 36 control 
samples. The volcano plot (Figure 4A) and boxplot (Figure 4B) reveal 
that all seven genes were differently expressed between the two groups. 
Specifically, COL4A5 and FBLN1 were downregulated genes, while 
BGN, COL1A1, VCAN, FN1, and COL6A3 were upregulated. 
Figures 4C,D display the ROC curves corresponding to upregulated 
and downregulated genes separately. The AUC percentage for BGN, 
COL1A1, VCAN, FN1, COL6A3, COL4A5, and FBLN1 were 93, 95, 
82, 70, 74, 82, and 76%, respectively. The survival analysis of the hub 
genes detected (COL4A5, FN1, FBLN1, and VCAN) could predict the 
prognosis of GC (Figures 4E–K).

FIGURE 1

Volcano plot and heatmap for the DEGs identified from GC (A,C) and T2D (B,D) datasets.
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FIGURE 2

WGCNA of GC and T2D datasets. (A,B) β  =  8 was chosen as the soft threshold for the GC dataset. (C) Cluster dendrogram of co-expressed genes in 
GC. Under the gene tree, each color represented a module. (D) Module–trait relationships in the GC dataset. (E,F) β  =  6 was chosen as the soft 
threshold for the T2D dataset. (G) Cluster dendrogram of co-expressed genes in T2D. Under the gene tree, each color represented a module. 
(H) Module–trait relationships in the T2D dataset.
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4 Discussion

A meta-analysis revealed that T2D could raise the incidence of 
GC by 19% (49). In addition, metformin, a common medicine used 
in the treatment of T2D (50), reduced the risk of GC by 24% (51). 

Meanwhile, a number of cancer types—particularly those of the 
pancreas, colon, breast, and stomach—can raise the chance of 
developing diabetes (7, 52–54). GC and T2D may be co-drivers of 
each other. The molecular processes driving the complicated 
interactions between these two diseases remain unexplained. This is 
the first study investigating the shared genes and common signatures 

FIGURE 3

Functional enrichment analysis and PPI network of crosstalk genes. (A) The Venn diagram depicts 104 crosstalk genes formed by the intersection of 
representative genes from the two diseases. (B) KEGG analysis. (C–E) GO analysis. (F) Identification of candidate hub genes.
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of GC and T2D through bioinformatic analysis and machine learning 
algorithms in an effort to facilitate early detection, improved 
treatment, and prompt prevention.

According to the GO analysis, we  found the CC and MF of 
crosstalk genes between GC and T2D were mainly focused on 
extracellular matrix (ECM), while the KEGG analysis also verified 
crosstalk genes were enriched in “ECM-receptor interaction.” ECM is 

a crucial element of the GC microenvironment (55) as well as a major 
tumorigenesis regulator (56). Excessive deposition of ECM is one of 
the hallmarks of poor cancer prognosis (57). By stimulating cellular 
mechanisms associated with cell metabolic control, angiogenesis, and 
ECM receptors, gastric ECM remodeling promotes the growth of 
tumors (58, 59). Meanwhile, inappropriate deposition of ECM 
proteins is associated with multiple complications of diabetes, such as 

FIGURE 4

Hub genes external validation and survival analysis in TCGA database. (A) Volcano plot of hub genes. (B) Boxplot of hub genes (***p  <  0.001). (C) ROC 
curves of upregulated genes. (D) ROC curves of downregulated genes. (E–K) Survival analysis of hub genes.
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delayed wound healing (60), diabetic retinopathy (61, 62), diabetic 
foot ulcers (63), and diabetic nephropathy (DN) (64). In addition, 
hyperglycemia accompanying diabetes can lead to the impaired 
degradation or synthesis of HSPG in ECM cells, resulting in DN, 
cardiovascular disease, and retinopathy (65). Therefore, 
we hypothesized that ECM might be crucial to the comorbidity of 
T2D and GC.

“Aging” was in first place in the BP of the GO analysis. Cellular 
senescence is both a cause and a consequence of T2D (66, 67). 
Numerous senescence-associated secretory phenotypic factors 
released by senescent cells can mediate the dysfunction of pancreatic 
β-cell and adipose tissue, as well as insulin resistance, contributing to 
the pathogenesis of T2D (67, 68). In turn, hyperglycemia and 
metabolic changes can stimulate senescent cell formation (69), leading 
to various diabetic complications (70). In addition, senescence 
contributes to both the prevention and progression of tumors (71). 
Although senescence has been proven to be  a conserved tumor 
suppressor mechanism (72, 73), the senescence-associated secretory 
phenotype can also facilitate tumor cell growth (74, 75).

“Cellular response to copper ion” ranked second in BP. Copper 
ion is associated with the development of T2D and may be  a 
therapeutic target (76). In parallel with this, copper has garnered 
significant interest in the field of cancer treatment since it may be a 
limiting element in numerous facets of cancer advancement, such as 
angiogenesis, proliferation, and metastasis (77, 78). Hence, “cellular 
response to copper ion” could be the common BP of T2D and GC.

Through KEGG analysis, the “AGE-RAGE signaling pathway in 
diabetic complications” was considered a bidirectional pathway of 
T2D and GC. AGEs are synthesized at an accelerated rate during 
hyperglycemia, and RAGE is an advanced glycation end-product 
receptor (79). AGEs mainly trigger signaling pathways through RAGE 
that lead to cellular stress and dysfunction, and harm target organs, 
resulting in complications (80). Many diabetic complications are 
associated with AGE-RAGE signaling pathways, such as DN (81), 
cardiovascular disease (80, 82), and vascular calcification (79). 
Currently, it has been established that AGE-RAGE signaling 
contributes to the growth of different cancer (83). AGE-RAGE 
signaling may facilitate crosstalk between cancer microenvironment 
components and cells, inducing hypoxia, autophagy, endoplasmic 
reticulum stress, mitochondrial dysfunction, and epigenetic 
modification, suggesting that the AGE-RACE signal is an essential 
driving factor in cancer development (84). According to a study, the 

AGE-RAGE signaling pathway may generate a positive feedback loop 
with oxidative stress, increasing the likelihood of cancer in people 
with diabetes (85).

Through multiple bioinformatics methods, seven hub genes were 
discovered to be implicated in the co-pathogenesis of GC and T2D. All 
the hub genes are connected with GC and may be poor prognostic 
markers in GC and many other cancers (86–92). BGN (93) and FN1 
(94) may stimulate GC cell proliferation, invasion, migration, and 
EMT, which facilitate tumor progression. Aberrant VCAN expression 
is associated with modifications in ECM homeostasis, cell adhesion, 
differentiation, and proliferation (95, 96), thereby contributing to the 
carcinogenic potential of GC (97, 98). FBLN1 is identified as a 
candidate tumor suppressor gene whose inactivation can contribute 
to gastric carcinogenesis (89). COL4A5 is an independent prognostic 
marker for GC, especially in diffuse-type GC (90, 99). COL1A1 was 
found to be one of the cancer-associated fibroblast (CAF) markers for 
GC and a poor prognostic signature gene for CAF infiltration (100). 
COL1A1 is possibly a useful molecular marker and therapeutic target 
for GC (91). Overexpression of COL6A3  in GC promotes tumor 
growth and progression (92). It affects the tumor microenvironment, 
thereby promoting tumor inflammation and angiogenesis (101). As 
for T2D, FBLN1 is associated with mortality in T2D patients (102). 
COL1A1 is linked to hypoglycemic activity and is a novel therapeutic 
target that may be used to treat T2D (103). Although not all hub genes 
are well understood in T2D, they may be associated with diabetes 
because they are related to the ECM. VCAN is known to support ECM 
homeostasis (104). FN1 is an accumulation constituent of the ECM in 
the case of hyperglycemia (105). FN1 (106), COL1A1 (103) and 
COL4A5 (107) are significantly correlated with ECM–receptor 
interaction. COL4A5 (108) and BGN (109) are established to 
be contributors to the production of excess ECM, regulating ECM 
deposition. FBLN1 is an ECM protein (110, 111). COL6A3 encodes 
type VI collagen, which is found in the ECM of practically every tissue 
(112, 113). Moreover, the hub genes are connected with the 
development of diabetes complications, such as DN (96, 107, 114, 
115), cardiovascular disease (116), and vascular stiffness (117).

In this study, ROC curves suggested that all seven hub genes had a 
good predictive effect on the occurrence of GC. However, survival 
analysis revealed that only four genes (VCAN, FN1, FBLN1, and 
COL4A5) were intimately connected to the GC prognosis. Around the 
sixth year, there was a reversal in the overall survival rate of the high-risk 
and low-risk COL4A5 groups. Among them, the overall survival of the 

FIGURE 5

Determining hub genes with machine learning. (A) The output of LASSO regression. (B) The output of the SVM-RFE algorithm. (C) The intersection of 
the two algorithms is displayed via a Venn diagram.
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high-risk and low-risk groups of COL4A5 was reversed around the sixth 
year. Nevertheless, GC has a notoriously bad prognosis. According to 
statistics, less than 20% of patients with advanced cancer infections will 
survive for 5 years (118). Therefore, we considered that COL4A5 still had 
good predictive performance. However, further in vitro and in vivo studies 
are needed to validate our findings on the functional roles of the identified 
hub genes in GC. This validation will elucidate molecular mechanisms, 
validate prognostic significance, and guide the development of diagnostic 
and therapeutic approaches. Additionally, future research should focus on 
confirming the prognostic significance of COL4A5 and other genes in 
independent patient cohorts and exploring their potential as biomarkers 
for early detection and personalized treatment strategies. These efforts are 
crucial for translating our findings into clinically relevant applications to 
improve patient outcomes in GC management.

Despite our speculation on the potential mechanism of the 
connection between GC and T2D, certain limitations persist. First, 
only a few corresponding clinical data could be obtained from public 
databases. In addition, we failed to find patients with both GC and 
T2D for research. Finally, wet experiments could not be conducted to 
confirm our results because of the constraints of laboratory conditions.

5 Conclusion

This research revealed that “ECM-receptor interaction,” “AGE-RAGE 
signaling pathway in diabetic complications,” “aging,” and “cellular 
response to copper ion” are the possible crosstalk mechanisms of GC and 
T2D. Additionally, it identified seven genes (BGN, VCAN, FN1, FBLN1, 
COL4A5, COL1A1, and COL6A3) as shared genes and potential targets 
for treatment in individuals with both GC and T2D. Notably, COL4A5 
exhibited a reversal in overall survival rates around the sixth year. 
However, further investigation is warranted to confirm these conclusions.
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