165 research outputs found

    Facile Synthesis of Nitrogen-doped Porous Carbon for Selective CO2 Capture

    Get PDF
    AbstractSolid-state post-combustion CO2 sorbents have certain advantages over traditional aqueous amine systems, including reduced regeneration energy since vaporization of liquid water is avoided, tunable pore morphology, and greater chemical variability. We report here an ordered mesoporous nitrogen-doped carbon made by the co- assembly of a modified-pyrrole and triblock copolymer through a soft-templating method, which is facile, economic, and fast compared to the hard-template approach. A high surface area mesoporous carbon was achieved, which is comparable to the silica counterpart. This porous carbon, with a Brunauer–Emmett–Teller (BET) specific surface area of 804.5 m2 g-1, exhibits large CO2 capacities (298K) of 1.0 and 3.1 mmol g-1 at 0.1 and 1bar, respectively, and excellent CO2/N2 selectivity of 51.4. The porous carbon can be fully regenerated solely by inert gas purging without heating. It is stable for multiple adsorption/desorption cycles without reduction in CO2 capacity. These desirable properties render the nitrogen-doped hierarchical porous carbon a promising material for post-combustion CO2 capture

    Biotransformation of doxycycline by \u3ci\u3eBrevundimonas naejangsanensis\u3c/i\u3e and \u3ci\u3eSphingobacterium mizutaii\u3c/i\u3e strains

    Get PDF
    The fate of doxycycline (DC), a second generation tetracycline antibiotic, in the environment has drawn increasing attention in recent years due to its wide usage. Little is known about the biodegradability of DC in the environment. The objective of this study was to characterize the biotransformation of DC by pure bacterial strains with respect to reaction kinetics under different environmental conditions and biotransformation products. Two bacterial strains, Brevundimonas naejangsanensis DD1 and Sphingobacterium mizutaii DD2, were isolated from chicken litter and characterized for their biotransformation capability of DC. Results show both strains rely on cometabolism to biotransform DC with tryptone as primary growth substrate. DD2 had higher biotransformation kinetics than DD1. The two strains prefer similar pHs (7 and 8) and temperature (30 °C), however, they exhibited opposite responses to increasing background tryptone concentration. While hydrolysis converted DC to its isomer or epimer, the two bacterial strains converted DC to various biotransformation products through a series of demethylation, dehydration, decarbonylation and deamination. Findings from the study can be used to better predict the fate of DC in the environment

    Expression and biological significance of c-FLIP in human hepatocellular carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>c-FLIP can be considered as a tumor-progression factor in regard to its anti-apoptotic functions. In the present study, we intended to investigate the expression of c-FLIP in human HCC tissues, and its relation with drug-induced cell apoptosis through the specific inhibition of c-FLIP expression by siRNA in 7721 cells.</p> <p>Methods</p> <p>c-FLIP expression was quantified immunohistochemically in HCC tissues(eighty-six cases), and corresponding noncancerous tissues (fifty-seven cases). Patients with HCC were followed up for cancer recurrence. Then, the c-FLIP gene was silenced with specific siRNA in 7721 HCC cells. c-FLIP expression was detected by RT-PCR, Western Blot and immunocytochemical staining. The cellular viability and cell apoptosis were assayed <it>in vitro </it>with cells treated with doxorubicin.</p> <p>Results</p> <p>Positive immunostaining was detected for c-FLIP in 83.72% (72/86) human HCC tissues, 14.81% (4/27) hepatic cirrhosis, 11.11% (2/18) hepatic hemangioma tissues, and absent in normal hepatic tissues. The overexpression(more than 50%) of c-FLIP in HCC adversely affected the recurrence-free survival. Through c-FLIP gene silencing with siRNA, the expressions of c-FLIP mRNA and protein were remarkably down-regulated in 7721 HCC cells. And doxorubicin showed apparent inhibition on cell proliferations, and induced more apoptosis.</p> <p>Conclusion</p> <p>These results indicate that c-FLIP is frequently expressed in human HCCs, and its overexpression implied a lesser probability of recurrence-free survival. The specific silencing of c-FLIP gene can apparently up-regulate drug-induced HCC cell apoptosis, and may have therapeutic potential for the treatment of human HCC.</p

    Novel SLCO2A1 mutations cause gender-differentiated pachydermoperiostosis

    Get PDF
    Primary hypertrophic osteoarthropathy (PHO) is a rare familial disorder with reduced penetrance for females. The genetic mutations associated with PHO have been identified in HPGD and SLCO2A1, which involved in prostaglandin E2 metabolism. Here, we report 5 PHO patients from four non-consanguineous families. Two heterozygous mutations in solute carrier organic anion transporter family member 2A1 (SLCO2A1) were identified in two brothers by whole-exome sequencing. Three heterozygous mutations and one homozygous mutation were identified in other three PHO families by Sanger sequencing. However, there was no mutation in HPGD. These findings confirmed that homozygous or compound heterozygous mutations of SLCO2A1 were the pathogenic cause of PHO. A female individual shared the same mutations in SLCO2A1 with her PHO brother but did not have any typical PHO symptoms. The influence of sex hormones on the pathogenesis of PHO and its implication were discussed

    Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>NDRG</it>2 (N-Myc downstream-regulated gene 2) was initially cloned in our laboratory. Previous results have shown that <it>NDRG</it>2 expressed differentially in normal and cancer tissues. Specifically, <it>NDRG</it>2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of <it>NDRG</it>2 inhibited the proliferation of cancer cells. <it>NDRG</it>2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether <it>NDRG</it>2 participates in carcinogenesis of the thyroid.</p> <p>Methods</p> <p>In this study, we investigated the expression profile of human <it>NDRG</it>2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40) and carcinomas (n = 35), along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc.</p> <p>Results</p> <p>The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of <it>NDRG</it>2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of <it>NDRG</it>2 expression with gender, age, different histotypes of thyroid cancers or distant metastases.</p> <p>Conclusion</p> <p>Our data indicates that <it>NDRG</it>2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of <it>NDRG2 </it>in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of <it>NDRG</it>2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.</p

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    The diagnostic analysis of the planet bearing faults using the torsional vibration signal

    Get PDF
    © 2019 Elsevier Ltd This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planet bearing fault detection. The inner race of the planet bearing is connected to the planet carrier and its outer race is connected to the planet gear bore hole. When moving, the planet bearing not only spins around the planet gear axis, but also revolves about the sun gear axis. This rotating mechanism poses a challenge for the condition monitoring of the planet bearing because of the variant vibration transfer paths. The transducer mounted on the carrier arm measuring the torsional vibration is theoretically free from this modulation effect and it is used in this research to extract the diagnostic information from the torsional vibration. A 34 degrees of freedom planetary gear lumped-parameter model with detailed planet bearing model was developed to obtain the dynamic response. The planet bearing was modelled by 5 degrees of freedom, with 2 degrees of freedom from the outer race, 2 degrees of freedom from the inner race and one degree of freedom from the sprung-mass. The variations of the sun-planet and ring-planet mesh stiffnesses were evaluated by the finite element method and the variation of the planet bearing stiffness was evaluated by the Hertzian contact theory. The localized faults on the planet bearing inner race, outer race and the rolling element were created mathematically and then these faults were incorporated into the planetary gear model to obtain the faulted vibration signal. The linear prediction method and the minimum entropy deconvolution method were used to enhance the planet bearing signal and then the amplitude demodulation results were analysed. It was found that the carrier arm instantaneous angular speed was an effective alternative approach for planet gear condition monitoring
    corecore