835 research outputs found

    A comparison between yellow-green and green cultivars of four vegetable species in pigments, ascorbate, photosynthesis, energy dissipation, and photoinhibition

    Get PDF
    Yellow-green foliage cultivars of four vegetables grown outdoors, i.e., Chinese mustard (Brassica rapa), Chinese kale (Brassica oleracea var. alboglabra), sweet potato (Ipomoea batatas) and Chinese amaranth (Amaranthus tricolor), had lower chlorophyll (Chl) (a+b) (29-36% of green cultivars of the same species), total carotenoids (46-62%) and ascorbate (72-90%) contents per leaf area. Furthermore, yellow-green cultivars had smaller photosystem II (PSII) antenna size (65-70%) and lower photosynthetic capacity (52-63%), but higher Chl a/b (107-156%) and from low (60%) to high (129%) ratios of de-epoxidized xanthophyll cycle pigments per Chl a content. Potential quantum efficiency of PSII (F(v)/F(m)) of all overnight dark-adapted leaves was ca. 0.8, with no significant difference between yellow-green and green cultivars of the same species. However, yellow-green cultivars displayed a higher degree of photoinhibition (lower F(v)/F(m) after illumination) when they were exposed to high irradiance. Although vegetables used in this study are of either temperate or tropical origin and include both C(3) and C(4) plants, data from all cultivars combined revealed that F(v)/F(m) after illumination still showed a significant positive linear regression with xanthophyll cycle-dependent energy quenching (q(E)) and a negative linear regression with photoinhibitory quenching (q(I)). F(v)/F(m) was, however, not correlated with nonphotochemical quenching (NPQ). Yet, a higher degree of photoinhibition in yellow-green cultivars could recover during the night darkness period, suggesting that the repair of PSII in yellow-green cultivars would allow them to grow normally in the field

    High frequency magnetic behavior through the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered ferromagnetic thin films

    Full text link
    We studied the dynamics of magnetization through an investigation of the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered thin films grown by magnetron sputtering. Impedance measurements were analyzed in terms of the mechanisms responsible for their variations at different frequency intervals and the magnetic and structural properties of the multilayers. Analysis of the mechanisms responsible for magnetoimpedance according to frequency and external magnetic field showed that for the CoFeB/Cu multilayer, ferromagnetic resonance (FMR) contributes significantly to the magnetoimpedance effect at frequencies close to 470 MHz. This frequency is low when compared to the results obtained for CoFeB/Ta and CoFeB/Ag multilayers and is a result of the anisotropy distribution and non-formation of regular bilayers in this sample. The MImax values occurred at different frequencies according to the used non-magnetic metal. Variations between 25% and 30% were seen for a localized frequency band, as in the case of CoFeB/Ta and CoFeB/Ag, as well as for a wide frequency range, in the case of CoFeB/Cu.Comment: 14 pages, 5 figure

    FRS: A Simple Knowledge Graph Embedding Model for Entity Prediction

    Get PDF
    Abstract: Entity prediction is the task of predicting a missing entity that has a specific relationship with another given entity. Researchers usually use knowledge graphs embedding(KGE) methods to embed triples into continuous vectors for computation and perform the tasks of entity prediction. However, KGE models tend to use simple operations to refactor entities and relationships, resulting in insufficient interaction of components of knowledge graphs (KGs), thus limiting the performance of the entity prediction model. In this paper, we propose a new entity prediction model called FRS(Feature Refactoring Scoring) to alleviate the problem of insufficient interaction and solve information incompleteness problems in the KGs. Different from the traditional KGE methods of directly using simple operations, the FRS model innovatively provides the procedure of feature processing in the entity prediction tasks, realizing the alignment of entities and relationships in the same feature space and improving the performance of entity prediction model. Although FRS is a simple three-layer network, we find that our own model outperforms state-of-the-art KGC methods in FB15K and WN18. Through extensive experiments on FRS, we discover several insights. For example, the effect of embedding size and negative candidate sampling probability on experimental results is in revers

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ

    Chapter 9 - Buildings

    Get PDF
    This chapter aims to update the knowledge on the building sector since the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) from a mitigation perspective. Buildings and activities in buildings are responsible for a significant share of GHG emissions, but they are also the key to mitigation strategies. In 2010, the building sector accounted for approximately 117 Exajoules (EJ) or 32% of global final energy consumption and 19% of energy-related CO2 emissions; and 51% of global electricity consumption. Buildings contribute to a significant amount of F-gas emissions, with large differences in reported figures due to differing accounting conventions, ranging from around an eighth to a third of all such emissions. The chapter argues that beyond a large emission role, mitigation opportunities in this sector are also significant, often very cost-effective, and are in many times associated with significant co-benefits that can exceed the direct benefits by orders of magnitude. The sector has significant mitigation potentials at low or even negative costs. Nevertheless, without strong actions emissions are likely to grow considerably - and they may even double by mid-century - due to several drivers. The chapter points out that certain policies have proven to be very effective and several new ones are emerging. As a result, building energy use trends have been reversed to stagnation or even reduction in some jurisdictions in recent years, despite the increases in affluence and population. The chapter uses a novel conceptual framework, in line with the general analytical framework of the contribution of Working Group III (WGIII) to the IPCC Fifth Assessment Report (AR5), which focuses on identities as an organizing principle

    Two refreshing views of Fluctuation Theorems through Kinematics Elements and Exponential Martingale

    Get PDF
    In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.Comment: 41 pages, 7 figures; version2: 45 pages, 7 figures, minor revisions, new results in Section

    Partial Wave Analysis of J/Ïˆâ†’Îł(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/Ïˆâ†’Îł(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∌500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Measurement of ΜˉΌ\bar{\nu}_{\mu} and ΜΌ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(ΜΌ+nucleus→Ό−+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(ΜˉΌ+nucleus→Ό++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(Μˉ)σ(Îœ))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K Μˉ/Îœ\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of ΞΌ\theta_{\mu}500 MeV/c. The results are σ(Μˉ)=(0.900±0.029(stat.)±0.088(syst.))×10−39\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites

    Full text link
    The results of spectroscopic and structural studies of phase composition and of defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) chondrites indicate that nitrogen atomic environment in meteoritic nanodiamonds (MND) is similar to that observed in synthetic counterparts produced by detonation and by the Chemical Vapour Deposition (CVD)-process. Most of the nitrogen in MND appears to be confined to lattice imperfections, such as crystallite/twin boundaries and other extended defects, while the concentration of nitrogen in the MND lattice is low. It is suggested that the N-rich sub-population of MND grains may have been formed with high growth rates in environments rich in accessible N (i.e., N in atomic form or as weakly bonded compounds). For the first time the silicon-vacancy complex (the "silicon" defect) is observed in MND by photoluminescence spectroscopy.Comment: 33 pages, 5 figures, submitted to Geochimica et Cosmochimica Act
    • 

    corecore