47 research outputs found

    Adaptive mesh refinement based simulations of three-dimensional detonation combustion in supersonic combustible mixtures with a detailed reaction model

    No full text
    Detonation combustion initiated with a hot jet in supersonic H2-O2-Ar mixtures are investigated by large-scale three-dimensional (3D) simulations in Tianhe-2 computing system with adaptive mesh refinement method. The reactive Euler equations are utilized as the governing equations with a detailed reaction model where the molar ratio of the combustible mixture is 2:1:7 under the condition of pressure 10kPa and temperature 298K. Results show that the Mach stem surface which is formed after the shock surface reflection on the upper wall is actually a local overdriven detonation. The side walls in 3D simulations can play an important role in detonation initiation in supersonic combustible mixtures, because they can help realize triple lines collisions and reflections during the initiation process. The width of the channel has an important influence on the strength of side-wall reflections, and under certain condition there might exist a critical width between the front and back sides of the channel for the successful initiation. Both the two-dimensional (2D) and the 3D detonations are overdriven and have a constant but different overdrive after their complete initiations. Although the overdrive degree of the 3D detonation is smaller than that of the 2D case, more complex and irregular detonation fronts can be observed in the 3D case compared with the 2D detonation, which is likely because of the propagation of transverse waves and collisions of triple lines in multi-directions in 3D detonations. After the hot jet is shut down, the newly formed 2D Chapman-Jouguet (CJ) detonation has almost the same characteristic parameters with the corresponding 3D case, indicating that the 2D instabilities can be perfectly preserved in 3D simulations. However, the slapping wave reflections on the side walls in the 3D detonation result in the second oscillation along with the main one, which presents stronger instabilities compared with the 2D case. The inherent stronger 3D instabilities is also verified through the quantitative comparison between the 2D and 3D cases where the 3D result always shows stronger fluctuations than the 2D case

    Three-dimensional simulation of detonation initiation and propagation in supersonic combustible mixtures

    No full text
    Detonation initiation and propagation in supersonic combustible mixtures using a hot jet have been investigated in three-dimensional numerical simulations with the detailed reaction model on Tianhe-2 system. Results indicate that the side walls can help realize the triple lines collisions and triple lines reflections, which play an important role in the detonation initiation. There should exists a critical width between the front and back sides of the three-dimensional channel for the successful initiation, which is totally different from that of two-dimensional cases. When the width exceeds the critical value, there will be not the effective reflections of the bow shock surface on the side walls, hence resulting in the failure of detonation initiation. For the detonation propagation, none of the standard detonation modes(rectangular mode, diagonal mode and spinning mode) is observed in the three-dimensional case. The initiated detonation is actually in an overdriven state because of the presence of the hot jet in the supersonic flow field, thus resulting in more complex detonation fronts than that in the CJ detonation. Because of both directions of three-dimensional detonation development than that of the two-dimensional case where the transverse waves propagation and the collisions of triple points can be realized only in one direction, the detonation fronts in three-dimensional simulation shows significantly larger irregularities and variations

    Numerical simulation of detonation initiation and propagation in supersonic combustible mixtures with non-uniform species

    No full text
    Adaptive high-resolution simulations of gaseous detonation using a hot jet initiation were conducted in supersonic combustible mixtures with spatially non-uniform species. The two-dimensional Euler equations were used as the governing equations in combination with a detailed hydrogen-oxygen reaction model. Three different groups of mixtures, which represent various degrees of chemical reactivity, were investigated. The results show that when the mixtures generally have a high degree of chemical reactivity, detonation initiation can eventually be realized successfully by Mach reflection as well as the DDT mechanism, independent of the spatial distribution of the mixture in the channel. A recurring four-stage sequence of detonation initiation, detonation attenuation, initiation failure and detonation reinitiation can be identified. When the mixtures generally have an intermediate degree of chemical reactivity, detonation combustion can be fully realized in the channel, where different degrees of overdrive are found in the upper lower half. After the shutdown of the hot jet, the overdriven detonation attenuates gradually and eventually a slightly overdriven detonation and a slightly underdriven detonation are generated, which can be regarded as a new stable state of propagation. However, whether a detonation can be initiated successfully is determined by the spatial mixture distribution. In mixtures with low degree of chemical reactivity, detonation initiation can generally not be realized. In this case, successful realization of detonation initiation should be realizable by using of a stronger hot jet

    Dissecting the regulation and function of ATP at the single-cell level.

    No full text
    Regulation of cellular ATP level is critical for diverse biological processes and may be defective in diseases such as cancer and mitochondrial disorders. While mitochondria play critical roles in ATP level regulation, we still lack a systematic and quantitative picture of how individual mitochondrial-related genes contribute to cellular ATP level and how dysregulated ATP levels may affect downstream cellular processes. Advances in genetically encoded ATP biosensors have provided new opportunities for addressing these issues. ATP biosensors allow researchers to quantify the changes of ATP levels in real time at the single-cell level and characterize corresponding effects at the cellular, tissue, and organismal level. Along this direction, several recent single-cell studies using ATP biosensors, including the work by Mendelsohn and colleagues, have started to uncover the principles for how genetic and nongenetic parameters may modulate ATP levels to affect cellular functions and human health

    A Review on Micromixers

    No full text
    Microfluidic devices have attracted increasing attention in the fields of biomedical diagnostics, food safety control, environmental protection, and animal epidemic prevention. Micromixing has a considerable impact on the efficiency and sensitivity of microfluidic devices. This work reviews recent advances on the passive and active micromixers for the development of various microfluidic chips. Recently reported active micromixers driven by pressure fields, electrical fields, sound fields, magnetic fields, and thermal fields, etc. and passive micromixers, which owned two-dimensional obstacles, unbalanced collisions, spiral and convergence-divergence structures or three-dimensional lamination and spiral structures, were summarized and discussed. The future trends for micromixers to combine with 3D printing and paper channel were brought forth as well

    A Fluidic Device for Immunomagnetic Separation of Foodborne Bacteria Using Self-Assembled Magnetic Nanoparticle Chains

    No full text
    Immunomagnetic separation has been widely used for the separation and concentration of foodborne pathogens from complex food samples, however it can only handle a small volume of samples. In this paper, we presented a novel fluidic device for the specific and efficient separation and concentration of salmonella typhimurium using self-assembled magnetic nanoparticle chains. The laminated sawtooth-shaped iron foils were first mounted in the 3D-printed matrix and magnetized by a strong magnet to generate dot-array high gradient magnetic fields in the fluidic channel, which was simulated using COMSOL (5.3a, Burlington, MA, USA). Then, magnetic nanoparticles with a diameter of 150 nm, which were modified with the anti-salmonella polyclonal antibodies, were injected into the channel, and the magnetic nanoparticle chains were vertically formed at the dots and verified using a fluorescence inverted microscope. Finally, the bacterial sample was continuous-flow injected, and the target bacteria could be captured by the antibodies on the chains, followed by gold standard culture plating to determine the amount of the target bacteria. Under the optimal conditions, the target bacteria could be separated with a separation efficiency of 80% in 45 min. This fluidic device could be further improved using thinner sawtooth-shaped iron foils and stronger magnets to obtain a better dot-array magnetic field with larger magnetic intensity and denser dot distribution, and has the potential to be integrated with the existing biological assays for rapid and sensitive detection of foodborne bacteria

    A Numerical Investigation of Mixing Models in LES-FMDF for Compressible Reactive Flows

    No full text
    The filtered mass density function (FMDF) model has been employed for large-eddy simulations (LES) of compressible high-speed turbulent mixing and reacting flows. However, the mixing model remains a pressing challenge for FMDF methods, especially for compressible reactive flows. In this work, a temporal development mixing layer with two different convective Mach numbers, Mc=0.4 and Mc=0.8, is used to investigate the mixing models. A simplified one-step reaction and a real hydrogen/air reaction are employed to study the mixing and turbulence-chemistry interaction. Two widely used mixing models, interaction by exchange with the mean (IEM) and Euclidean minimum spanning tree (EMST), are studied. Numerical results indicate that no difference is observed between the IEM and EMST models in simple reaction flows. However, for hydrogen/air reactions, the EMST model can predict the reaction more accurately in high-speed flow. For mixing models in compressible reactive flows, the requirement of localness preservation tends to be more essential as the convective Mach number increases. With the increase of compressibility, the sensitivity of the mixing model coefficient is reduced significantly. Therefore, the appropriate mixing model coefficient has a wider range. Results also indicate that a large error may result when using a fixed mixing model coefficient in compressible flows

    Adaptive simulations of cavity-based detonation in supersonic hydrogen–oxygen mixture

    No full text
    Two-dimensional reactive Euler equations with a detailed reaction model where the molar ratio of the combustible mixture H2/O2/Ar is 2:1:7 under the condition of pressure 6.67 kPa and temperature 298 K, are solved numerically with adaptive mesh refinement method to investigate detonation combustion using a hot jet initiation in cavity-based channels filled with the supersonic combustible mixture. Results show that from the comparison between the simulations in a cavity-based channel and a straight channel without any cavity embedded, it is indicated that the cavity can help realize detonation initiation in the combustible mixture with a hot jet. It is suggested that detonation initiation can be realized using a relatively weaker hot jet in cavity-based channels filled with the supersonic combustible mixture compared with that in straight channels without a cavity embedded. The cavity also plays a significant role in detonation propagation in the supersonic combustible mixture. After the hot jet is shut down, the acoustic wave generated by the subsonic combustion in the cavity can accelerate detonation propagation through a subsonic channel and result in the formation of a slightly overdriven detonation eventually. For a given flow with a shadow cavity embedded, there should exist a minimum cavity width Lmin. When the width is below Lmin, only some pressure oscillations in the cavity can make some impacts on detonation initiation and propagation. Otherwise, cavity oscillations can be generated which can greatly accelerate detonation initiation and propagation in the supersonic combustible mixture. For the shadow cavity, purely increasing the cavity depth does not have any more influence on detonation combustion. However, if the cavity is a deep one, it can play an important role in accelerating detonation initiation and propagation in the supersonic combustible mixture due to resonant oscillations

    Detonation interaction with cavity in supersonic combustible mixture

    No full text
    Two-dimensional adaptive simulations of detonation are carried out in a cavityembedded channel to investigate detonation interaction with the cavity in supersonic combustible mixtures. The reactive Euler equations with a detailed reaction model are solved using the second-order MUSCL-TVD scheme based on the open-source program AMROC. The results show that when the detonation wave propagates backward and crosses over the cavity, an oblique shock wave is first induced originated from the left edge of the cavity in the detonation front, which is demonstrated to actually be an oblique shock-induced combustion and further induces an unburned jet behind the oblique shock. As the oblique shock wave grows, the detonation wave further propagates backward with the front height gradually reduced and together the enlargement of the unburned jet. Rather than the speculated detonation failure, the detonation wave realizes relatively dynamic sustainment due to the pressure oscillation in the subsonic combustion in the cavity which can contribute significantly to the formation of highly unstable shear layers. The rapid turbulent mixing resulting from the large-scale vortices along the shear layers can enhance the consumption of the unburned jet and the subsequent chemical energy release, which plays a significant role in the detonation sustainment. A contractive passway is formed due to the highly unstable shear layers along the unburned jet resulting from hydrodynamic instabilities, which further induce the formation of overdriven detonation and its forward propagation once again. A periodical process of forward detonation propagation, detonation attenuation, detonation sustainment is formed in supersonic combustible mixtures due to detonation interaction with the cavity
    corecore